
Jact: A Playground Tool
for Comparison of JavaScript Frameworks

Nozomi Nakajima, Shinsuke Matsumoto and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan

{n-nakajm, shinsuke, kusumoto}@ist.osaka-u.ac.jp

Abstract—Comparing and selecting the most appropriate
JavaScript Framework (JSF) is an important activity for web
application development. However, it is difficult to collect much
information for comparison of JSFs. In this paper, we present
a playground tool named Jact to support comprehension of
individual JSF characteristics. By the concept of playground,
users can freely run, edit, and share source code in their
web browsers. Based on the concept, Jact enables developers
to compare source codes and runtime performances of each
JSF based on typical tasks in web development. Task-based
comparison is useful for understanding the feature of each JSF.
Furthermore, developers can submit tasks and source code which
uses a specific JSF. By sharing tasks and source code written by
not only administrators but also developers, Jact can continuously
provide information relating to JSF, which includes benchmark
and API usage. In order to evaluate the effectiveness of Jact,
we conducted a subject experiment with 13 participants. Jact is
currently available at http://13.231.18.92.

Index Terms—framework, web, playground

I. INTRODUCTION

With an increase in demand for web technology, web
application source code is always getting more complicated
[1]. Currently, a large number of JavaScript frameworks (JSF)
have appeared to ease such complexity. Some well-known
JSFs include Vue.js1, Angular2, and React3. JSF contributes
to facilitating development and maintenance by introducing
design philosophy [2] [3] such as Model-View-Controller
(MVC) and Model-View-ViewModel (MVVM). It is known
that selecting an appropriate JSF assists the success of the
development [4].

However, comparing and selecting the most appropriate JSF
is not a simple problem due to the following three reasons;

(P1) Various choices: There are many JSFs in the world.
Individual JSF employs firm design philosophy and its own
syntax rule. Developers need to have a broad understanding
of these philosophical and syntax differences to meet the
characteristics of their developing web application and their
preferences.

(P2) Various runtime environments: The runtime envi-
ronment of a web application is composed of a user’s web
browser, operating system, and device. So, the possible number
of the runtime environment will be vast. The difference of
web browser is the same as the difference of JavaScript

1https://vuejs.org
2https://angularjs.org/
3https://reactjs.org/

engines (e.g., Google’s V8 and Mozilla’s SpiderMonkey).
Gizas et al. have pointed out that JSF performance is different
depending on the environment [4]. Though the performance
of an application strongly influences on its user experience
[5], it is one of the important viewpoints for selecting a JSF.
Therefore, web application developers should know the JSF
characteristics depending on environmental differences.

(P3) Outdated information: The number of JSFs and their
versions have risen continuously and rapidly. Performance
comparison of JSF itself has been conducted in the academic
field [4] and on the web [6] [7]. Plenty of JSF usage informa-
tion is also available on the web. However, such kind of static
information will be deprecated with JSF’s and browser’s
update. Outdated information may hinder understanding of JSF
characteristics. JSF relating information including benchmark
and API usage should be continuously maintained.

Besides, migration from a specific JSF to another JSF
requires tremendous efforts. Unlike a software library which
aims to reuse features in source code, JSF prescribes its design
philosophy to the overall structure of source code. Therefore, it
is necessary for developers to precisely and carefully grasp the
characteristics of each JSF at the beginning of development.

In this paper, we present a playground tool named Jact to
support comprehension of individual JSF characteristics. The
concept of playground enables users to freely run, edit, and
share source code in their web browser. Based on the concept,
Jact provides a feature of source code comparison to grasp
individual JSF usages to deal with P1. Also, Jact supports
on-demand runtime performance measurement to respond to
P2. These two features are based on a typical and small task
in web application development such as DOM manipulation
(e.g., change text color) and Ajax (e.g., get JSON data). These
task-based features allow developers to facilitate understanding
of JSFs by dividing a complex problem into smaller pieces.
As a solution to P3, Jact allows developers to submit task
and source code which uses a specific JSF. By accepting
submission from a developer, Jact can enrich its contents and
catch up with new information. At the time of source code
submission, Jact executes source code testing. The feature
of source code testing certifies the correctness of registered
source code. Also, we conducted a subject experiment with
13 participants in order to evaluate the effectiveness of Jact.
We believe that Jact contributes to the comprehension of JSFs
and developer’s decision making. Currently, Jact is available
at http://13.231.18.92.

II. PRELIMINARIES

A. Playground

In general, playground is a concept that enables users to run
and edit their source code on a web browser. Developers can
readily check source code and its demonstration without devel-
opment environment setup. Also, playground enables source
code sharing via URL. JSFiddle4 is one of the most popular
playground services of JavaScript. As well as JavaScript,
playgrounds are also available in various languages.

B. JavaScript framework (JSF)

JSF is a skeleton of source code which abstract developing
system. Vue.js and Angular are popular JSFs. Figure 1 shows
source code with and without Vue.js. Both source codes
change text "World" to "JS"on a web page. Whereas library
gives functions to the source code, JSF gives a structure to the
developing source code according to its design philosophy as
shown in Figure 1.

Each JSF adopts its own syntax rule. Even if two JSFs adopt
the same design philosophy, their syntax rules are different. As
such, migration from a specific JSF to another JSF requires
much effort. Developers need to carefully grasp the character-
istics of each JSF at the beginning of development.

III. JACT

A. Overview

We propose Jact which supports comparison of JSFs. Figure
2 shows the overall architecture and its usage flow of Jact. Jact
provides to compare differences of source code and runtime
performance. Through these comparisons, a developer can
understand various characteristics of individual JSFs. Also,
Jact adopts a concept named playground. A developer can run,
edit, and submit their source code and tasks through Jact. By
submission from a developer, Jact can enrich information for
comparison.

<html>
<div id="app">
<p>Hello
World

</p>

</div>
<script>
document
.getElementById('msg')
.innerText = 'JS';

</script>
</html>

(a) JavaScript(without JSF)

<html>
<div id="app">
<p>Hello {{ msg }}</p>

</div>
<script>
var app = new Vue({
el: '#app',
data: {
msg: 'World'

}
})
app.msg = 'JS';

</script>
</html>

(b) Vue.js

Fig. 1: Difference of implementation with and without JSF

4https://jsfiddle.net/

A. JSF user

A1. Visit Jact

A2. Show registered
tasks

A4. Show source code
registered for the task

C. Source code
contributor

A5. Order to start
measurement

A6. Display the result
in the graph

PASS FAIL

B2. Fill out the
form and submit

C1. Submit
New source code

C2. Execute the test

C3.
Register

B. Task
contributor

C4. Notify
the results

A3. Select a task

B1. Show task
submission form

Jact

Source code
comparison

Runtime
performance
measurement

Database

Fig. 2: Architecture of Jact and its usage flow

B. Actors

As shown in Figure 2, Jact supposes three kinds of actors:
JSF user, Task contributor, and Source code contributor.
The usage flow of Jact depends on each actor.

JSF user. Those who compare some JSFs. As shown in
A1 to A6 in the figure, this actor compares JSFs in terms of
syntax rules and runtime performance. By selecting a task, Jact
shows source code registered for the selected task and enables
syntax comparison of JSF. Besides, this actor can start runtime
performance measurement and check the result.

Task contributor. Those who submit useful tasks. As
shown in B1 and B2, this actor fills out a submission form
presented by Jact and submits a new task.

Source code contributor. Those who submit their source
code using JSF. As shown in C1 to C4, this actor submits
source code implementing the selected task. If the test were
successful, it would be registered formally.

C. Features

In this section, we describe Jact’s features. Table I shows
how Jact’s features correspond to P1, P2, and P3. The detail
of these features is described as follows.

1) Task-based comparison: In Jact, an actor compares JSFs
based on small tasks which are typical in client-side develop-
ment, such as DOM manipulation and Ajax [4]. These tasks
are easy to understand and expandable to more complicated

TABLE I: Features of Jact corresponding to the three problems

Features P1 P2 P3

Source code comparison ✓
Runtime performance measurement ✓
Playground ✓ ✓
Submission by actors ✓
Source code testing ✓5

P1: Various choices
P2: Various runtime environments
P3: Outdated information

5Source code testing contributes to submission by actors.This feature does
not respond to P3 directly.

functions. Table II shows examples of typical tasks used in
Jact. For picking out tasks, we refer to jQuery Examples [8].

2) Source code comparison: This feature responds to P1.
After selecting a task, an actor will be able to compare
source code which implements the selected task. Figure 3 is
a screenshot of Jact. In the left side, an actor can select a
task and source code. Jact also shows information about the
task and source code under each select box. The numbers of
watches, likes, and copies show the degree of contribution
to the comprehension of JSFs. An actor can compare JSFs
in reference to these numbers. In the right side, Jact shows
selected source code and check its behavior with the preview
frame. An actor can edit new source code in the code editor
in the upper right. Also, an actor can copy source code from
code viewer and rewrite freely. Rewritten source code is also
checked its behavior with the preview frame.

3) Runtime performance measurement: This feature re-
sponds to P2. For each source code of the selected task,
Jact measures the processing time to achieve the task 100
times. By measurements in various environments, an actor
will get performance information on-demand. An actor can
start measurement by clicking the button in the lower right in
Figure 3. A measurement flow is described below.

a. Generate one hundred iframes. To avoid the effect of
cache, measurements are executed in different iframes.

b. Embed source code to iframe. An iframe can embed
source code by setting its src attribute. Jact has an API
which returns source code. Jact sets a URL of the API
to the src attribute of each iframe.

c. Set a target of observation. To detect a mutation in-
voked by an event, Jact applies MutationObserver. Muta-
tionObserver API can execute a callback function when
a mutation is observed.

d. Start measurement. Jact records the start time of mea-
surement.

e. Trigger an event. Clicking a button is one of the example
of Trigger.

f. Detect a change and Stop measurement. MutationOb-
server executes a callback function which records the
finish time. The difference between start time and finish
time is processing time.

g. Jact repeats c. to f. in one hundred times and calculates
the total processing time.

This measurement will be made in each source code in series.
After the measurement, Jact shows the result in a graph. Figure

TABLE II: Examples of typical tasks used in Jact

Category Typical task

DOM manipulation

Change text body
Change text color
Add class
Remove class

Ajax Get JSON data
Post JSON data

Callback Change text with retrieved JSON data
Validate user’s input

4 is a screenshot of the window showing the result of runtime
performance measurement. A measurement result is shown as
a barplot.

4) Task submission: There is a limit to provide enough
information by our registration. In order to enrich information
for comparison, Jact has a feature of task submission.

An actor can move from the button shown in Figure 3 to
the task submission form. Table III shows the items required
for the task submission. As essential matters, Task name,
Contributor, Description, Source code, and its name are
required. In addition to them, Jact requires Pre, Trigger, and
Post for source code testing. We describe the source code
testing in the next section.

5) Source code submission: For the adaptation of the
concept of a playground, Jact has a feature of source code
submission. This feature enables Jact to enrich its contents
and catch up with the latest information. What we expect to
submit is below.

• Source code using unregistered JSF
• Source code using a new version of registered JSF
• Another source code using registered JSF
Source code will be registered when source code testing

succeeds. The testing requires source code to satisfy three
conditions: Pre, Post, and Trigger. Pre means precondition
which prescribes the initial state of source code. Trigger
induces the event in the source code. Post is postcondition
of the event. With three conditions, source code testing is
executed as below.

a. Embed the given source code into an iframe. This iframe
is used to remove the effect of this testing as a sandbox.

b. Jact runs Pre to check precondition.
c. Jact runs Trigger. The test fails if Trigger cannot be

executed due to lack of executed DOM element.
d. Jact runs Post to check postcondition.
e. Notify the test result to source code contributor.
Both precondition and postcondition are necessary to be sat-

isfied to pass the testing. If the source code testing succeeded,
Jact shows registration form to input JSF name, contributor
name, and tags which describe the feature of the source code.

D. Implementation

For the implementation of the user interface, Jact is made
with Vue.js. Also, Jact employs CodeMirror as a syntax
highlighter. Jact gets information about tasks and source code
from the database through REST API. We use Node.js as

TABLE III: Required items for task submission

Item Description
Task name Task name to submit
Contributor Task contributor’s name
Description Description of task to submit
Source code name JSF name used for sample source code
Source code Sample source code
Pre Precondition of the task
Trigger Trigger of the event in task
Post Postcondition of the task

8 1 1/ 98
9 /1 /9 1 /9 : 98
9 /1 /9 1 1 . 98

8 1 :1 29 8/1 1 1 18
. 98

/ . 1 3 : &

Fig. 3: Screenshot of Jact

Fig. 4: Screenshot of the result of runtime performance mea-
surement

an API server and Express to make REST API. Jact uses
MongoDB as a database.

IV. PRELIMINARY EXPERIMENT

A. Overview

The purpose of the preliminary experiment is to indicate
that there is a performance difference between JSFs. We select
a task“ Change text body” which changes the text on a
web page. For comparison, we select three JSFs: vanilla,
which is pure JavaScript source code and includes no library
or JSF, jQuery (v3.3,v3.4), and Vue.js (v2.5,v2.6). jQuery is
selected because of its usage rate. jQuery is used by 73.9%
of all the websites [9]. We select Vue.js from the viewpoint
of its popularity from developers. Vue.js is the most starred
GitHub repository in all JSF repository [10]. Google Chrome
and Firefox are selected as browsers. Also, iPhone, Android,
Windows PC, and Mac PC are used as devices. By multiplying
two browsers and four devices, we can measure on eight
environments.

B. Results

Figure 5 shows the results of the measurement on Firefox.
Figure 6 shows the results of the measurement on Google
Chrome. We conduct each measurement in five times and
average the results. In this bar chart, the vertical axis shows
the runtime performance rate compared to the result of vanilla

vanilla jQuery
(v3.3)

jQuery
(v3.4)

Vue.js
(v2.5)

Vue.js
(v2.6)

0

5

10

15

20

25

30

35

40

45
Firefox

Windows PC

Mac PC

Android

iPhone

Fig. 5: Results of the runtime performance measurement on
Firefox

vanilla jQuery
(v3.3)

jQuery
(v3.4)

Vue.js
(v2.5)

Vue.js
(v2.6)

0

5

10

15

20

25

30

35

40

45
Google Chrome

Fig. 6: Results of the runtime performance measurement on
Google Chrome

on each environment. From left, four bars in the figure show
the results on iPhone, Android, Mac PC, and Windows PC.

The results of jQuery are not so apart from the results of
vanilla. However, there is a difference in the results of Firefox
and Chrome. The performance rate on Firefox tends to be high
compared to the results on Chrome. As to jQuery, there is not
much difference between its versions.

Overall, Vue.js degrades runtime performance more signif-
icantly than jQuery. In the environment of Windows PC on
Chrome, the performance rate of Vue.js version 2.5 reaches
more than 40 times as long as vanilla. Also, the results of
Vue.js version 2.6 is quite different from the one of Vue.js
version 2.5. Notably, the results on Chrome is not almost

different from jQuery. These results indicate that the later
version of Vue.js has been improved in terms of performance.

C. Discussion

These results provide valuable information to understand
the feature of JSFs’ performance and to select an appropriate
JSF. Generally, performance and utilities of JSF is a trade-
off relationship. JSF degrades runtime performance compared
to vanilla. Vanilla performs the best because it does not
execute extra source code. Therefore, developers are required
to select an appropriate JSF considering a balance between
the convenience of JSF and its effect on performance. Also,
the performance decline rate depends on JSFs, their versions,
and their runtime environments. When developers select a
JSF, they need to consider such influences. In that respect,
Jact can provide valuable information. Jact enables runtime
performance measurement on-demand, so developers do not
have to spend time for performance measurement.

V. EVALUATION

A. Overview

We conducted an evaluation experiment to confirm that Jact
contributes to the comprehension of JSFs. As an experimental
work, participants compare JSFs in terms of syntax rules and
runtime performances. Through the work, we examine how
exactly participants grasp the difference of JSFs by using
Jact. After the work, we conduct a questionnaire about the
usability of Jact. For a comprehension of JSFs, we prepare four
tasks. We select three JSFs: vanilla, jQuery, and Vue.js. jQuery
and Vue.js are selected for the same reason as a preliminary
experiment. Vanilla is used as a standard of a comparison of
JSFs.

B. Participants

We recruited 13 participants. The participants consisted of
three undergraduate students, nine graduate students, and one
associate professor. Figure 7 shows the usage experience of
the participants. Five in participants have no experience of
JavaScript. Almost half of the participants have no experience
of jQuery and Vue.js. For JSF beginners, we select basic and

Chart Title

�

��

�
�

�
�

�

.

�
�
��

Fig. 7: Usage experience of participants

step-by-step tasks and insert comments to source code. These
features and inserted comments help beginners to understand
source code example [11].

C. Registered Tasks

For this experiment, we registered the following tasks.

• Select DOM elements: Selecting DOM elements in
HTML by id name and class name.

• Change an element: Selecting a DOM element in HTML
by id name and change a text body of the element.

• Change some DOM elements: Selecting DOM elements
in HTML by class name and change text bodies of the
elements.

• Attaching events to button elements: Selecting but-
ton elements in HTML and attaching click event and
mouseover event to each element. This task overlaps the
contents of the above three tasks.

D. Experiment Design

As experimental works, participants execute source code
comprehension and runtime performance comprehension.

1) Source Code Comprehension: About four tasks men-
tioned in Section V-C, participants use source code comparison
and playground of Jact. Participants describe the difference of
the syntax rules of jQuery and Vue.js compared with vanilla.

2) Runtime Performance Comprehension: Participants
measure the processing time of JSFs by using runtime perfor-
mance measurement of Jact. Measurement is carried out for
the task "Attaching events to button elements" mentioned in
Section V-C. After the measurement, participant describes the
difference of the runtime performance of jQuery and Vue.js
from the following viewpoints:

• Features of each JSF compared with vanilla
• Features of each JSF’s version
• Features of each syntax/API
• Features of each browser

Also, based on the measurement, we ask participants how
do you consider the performance difference between JSFs.

3) Usability Evaluation: After the above two experimental
works, we conducted a questionnaire about the usability of
Jact. The questions in the questionnaire are following;

• Source code comparison contributes to the comprehen-
sion of syntax rules of JSFs.

• The concept of a playground is useful for the compre-
hension of syntax rules of JSFs.

• Performance measurement contributes to the comprehen-
sion of a runtime performance of JSFs.

• On-demand measurement is useful for the comprehension
of runtime performance of JSFs.

• Jact contributes to the comprehension of JSFs.

Each question in the questionnaire is evaluated by Likert scale
[12] [13]. Also, we collect additional comments about Jact by
free description.

E. Results

1) Source Code Comprehension: We extract some descrip-
tions of the experimental work of source code comprehen-
sion. Among the descriptions, the following comments were
obtained for jQuery;

In jQuery, $ function is used for getting DOM elements
by id or class name. An argument of $ function starting
from "." means getting DOM elements by class name.
If an argument of $ function begins with "#", $ function
gets a DOM element by id name.

In vanilla, we change a text body by variable assign-
ment. On the other hand, jQuery enables to change a
text body by a function call.

When using an event handler, vanilla needs "eventLis-
tener." The first argument of eventListener is an event
name, and the second argument is a callback function.
In contrast with vanilla, jQuery defines event functions
on each event such as click, mouseover. Therefore,
we can bind a callback function by using its event
function.．

From these descriptions, it is revealed that participants
understand how to select DOM elements by using $ function.
Also, some answers mention that jQuery use some functions
in case of DOM manipulation. Function operation is the
difference with vanilla.

Next, we extract some comments about Vue.js.

Vue.js enables to define a method with Vue instance
generation. We can declare data definitions and meth-
ods separately. This improves the visibility of source
code.

In Vue.js, if we write the same placeholder in the part
that refers to the same data in HTML, the part can be
replaced simultaneously with the data.

Vue.js binds a target DOM node and data in advance.
We can manipulate a DOM element by assignment to
the data in a component.

Participants often refer to the feature that Vue.js needs to
bind an instance to HTML element. Some participants realized
that Vue.js could define data and methods separately.

2) Runtime Performance Comprehension: We excerpt some
comments obtained after the runtime performance measure-
ment and consideration from four viewpoints mentioned in
Section V-D2.

Although each source code implements the same func-
tion, I do not know there is a big difference between
them. Also, it is hard to consider these performances
when I develop a web application with a JSF. In that

matter, Jact briefly visualizes a performance difference.
So I think Jact is a helpful tool.

I did not guess that there is several times difference
between the performances of JSFs. When an applica-
tion needs quick responses, it is important to select an
appropriate JSF.

I got an impression that: The simpler the source code
is, the longer the processing time is.

Through runtime performance measurement, participants
understand that there is a significant performance difference
between JSFs. Also, there is a comment that refers to a
trade-off between the simplicity of source code and runtime
performance.

3) Usability Evaluation: Figure 8 shows the results of
the usability questionnaire. From these results, it is revealed
that participants grasp syntax rules and runtime performances
of JSFs by using Jact. Also, the Jact’s features of source
code comparison, runtime performance measurement, and
playground are useful for the comprehension of syntax rules
and runtime performance. As a result, 12 out of 13 participants
answer that Jact contributes to the comprehension of JSFs.
We extract some favorable comments from an additional
description about Jact.

67

Source code comparison contributes to
the comprehension of syntax rules of JSFs.

5

3

3

2

The concept of a playground is useful for
the comprehension of syntax rules of JSFs.

12

1

Performance measurement contributes to
the comprehension of performance of JSFs.

10

2
1

On-demand measurement is useful for
the comprehension of performance of JSFs.

6人

6人

1人
5
4
3
2
1

Strongly agree

Neutral

Strongly disagree

Agree

Disagree6
6

1

Jact contributes to
the comprehension of JSFs.

Fig. 8: Results of usability questionnaire

It is excellent to understand syntax rules and perfor-
mances easily. I want to use Jact when I select a JSF
for web development. I want Jact to support other JSFs.

It is useful to compare source code with my source
code. Runtime performance measurement is also help-
ful to know the performance of JSFs.

It is great to check the behavior of source code quickly.

On the other hand, there are some suggestions for improve-
ment.

I want to know the difference between source codes.
It is just enough to highlight the difference.

I want to use AltJS(AltJS stands for Alternative
JavaScript. TypeScript is an example of AltJS.) in Jact.

F. Discussion

The result of this evaluation experiment enables to conclude
that Jact contributes to the comprehension of JSFs. Some
participants describe that Jact is an easy way to know syntax
rules and runtime performance of JSFs. So it can be expected
the use by developers who are looking into JSFs.

In this experiment, we provide four primary tasks. These
tasks are based on basic syntax on JavaScript, and it is easy
to understand for beginners. In practical development, more
complicated functions such as DOM manipulation and Ajax
are needed. In such a case, the difference in runtime perfor-
mance is more significant. Also, developers are required to
understand how to use JSF quickly. Therefore, Jact contributes
to the comprehension of JSFs more effectively.

VI. THREATS TO VALIDITY

In the evaluation experiment, there are some factors which
may affect the validity of the results. First, most of the
participants are not experienced in JavaScript. Jact expects
to be used by more experienced developers. The evaluation
by developers may be different from the result of the subject
experiment. As future work, we are planning the evaluation
by experienced developers. Second, four tasks used in the
experimental works are extremely basic. In practice, devel-
opers use more complicated tasks shown in Table II. Such a
difference in selecting tasks may influence the validity of the
result. Finally, we conducted the only qualitative evaluation.
Jact aims to support comprehension of JSFs. It is difficult to
evaluate the degree of contribution by Jact quantitatively. Also,
there is no existing tool supporting to understand JSFs in the
same viewpoint as Jact. Therefore, all evaluation is qualitative,
and the results are based on the subjectivities of participants.

VII. RELATED WORKS

It is an effective and practical approach to compare specific
programming features based on typical program tasks. There
have been many studies relating to comparison of program-
ming languages using such typical tasks [14] [15] [16]. They
used Rosetta Code6 which provides many implementations of
various languages for the same problem. Pano et al. have in-
vestigated factors to lead the decision making of JSF selection
[2]. Implications of the study include that JSF documentation
should include several examples for implementing common
tasks. Our fundamental idea is to adopt such a practical
approach to JSF comparison.

There have been various JSF comparison reports. Gizas
et al. have compared several JSFs from views of traditional
software metrics, of a security vulnerability, and of runtime
performance [4]. One of their conclusions is that the perfor-
mance of JSFs strongly depends on a web browser and on
JSF version. TodoMVC7 offers the same Todo applications
implemented by major JSFs. It demonstrates the behavior of
the application and publishes the source code in GitHub repos-
itory. For performance comparison, js-framework-benchmark8

has been published. By cloning the repository, it enables to
measure the performance of JSFs. Both of existing tools need
environment setup for comparison while Jact is available on
browsers. Also, compared to these reports, our tool adopts the
concept of a playground to keep maintain these JSF relating
information.

VIII. CONCLUSION

In this paper, we proposed a playground tool to support
understanding characteristics of JSFs. Our tool provides to
compare usage and runtime performance of various JSFs. In
order to evaluate the usability of our tool, we conducted an
evaluation experiment. The result indicated that our tool could
contribute to the comprehension of JSFs.

Although our tool responds to the problems in selecting
a JSF, there are some shortcomings. In syntax rules, our tool
provides to compare only two JSFs at the same time. It is better
for an actor to show the differences between all registered
JSFs. Also, the feature of runtime performance measurement is
not enough to know the performance of JSF completely. With
our tool, an actor measure the performance in all expected
environments. Though several measurements are the clue to
the choice of an appropriate JSF, it is not enough to understand
performance characteristics of JSFs perfectly. Therefore, we
should look into the implementation of some functions such
as submission of a measurement result, comparison with the
results of others’ measurement. Currently, our tool strongly de-
pends on voluntary contributions from JavaScript developers.
So, motivating and engaging them are the remaining important
challenges. To meet the challenges, Jact should introduce a
concept of gamification like Stack Overflow. Another future

6http://www.rosettacode.org
7http://todomvc.com/
8https://github.com/krausest/js-framework-benchmark

work includes supporting production build on server-side.
Almost JSFs assume to apply production build to minify and
optimize written web resources. Supporting production build
may provide more practical performance comparison.

ACKNOWLEDGEMENTS

This work was supported by JSPS/MEXT KAKENHI Grant
Number 18H03222.

REFERENCES

[1] S. Murugesan, Y. Deshpande, S. Hansen, and A. Ginige, Web Engineer-
ing: a New Discipline for Development of Web-Based Systems. Springer
Berlin Heidelberg, 2001, pp. 3–13.

[2] A. Pano, D. Graziotin, and P. Abrahamsson, “Factors and actors leading
to the adoption of a JavaScript framework,” Journal on Empirical
Software Engineering, vol. 23, no. 6, pp. 3503–3534, 2018.

[3] D. Graziotin and P. Abrahamsson, “Making Sense Out of a Jungle of
JavaScript Frameworks,” in Product-Focused Software Process Improve-
ment, 2013, pp. 334–337.

[4] A. Gizas, S. Christodoulou, and T. Papatheodorou, “Comparative Eval-
uation of JavaScript Frameworks,” in Proceedings of the International
Conference on World Wide Web, 2012, pp. 513–514.

[5] P. Ratanaworabhan, B. Livshits, and B. G. Zorn, “JSMeter: Comparing
the Behavior of JavaScript Benchmarks with Real Web Applications,”
in Proceedings of the 2010 USENIX Conference on Web Application
Development, 2010, pp. 3–3.

[6] P. Lewis. The Cost of Frameworks. https://aerotwist.com/blog/
the-cost-of-frameworks/. Accessed at 10th July 2019.

[7] J. Schae. A Real-World Comparison of Front-End Frameworks
with Benchmarks (2018 update). https://www.freecodecamp.org/news/
e5760fb4a962/. Accessed at 10th July 2019.

[8] jQuery Examples. https://www.quackit.com/jquery/examples/. Accessed
at 10th July 2019.

[9] Usage Statistics and Market Share of JavaScript Libraries for Web-
sites, July 2019. https://w3techs.com/technologies/overview/javascript_
library/all. Accessed at 10th July 2019.

[10] Collection: Front-end JavaScript frameworks. https://github.com/
collections/front-end-javascript-frameworks. Accessed at 10th July
2019.

[11] J. Sillito, F. Maurer, S. M. Nasehi, and C. Burns, “What Makes a Good
Code Example?: A Study of Programming Q&A in StackOverflow,” in
Proceedings of the 2012 IEEE International Conference on Software
Maintenance (ICSM), 2012, pp. 25–34.

[12] R. Likert, “A Technique for Measurement of Attitudes,” Archives of
Psychology, vol. 22, 1932.

[13] M. S. Matell and J. Jacoby, “Is There an Optimal Number of Alterna-
tives for Likert-Scale Items? Study I,” Educational and Psychological
Measurement, vol. 31, pp. 657–674, 1971.

[14] S. Nanz and C. A. Furia, “A Comparative Study of Programming
Languages in Rosetta Code,” in Proceedings of the 37th International
Conference on Software Engineering, 2015, pp. 778–788.

[15] S. Georgiou, M. Kechagia, P. Louridas, and D. Spinellis, “What Are Your
Programming Language’s Energy-delay Implications?” in Proceedings
of the 15th International Conference on Mining Software Repositories,
2018, pp. 303–313.

[16] W. Oliveira, R. Oliveira, and F. Castor, “A Study on the Energy Con-
sumption of Android App Development Approaches,” in Proceedings
of the 14th International Conference on Mining Software Repositories,
2017, pp. 42–52.

