
GenProg Meets Cluster Computing
Junnosuke Matsumoto, Yoshiki Higo, Hiroyuki Matsuo,
Ryo Arima, Shinsukue Matsumoto and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University, Japan
{j-matumt, higo, h-matuo, r-arima, shinsuke, kusumoto}@ist.osaka-u.ac.jp

Abstract—GenProg is an automated program repair tool that
leverages genetic algorithm. In the repairing process of GenProg,
a larger number of mutated programs are generated, built, and
tested. If none of mutated programs passes all the test cases,
GenProg redos the loop of generation, build and test. The build
and test occupy over 90% of GenProg’s execution. In this paper,
we introduce our cluster-based GenProg, which builds and tests
in parallel with many computers. We have implemented the
cluster-based GenProg with Kubernetes environment and applied
it to real bugs in Defects4J dataset. As a result, we confirmed
that the time required for program repair is reduced according
to the number of computers in the cluster.

Index Terms—automated program repair, GenProg, cluster
computing

I. INTRODUCTION

Software developers spend long time for debugging [1],
[2]. A variety of research has been conducted to support
debugging. GenProg [3], which is an automated program
repair (in short, APR) tool, made a breakthough. It succeeded
in removing real bugs from OSS without any developer inter-
vention [4]. GenProg leverage genetic algorithm to generate
a repaired program from a given faulty program. GenProg
generates some mutated programs and executes all given test
cases for each of them. If a mutated program passes all test
cases, the mutated program is returned as a repaired program.
If not, GenProg selects some of the mutated programs and
then, generates new mutated programs and executes test cases.
This loop (selection, generation, and execution) is repeated
until finding a solution or reaching time limit or maximum
number of generations.

A serious issue in GenProg is its long execution time.
GenProg naturally takes long time to find a repaired program if
the loop is repeated many times. We run kGenProg1 [5], which
is a Java edition of GenProg, for bugs of Apache Commons
Math, so that we found that compiling mutated programs and
executing test cases occupy over 90% of execution time. Long
execution time is a serious issue for practical use for both
practioners who want to use GenProg on their projects and
researchers who want to improve GenProg.

In this paper, we propose to parallel compilation and test
execution to shorten GenProg’s execution time. However, a
simple parallelization in a single computer has a limited
capability for shortening execution time. Thus, we develop
a framework2 to execute compilation and test execution with

1https://github.com/kusumotolab/kGenProg
2https://github.com/kusumotolab/clustered-kGenProg

a cluster computing. In our proposed framework, unlimited
number of computers can be joined to the cluster as a node
of compiling mutated programs and executing test cases for
them. We implemented our cluster computing in our IaaS
environment and we confirmed that our cluster computing
dramatically shortened the time required to find repaired
programs for real bugs in open source software.

II. TERMINOLOGY

Herein, we introduce several terminologies used in this
paper.

A. Fault Localization

Fault localization is a technique to infer which lines of a
given program include the bug. APR techniques require fault
localization because they need to decide which lines to change.
In the context of APR, spectrum-based fault localization
technqiues are used. Several studies reported that Ochiai [6]
outperforms other spectrum-based techniques [7].

B. GenProg

GenProg is an APR technqiue that leverages genetic algo-
rithm [3]. Firstly, GenProg identifies suspicious lines by using
a fault localization technique. Secondly, GenProg generates
multiple mutated programs by changing the suspicious lines.
The program mutations include three operations: insertion,
deletion, and replacement. Thirdly, GenProg builds and ex-
ecutes given test cases for all the mutated programs. If a
mutated program succeeded in passing all the test cases,
GenProg outputs it as a repaired program. If not, GenProg
picks up some better programs and generate new mutated
programs of the next generation. This processing is repeated
until finding a repared program or reaching time limit or
maximum number of generations.

In the operations of insertion and replacement, GenProg
uses a program statement in a given program. Selecting
an operation and selecting a program statement in case of
insertion and repalcement are randomly decided.

C. kGenProg

kGenProg [5] is a Java implementation of GenProg. kGen-
Prog has a high portability, only a single JAR file of kGen-
Prog is required to repair target programs. kGenProg equips
interfaces for many operations such as fault localization and
program mutation. Thus, kGenProg users easily add new fea-
tures for such operations. kGenProg builds mutated programs



Fault Localization

Generation

Build

Test
Coordinator

Workers

z

Client

Delegate 
Build & Test

Delegate 
Build & Test

kGenProg

Repaired?Selection No

Yes

Test Results

Test Results

Cluster

Repaired Program

Buggy Program Test Cases

Fig. 1. Overview

kGenProg

Client Coordinator Worker

Apply an Edit Script,
Build and Test

Test Results 
and Coverages

Test Results 
and Coverages

Test Results 
and Coverages

an Edit Scriptan Edit Scriptan Edit Script

Fig. 2. The flow of a mutated program

and execute test cases on memory to avoid file IO as much as
possible. kGenProg’s compilation is a differential one, which
is very effective for large programs.

D. Kubernetes

Kubernetes3 is a container orchestration system for au-
tomating application deployment, scaling, and management.
It works with a range of container tools, including Docker. To
utilize Kubernetes, we prepare a master node firstly, and then
we register multiple computers to the master node. Kubernetes
distributes a Docker image container to each of the registered
computers and we can execute a program on them with only a
single command. Kubernetes monitors each of the registered
computers during program execution. If some errors happen
in a container of a registerd computer, Kubernetes dispose it
and launch a new container automatically.

3http://kubernetes.io

III. PROPOSED TECHNIQUE

To improve the performance of GenProg, we focus on
the build phase and the test phase that mainly impact the
performance. While multiple mutated programs can be built
and tested in parallel, if these phases are simply executed in
multiple threads in only a machine, the performance is limited
by the specification of the machine.

Thus, we implemented a tool that improves the performance
of GenProg by distributing its build phase and test phase.
Our tool runs on many computers that execute build and test.
Our tool is implemented as an extension of kGenProg [5]
because it is easy to extract the build phase and test phase
from kGenProg.

Figure 1 shows our tool’s overview. It consists of three
nodes.

Client: the node is the implementation of the interface in
kGenProg that it is responsible for executing build



and test.
Worker: the node actually executes build and test.
Coordinator: the node has responsibility for relaying be-

tween the client and workers and balancing loads.
These nodes communicate with TCP/IP network.

Figure 2 shows the flow that kGenProg generates an edit
script (a set of editing actions), the client sends the edit script
to a worker via the coordinator and it receives the test results
and the coverages. The coverages are used in kGenProg to
determine which program statements are the targets of next
editing actions. kGenProg generates edit scripts from the input
program and sends each of them to a different worker. Then,
each worker mutates the input program based on the edit
script that it received. Herein, the mutated program means
the program that the worker executes build and test. After
executing build and test, each worker sends the test results
and the coverages.

A. Communication between nodes

Figure 3 shows the communication flow.
(1) Registering a worker: when a worker is launched, it

notifies the coordinator of the IP and the port of the
worker, and the coordinator recognizes them.

(2), (3) Sending files to the coordinator and the workers:
when kGenProg is launched, the client sends files to
the registerd workers via the coordinator for build
and test.

(4), (5) Notifying build completion: the worker builds the
received files and notifies the coordinator of build
completion. After receiving the notification from all
workers, the coordinator notifies the client of build
completion.

(6), (7) Sending an edit script to the worker: after kGe-
nProg calculates an edit script, the client sends it to
the coordinator. The coordinator relays the received
edit script to an idle worker.

(8), (9) Returning the test results and the coverages:
the worker mutates the program based on the re-
ceived edit script, and then, it builds and tests the
mutated program. The worker returns the test results
and the coverages to the coordinator, and then, the
coordinator relays the received test results and the
coverages to the client.

The flow of (6)∼(9) is executed in parallel. kGenProg calcu-
lates edit scripts and iterates the loop of (6)∼(9) until finding
a solution.

B. Client

A client is imported to kGenProg as a strategy which
executes build and test. kGenProg delegates build and test to
the client. The client uses the following information: (a) files
required to build and test target projects, and (b) edit scripts.
The client compresses the files, which are necessary for build
and test, to a zip file, and the client sends the binary to the
coordinator.

Client Coordinator Worker(s)

(1) Register

(2) Send Files

(3) Send Files

(4) Notify Build 
Completion 

(6) Send 
an Edit Script

(8) Return Test 
Results & Coverages

V

Setting Up 
a Cluster 

Repairing
a Program

Registering
a Project

(5) Notify Build 
Completion 

(7) Send 
an Edit Script

(9) Return Test 
Results & Coverages

Loop

Fig. 3. The communication flow

C. Coordinator

A coordinator is a node which relays from the client to
workers which execute build and test. The coordinator does
the followings:

• registering workers ((1) in Figure 3),
• registering a project ((2)∼(5) in Figure 3), and
• receiving a delegation for build and test ((6)∼(9) in

Figure 3).
1) Registering workers: The coordinator always receives a

request for registering a worker. After receiving a notification
which a worker has been launched, the coordinator connects
to the worker.

2) Registering a project: The coordinator always receives a
request for registering a project. The coordinator provides an
ID to a given project, and the coordinator sends the binary and
ID to all registered workers. After receiving responses from all
workers, the coordinator returns the project ID to the client.

The coordinator keeps the pair of the binary and the ID,
because a new worker may be registered after registering
projects.

3) Receiving a delegation for build and test: The coordi-
nator receives a delegation for build and test from the client.



The coordinator receives a request which contains a project
ID and an edit script from the client and sends the request to
an idle worker.

The requests from the client are kept in the coordinator.
The coordinator manages which worker is delegated build and
test, and sends the next request to a worker which has finished
build and test. If a worker halts unexpectedly, another worker
is delegated.

D. Worker

A worker is a node which actually executes build and test.
The coordinator sends a project ID and an edit script to a
worker. The worker mutates the project based on the edit script
and executes build and test. All files in the project are built at
first build, after this, only edited files are built.

After finishing the build and test, the worker sends the
test results and the coverages to the coordinator. The reason
why the worker sends the coverages is that the coverages are
necessary for the fault localization in kGenProg.

E. Deployment

While we can launch each node one by one, the more
workers is launched the more difficult it is to manage all nodes.
Thus, our tool adopts k8s for the deployment. We prepared
the Docker images for the coordinator and the workers. By
editing the configuration file of k8s, a user can easily change
the configuration of the coordinator and the workers (e.g., the
number of workers, the specification of each node). k8s checks
the status of each worker. If a worker unexpectedly exits (e.g.,
out of memory, network error), the container is restarted by
k8s automatically, and the worker connects to the coordinator
again soon. Our tool can always keep the number of workers
which a user wants.

F. How to Use

Figure 4 (a) shows an example of the command which
launches our tool manually without k8s. At first, a user
launches a coordinator. The user launches a worker, and then,
the user registers the worker to the coordinator. The user has
to execute the command which launches a worker as many as
the user wants.

By using k8s, the user can more easily launch our tool.
Figure 4 (b) shows the commands. After setting up k8s, the
user can set up a cluster only by executing one command.
deploy.yml has information about the cluster (e.g., the number
of workers, the specification of each node, the port of the
coordinator). If the user wants to increase the number of
workers, all the user has to do are only modifying the files
and executing the command.

TABLE I
THE SPECIFICATIONS OF EACH NODE

Node CPU Memory
kGenProg ( including Client) 2 32GB
Coordinator 2 16GB
Worker 1 6GB

# launch a coordinator
$ coordinator −−port 50051

# launch a worker (as many as you want)
$ worker −−host <Coordinator IP> −−port 50051

# launch kGenProg with a client
$ client −−host <Coordinator IP> −−port 50051 \

−−kgp−args ’−−config kGP.toml’

(a) launching nodes manually

# in k8s master node
$ kubectl apply −f kubernetes/deploy.yml

# launch kGenProg with a client
$ client −−host <k8s master IP> −−port 50051 \

−−kgp−args ’−−config kGP.toml’

(b) launching nodes with k8s

Fig. 4. The command that launches our tool

IV. EVALUATION

We evaluate the performance of our tool by applying it
to OSS. We expect that the performance of our tool can be
improved by adding workers. Thus, the purpose of this exper-
iment is that we confirm how the performance is improved by
adding the workers.

A. Dataset

We use the Apache Commons Math (in short, Math) in-
cluded in Defects4J [8] for the evaluation. Defects4J is a
dataset which contains information of real bugs occurred in
the development of some projects. Math has 106 bugs. The
main reason why we use Math is that it is used as benchmarks
in many papers of APR [9], [10].

B. Environment

In the experiment, six IaaS servers were used. Each IaaS
server has 12 CPUs and 100GB memories, and all the IaaS
servers are connected to the same LAN.

We launched the virtual machines which has specifications
as much as their IaaS servers. The virtual machines were
registered k8s as a slave node. A coordinator and workers
were launched in the k8s.

Table I shows each node specification. The client is im-
ported to kGenProg, thus, the table shows the specification of
kGenProg and the client.

C. Configuration

We expect that the more workers are added the more
the performance is improved. Thus, in the experiment, we
compared the performances of stand-alone kGenProg (in short,
SA) and our tool when 1, 4, 16 and 32 workers were launched.

Our tool distributes build and test in a generation. We
considered that, when the number of workers in a generation
is low, our tool cannot evaluate enough because the advantage
of distributing build and test is not large. Thus, we set 1,000



kGenProg 1 4 16 32
workers

0

250

500

750

1,000

1,250

1,500

1,750

2,000

ti
m
e(
s)

(a) Execution time

kGenProg 1 4 16 32
workers

0

50,000

100,000

150,000

200,000

250,000

300,000

m
ut

at
ed

 p
ro

gr
am

s

(b) # mutated programs

Fig. 5. The results of the experiment

as the number which kGenProg generates programs in a
generation.

The time limitation for each bug was set 30 minutes, the
maximum generation was set unlimited and the termination
condition was set time out or finding a solution.

D. Results

Table II shows the number of found solutions according to
the number of workers. In the case that multiple workers were
launched, the more bugs were repaired than the case of SA.

Figure 5(a) shows the execution time in the case that
kGenProg found a solution with any of SA and 1 ∼ 32
workers. The time of 4 workers is shorter than the time of
1 worker and the time of 16 workers is shorter than the time
of 4 workers. The reason why the time of 32 workers is longer
than the time of 16 workers is that the client takes longer time
to send the project files to more workers.

Generating more mutated programs increases the possibility
of finding a solution. Thus, the number of mutated programs is
essential. Figure 5 (b) shows the number of mutated programs
in the case of time out. The number of mutated programs
generated by 4 workers is higher than 1 worker and the number
of mutated programs generated by 16 workers is higher than
the 4 workers. The reason why the performances of 16 workers
and 32 workers do not change significantly is that the ratio
of non-distributed processing gets larger, and the effect of
distributing build and test gets smaller.

V. THREATS TO VALIDITY

Each node can also communicate with others via a global
network. In such a situation, we expect the performance will

TABLE II
THE NUMBER OF SOLUTIONS WHICH KGENPROG FOUND

SA 1 worker 4 workers 16 workers 32 workers
25 29 36 36 36

be lower than the measured performance. However, we do
not know the impact because we have not measured the
performance in such a situation.

kGenProg mutates a program based on a random seed. In the
experiment, we used only one seed. Thus if we used multiple
difference seeds, the results (the performance and the number
of solutions) will be changed.

VI. DISCUSSION

In this paper, we mainly presented our tool, which dis-
tributes the builds and the tests. On the other hand, our tool
does not execute the other phases (e.g., the generation phase)
in parallel. It is not realistic to parallelly execute such phases
in kGenProg due to its architecture. For example, in the case of
the generation phase, the reason is that kGenProg remembers
all mutated programs to avoid generating the same mutated
programs, and so, the order that kGenProg mutates programs
is important.

However, this is an implementation problem of kGenProg.
While we adopted kGenProg because it is easy to distribute
the builds and tests that mainly impact the performance, the
other implementations of GenProg may be able to execute the
fault localization and the generation in parallel. We consider
that the selection cannot be executed in parallel regardless of
the implementation of GenProg, because GenProg selects a
fixed number of programs from many mutated programs.

VII. RELATED WORK

Claire Le Goues et al. [11] proposed a technique which
executes GenProg in parallel using cloud computing resource.
However, the technique simply executes GenProg in parallel
using different random seeds. Thus, the tool generates the
same mutated programs many times between different random
seeds, and the performance per a single random seed is not
improved. Since our technique executes kGenProg in parallel
using a single random seed, the performance per a single
random seed is improved.



VIII. CONCLUSION

We proposed a tool which improves the performance of
GenProg. Our tool improves the performance by distributing
the build and test. By applying the tool to open source
software, we confirmed that multiple workers improve the
performance than a single worker.

As future work, we will propose more intelligent mutation
by using our tool. While GenProg mutates programs per
statement, our tool can mutate programs per node of abstract
syntax tree because the number of programs which our tool
can build and test is larger than the one of GenProg within
the same time.

ACKNOWLEDGMENT

This work was supported by MEXT/JSPS KAKENHI
17H01725.

REFERENCES

[1] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen,
“Reversible debugging software - quantify the time and cost saved using
reversible debuggers,” 2013.

[2] B. Hailpern and P. Santhanam, “Software debugging, testing, and
verification,” IBM Systems Journal, vol. 41, no. 1, pp. 4–12, 2002.

[3] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in In Proc. International
Conference on Software Engineering, 2009, pp. 364–374.

[4] C. Le Goues, M. Dewey Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in In Proc. International Conference on Software Engineering,
2012, pp. 3–13.

[5] Y. Higo, S. Matsumoto, R. Arima, A. Tanikado, K. Naitou, J. Mat-
sumoto, Y. Tomida, and S. Kusumoto, “kgenprog: A high-performance,
high-extensibility and high-portability apr system,” in the 25th Asia-
Pacific Software Engineering Conference, 12 2018, pp. 697–698.

[6] A. da Silva, Meyer, A. Augusto, Franco Garcia, A. Pereira, de Souza,
and C. L. de Souza, Jr., “Comparison of similarity coefficients used for
cluster analysis with dominant markers in maize (zea mays l),” Genetics
and Molecular Biology, vol. 27, no. 1, pp. 83–91, 2004.

[7] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” Journal of
Systems and Software, vol. 82, no. 11, pp. 1780–1792, 2009.

[8] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for java programs,” in In Proc.
International Symposium on Software Testing and Analysis, 2014, pp.
437–440.

[9] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4j dataset,” Springer Empirical Software Engineering, vol. 22,
no. 4, pp. 1936–1964, 2016.

[10] M. Martinez and M. Monperrus, “ASTOR: A program repair library
for java,” in In Proc. International Symposium on Software Testing and
Analysis, 2016, pp. 441–444.

[11] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012,
pp. 3–13.


