
How Compact Will My System Be?
A Fully-Automated Way to Calculate LoC

Reduced by Clone Refactoring
Tasuku Nakagawa, Yoshiki Higo, Junnosuke Matsumoto, and Shinji Kusumoto

Graduate School of Information Science and Technology
Osaka University

1-5 Yamadaoka, Suita, Osaka, Japan
{t-nakagw, higo, j-matumt, kusumoto}@ist.osaka-u.ac.jp

Abstract—A code clone (in short, clone) is a code
fragment that is identical or similar to other code
fragments in source code. The presence of clone is
known as bad smell, which is phenomena of source code
to be refactored. A motivation of refactoring (merging)
clones is to reduce the size of source code. An existing
study proposed a technique to estimate reduced lines of
code by merging clones; however, there are two issues
in the existing technique: (1) the existing technique
does not consider the refactorability of clones in spite
that it is difficult or even impossible to merge some
clones due to the limitation of programming languages;
(2) in the case that multiple clones are overlapping,
the existing technique only considers one of them
can be merged. Due to the above issues, estimated
reducible LoC is occasionally different from the actual
number. Consequently, in this research, we propose
a new technique to calculate a reducible LoC. The
proposed technique is free from the two issues, and
it calculates a reducible LoC fully automatically. The
proposed technique performs a loop processing of (a)
detecting clones, (b) merging them, (c) compiling the
edited source files, and (d) testing them. After finishing
the loop, reducible LoC is calculated from the edited
source files. This paper also includes comparison results
of the proposed technique and the existing one. In
the comparisons, we confirmed that a reducible LoC
which was calculated with considering refactorability
is 25% of a reducible LoC which was estimated without
considering refactorability. We also confirmed that the
proposed technique was able to merge clones that were
not counted in the existing technique.

Keywords-Software maintenance; code clone; refac-
toring;

I. Introduction
Changes are occasionally (or even continuously) added

to the source code after software systems have been re-
leased. A bunch of changes to the source code deteri-
orates its quality (e.g., collapsing its design, decreasing
the readability), so that the maintenance cost gets more
expensive [1], [2], [3]. The maintenance cost of the source
code is often estimated from its size or complexity [3].
In the case of large-scale software systems, an enormous
amount of money is required. If users of a software system
can estimate its number, they should be able to decide
whether they continue to use it or replace it with a new
one [4].

A factor of deteriorating the quality of source code is the
presence of clones. A clone means a code fragment that is
identical or similar to other code fragments in the source

code. Clones get involved in both software development
and maintenance. The presence of clones makes the source
code redundant so that inconsistencies in source code tend
to happen unintentionally. Thus, from the perspective
of maintainability of the source code, merging clones is
important.

Merging clones is a well-known refactoring. Refactoring
is defined as a set of operations to improve the internal
structure of the source code without altering its external
behavior [5]. Extract Method refactoring, which is one of
the most often performed refactorings, is a set of opera-
tions to extract a code fragment in an existing method as
a new method. If duplicated code fragments are extracted
as a new method, the duplication is removed from the
source code. Removing clones by refactoring makes it
easier to keep consistencies in the source code because
we do not have to put the same changes on duplicated
code in multiple places. However, there is a possibility that
refactoring itself introduces a new bug in the source code.
Consequently, removing all clones without any special
reason is not realistic: a reasonable indicator is required
whether or not given clones should be refactored.

There is a study that estimates how many lines of code
(LoC) is reduced by removing clones in the assumption
that the reduced LoC is used as a primary indicator of
the effects of clone refactoring [6]. This assumption means
that, if a large number of LoC is reduced by clone refac-
toring, its effect is large and it is a sufficient motivation
to remove the clones. The technique in the existing study
utilizes the position information of clones (the path of the
file including a given clone, start line and end line of the
given clone). If multiple clones are overlapped with each
other, the technique selects only one of them by using the
greedy algorithm. The authors think there are two issues
in the existing technique.

• The first issue is that the existing technique does not
consider whether or not each clone can be removed.
Some clones are difficult or even impossible to be
merged as a single module such as class or method
due to the limitation of programming languages. For
example, if a clone includes a return statement, ex-
tracting it as a new method does not preserve the
original behavior. In the original source code, the role
of the return statement is getting out the existing
method while in the refactored code, the role of the
return statement is getting out the new extracted

method.
• The second issue is that in the case that clones

are overlapping, the existing technique only considers
merging one of the overlapped clones. However, even
if two clones are overlapping, both of them may be
able to be merged. Thus, an estimated reducible LoC
may become a completely different number from the
actual reducible LoC.

Both of the issues stem from the lack of checking refac-
torability of clones in the existing technique. However, it
is not realistic to manually check whether or not each of
the detected clones can be merged.

In this research, we propose a new technique to calculate
reducible LoC. The proposed technique performs a loop of
(1) detecting clones, removing a set of clones, (3) compiling
and testing the edited source code as long as the LoC of
the source code gets decreased by the refactorings. Due
to its nature, the proposed technique is completely free
from the above two issues. We implemented a software
tool based on the proposed technique and applied it to
several open source software systems. The purpose of the
application is comparing the proposed technique to the
existing one. As a result, we confirmed that the proposed
technique calculated different reducible LoC values from
the existing technique.

The remainder of this paper is organized as follows: we
describe the preliminaries of this research in Section II; we
explain the proposed technique in Section III; section IV is
an introduction of the implemented tool; in Section V, we
show and discuss the comparison results with the existing
technique; in Section VI, we notice threats to validity of
the proposed technique and the experiment; finally, we
conclude this paper in Section VII.

II. Preliminaries

A. Clone Detection
A clone is a code fragment that is identical or similar

to another code fragment [7]. A pair of code fragments
that are identical or similar to each other is called clone
pair. A set of code fragments in which any pair is a clone
pair is called clone set. Reusing source code by copy-and-
paste operations gets accelerated code implementation,
but clones occurred to make it more difficult to maintain
the source code [8]. For example, if a bug happens in a
code fragment, developers need to check whether or not
the similar bug exists in each of its clones. Consequently,
it is important to understand where and how many clones
exist in the source code.

So far, many clones detection techniques and tools
have been proposed and developed [7], [9], [10]. However,
there is no generic and strict definition of clones. Each
clone detection technique has its unique definition and
detects clones based on the definition. Thus, different clone
detection techniques detect different clones from the same
source code.

void printTaxi(amount) {
String name = getTaxiName();

print("name: " + name);
print("amount: " + amount);

}

void printBus(amount){
String name = getBusName();

print("name: " + name);
print("amount: " + amount);

}

void printTaxi(amount) {
String name = getTaxiName();
print(name, amount);

}

void printBus(amount){
String name = getBusName();
print(name, amount);

}

void printFare(name, amount){
print("name: " + name);
print("amount: " + amount);

}

Fig. 1: Extract method refactoring

In this paper, we introduce a couple of popular detection
techniques that are especially related to this research.

Token-based Clone Detection
This technique firstly translates the target source code

to a sequence of tokens, then duplicated subsequences are
detected as clones. Some normalizations are often applied
before detecting subsequences. For example, user-defined
identifiers such as variable names are replaced with spe-
cial tokens. By applying this normalization, token-based
detection technique can detect clones even if they include
different variable names. The detection speed of token-
based techniques are quite high, but detected clones are
not necessarily suited for refactoring because token-based
clones do not match with structural units of programming
languages such as classes, methods or internal blocks in
methods. CCFinder [7] and its successor CCFinderX [11]
are well-known token-based detection tools.

AST-based Clone Detection
In this technique, abstract syntax trees (in short, AST)

are generated from the target source code. The isomor-
phic subtrees in the ASTs are identified as clones. Each
detected clone corresponds to either structural unit of
the programming language since it is a subtree in the
ASTs. Consequently, clones detected by AST-based clone
techniques have much better chemistry with refactoring
than token-based clones. Deckard [9] is a well-known AST-
based detection tool.

B. Refactoring Clone
Refactoring is known as a promising technique to im-

prove the internal structure of source code without chang-
ing its external behavior [5]. Duplicated code (clones) is
one of the typical bad smells (code to be refactored). There
are a variety of ways to refactor (merge) clones. Extract
Method refactoring is a simple yet well-known technique
to remove clones. The original purpose of this refactoring
pattern simplifies a long and/or complicated method by
extracting a part of it as a new method. However, by
applying Extract Method refactoring to clones, they can
be removed. Figure 1 shows a simple example of Extract
Method refactoring to two duplicated code fragments.

There are two major effects on applying Extract Method
refactoring to a set of clones.

File A File B File C

Clone A

Clone B

(a) Overlapped clone

File A File B File C

Clone A

Clone B

(b) Removing either one

File A File B File C

Clone A'

Clone B

Clone C

(c) Clone dividing
Fig. 2: Clone overlapping

• Code duplications are removed, which makes it easier
to maintain consistency in the source code.

• LoC of the source code is changed; in many cases, LoC
gets reduced. How many LoC is reduced depends on
the size of a clone and the number of clones.

C. Clone Overlapping
In this paper, when two or more clones share one or

more tokens, we say that “the clones are overlapped with
each other”. Figure 2a shows an example of overlapped
clones. In this figure, clone A includes clone B. When
clones are overlapped like this figure, we need to do special
care to estimate reducible LoC. For example, the existing
technique in literature [6] estimates reducible LoC in the
case of removing clone A and in case of removing clone
B separately, and then remove only either A or B, whose
reducible LoC is larger than the other. Literature [6] also
proposes a more aggressive approach, which is shown in
Figure 2c. In this approach, the overlapped parts and
the non-overlapped parts are separately considered for
refactoring.

D. Reducible LoC
Herein, we introduce the definition of reducible LoC,

which is proposed in the existing technique [6]. Herein, we
assume that a clone set includes n code fragments, and
each code fragment consists of Csize LoC. In a refactoring
of merging the clone set, each clone is replaced with a
method invocation, which is usually 1-line code. Conse-
quently, reducible LoC Call can be represented with the
following formula.

Call = n ∗ Csize − n (1)

In the case of Java, there is a 1-line code of method
signature and open bracket “{” before a method body, and
there is another 1-line code of close bracket “}”. Thus, the

LoC of a method becomes LoC of the method body plus
two. An extracted code fragment (a clone) becomes a body
of the new method. Consequently, LoC of the extracted
method can be represented with the following formula.

M = Csize + 2 (2)

By using the two formula 1 and 2, the LoC difference
between the original code and refactored code can be
represented with the following formula.

S = Call − M = (n − 1) ∗ Csize − n + 2 (3)
In the existing technique [6], the above formula is

used to estimate reducible LoC by removing clones. As
mentioned above, if multiple clones are overlapped with
each other, the existing technique decides which clone
is refactored by using the greedy algorithm. The litera-
ture [6] addresses that estimated reducible LoC by using
the greedy algorithm is practical. However, the existing
technique inherently includes the two issues that we men-
tioned in Subsection II-B.

III. proposed technique
We propose a new technique to calculate LoC that can

be reduced by merging clones. The technique repeats (1)
detecting clones, (2) editing source files, (3) compiling,
and (4) testing. This technique enables users to obtain
actual LoC that can be reduced by merging clones, not
just estimating it. Moreover, this technique has an impor-
tant feature: even if multiple clones are overlapped, the
technique tries to merge each of them while the existing
research [6] only considers one of the overlapped clones.
Figure 3 shows an overview of the proposed technique.

The input of the technique is a set of source files.
The output is a set of source files in which clones have
been merged as much as possible and their reducible LoC.
Please note that this technique does not merge clones if
merging them does not reduce LoC of the source files.

The technique is composed of two processes shown be-
low. Both the processes are performed fully automatically.

• Preprocessing source file changes
• Clone merging

A. Preprocessing source file changes
First, a new class is generated. The new class is used as

a utility class for placing merged clones. More concretely,
each merged clone is declared as a static method in
the class. Besides, target source files are edited to avoid
compile error due to improper access modifier of methods
and uninitialized local variables. Additionally, the source
files are reformatted to avoid inconsistencies of reducible
LoC due to coding style. In total, four changes are made
in Preprocessing source file changes. We describe each of
the changes in Section IV-A:

• generating a new class,
• changing access modifier of methods,
• initializing local variables, and
• reformatting.

Output

Original
source files

Preprocessing
source file changes

Edited
source files

Step1:
Detecting clone sets

CS_1 CS_2 CS_n

Clone Sets

Editid
Source files

Compilation and
test results

Step2:
Editing source files

Step3:
Compiling and Testing

Step4:
Selecting

50 LoC
decreases

30 LoC
decreases

10 LoC
decreases

source files whose all target clones are merged
+

reducible LoC

No

Yes

Terminate?

Input

…

…

…

Fig. 3: Overview of proposed technique

B. Clone Merging
Clone merging is composed of four steps shown below.

All of the steps are performed fully automatically.
Step1: detecting clone sets
Step2: editing source files
Step3: compiling and testing edited source files
Step4: selecting edited source files
In Step1, clone sets in the target source files are de-

tected. In Step2, source files are edited to merge one of
the clone sets that were detected in Step1. A method
extracted to merge clones is placed in the Java class
described in Subsection III-A. In Step3, the source files
edited in Step2 are compiled and tested to verify the
external behavior. Hereafter, we call edited source files
which succeed in compiling and testing and whose LoC
gets reduced selectable source files. Step2 and Step3 are
performed on each of the clone sets detected in Step1. In
Step4, the selectable source files whose reduced LoC is
the largest is selected. Then, Step1∼Step4 are repeatedly
performed on the selected source files. When either of the
following termination conditions is satisfied, clone merging
terminates and outputs the reducible LoC.

• No clone sets are detected.
• No source files edited in Step2 are selectable.

IV. implementation
We implement our technique as a tool. The tool is

written in Java and targets Java source files.

A. Preprocessing source file changes
Generating a new Java class

A class in which extracted methods are placed is newly
generated. When the extracted method in the new class is
called from the original place, it is invoked with its fully
qualified name.

Changing access modifier of methods
When a method whose access modifier is not public

is invoked from another class, a compile error occurs. In
manual refactoring, developers can deal with this problem
in various ways when refactoring clones. For example,
developers can change the access modifier of methods
properly, or they can declare the extracted method in
the class in which clones were detected. However, in the
proposed technique, it is difficult to infer which ways
to take because extracting and declaring a method are
performed fully automatically. Therefore, access modifiers
of all methods are beforehand changed to public.

1 if (a > b)
2 {
3 int temp = a;
4 a = b;
5 b = temp;
6 }

1 - if (a > b)
2 - {
3 - int temp = a;
4 - a = b;
5 - b = temp;
6 - }

1 + method(a, b);

(a) 5 LoC reduce

1 if (a > b) {
2 int temp = a;
3 a = b;
4 b = temp;
5 }

1 - if (a > b) {
2 - int temp = a;
3 - a = b;
4 - b = temp;
5 - }

1 + method(a, b);

(b) 4 LoC reduce

Fig. 4: Different reducible LoC

if (x > y) {
int tmp = x;
x = y;
y = tmp;

}

if ($0 > $1) {
int $2 = $0;
$0 = $1;
$1 = $2;

}

1234

1234

Normalizing Hashing

if (a > b) {
int temp = a;
a = b;
b = temp;

}

if ($0 > $1) {
int $2 = $0;
$0 = $1;
$1 = $2;

}

Comparing

if (i < j) {
int tmp = j;
j = i;
i = tmp;

}

if ($0 < $1) {
int $2 = $1;
$1 = $0;
$0 = $2;

}

5678

Blocks

...

...

...

1234

1234

5678

...

Clones

Fig. 5: Detecting clones

Initializing local variables
On the Java language specification, it is prohibited

to reference uninitialized local variables. Thus, when an
uninitialized local variable is passed to the extracted
method as an argument, a compile error occurs. Devel-
opers may initialize local variables and pass them to the
method when developers merge clones. In this study, all
local variables which do not have final modifier and are
uninitialized at the time of their declaration are initialized.
In the case that the local variable is primitive type except
for boolean type, it is initialized as “0”. In the case of
boolean type, it is initialized as “false”. In the case of
reference type, it is initialized with “null”.

Reformatting
In general, coding conventions are specified in each

project. For example, some conventions specify using many
line breaks and other conventions specify a small number
of line breaks. If code fragments of convention violation
exist, it is difficult to calculate a reducible LoC properly.
Figure 4 shows examples in which different reducible LoC
are calculated due to the coding style.

Figure 4a, Extract Method refactoring reduces 5 LoC,
but Figure 4b, Extract Method refactoring reduces 4 LoC.
Thus, it is necessary to unify coding style by using format-
ter. In an ideal world, we should prepare the formatters
which reproduce coding conventions of each of the target

projects, but of course, it is impossible. Thus, we use the
default Eclipse formatter [12].

B. Clone Merging
Step1: Detecting clone sets

Figure 5 shows an example of detecting clones. Clones
are detected in block level. We regard the following state-
ments as blocks. Each following statement is defined as a
derived class of class Statement in Eclipse JDT [13].

• Block
• DoStatement
• EnhancedForStatement
• ForStatement
• IfStatement
• SwitchStatement
• SynchronizedStatement
• TryStatement
• WhileStatement
Block-level clones are more coarse-grained than clones

that are detected by token-based techniques. The number
of block-level clones is less than the number of token-based
clones. Block-level clones have a remarkable feature, which
is that they are better candidates of Extract Method refac-
toring because the code fragments are syntactic chunks.
The proposed technique uses Eclipse JDT to parse source
files and identify blocks. If a block includes a return
statement, it is not detected as a clone because it is
difficult to extract it as a new method [14].

The proposed technique normalizes identified blocks
according to the rules shown below because the larger
number of clones can be detected by applying the rules.

• Identifiers are normalized as “$” + “number”.
• The same identifier is normalized as the same normal-

ized name.
• All literals are normalized as “$”.
• Qualified names are normalized as identifiers.
• Class name is not normalized.
• Method name is not normalized.
The same identifier is normalized as the same normal-

ized name to avoid false detection as much as possible. The
reason why class and method names are not normalized is
to avoid detecting clones whose differences are class or
method names because classes and methods cannot be
passed to method invocations as arguments in the Java
specification.

After the normalization, a hash value is calculated from
each block. The proposed method uses SHA256 hashing
algorithm [15]. Since SHA256 outputs 256-bit hash value,
hash collisions hardly occur.

Finally, the proposed technique compares the hash val-
ues of blocks to detect blocks of the same hash values as
clones.

Step2: Editing source files
Using Extract Method refactoring on one of the clone

sets detected in Step1, source files are automatically

if (x > y) {
int temp = x;
x = y;
y = temp;

}

if (a > b) {
int temp = a;
a = b;
b = temp;

}

int[] a0 = {a}; int[] a1 = {b};
package.Class.extracted(a0, a1);
a = a0[0]; b = a1[0];

int[] a2 = {x}; int[] a3 = {y};
package.Class.extracted(a2, a3);
x = a2[0]; y = a3[0];

void extracted(int[] p0,int[] p1){
if (p0[0] > p1[0]) {

int temp = p0[0];
p0[0] = p1[0];
p1[0] = temp;

}
}

Clone Sets Edited Code

Extracted and Declared

Replacing Method Call
Pass by Reference

Fig. 6: Editing source files

edited. Figure 6 shows an example of automatically editing
source files.

It is possible to reduce LoC because each of the clones is
replaced to a method invocation by extracting clones as a
method. This extracted method is declared as a static
method in the class made in Preprocessing source files
changes (see Section IV-A). The method is invoked with
its fully qualified name.

In practice, we need to take care of changes of variables
on Extract Method refactoring. For example, when only
one of the variables is changed in the code fragment,
Extract Method refactoring can be performed by returning
the variable and assigning it in the caller place. However,
in the Java language specification, it is impossible to
return two or more parameters simultaneously. Extract
Method refactoring on such clones is not realistic. Unfortu-
nately, examining whether or not each variable is changed
in the target code fragment requires deep source code
analysis. Thus, In this study, we implemented our tool to
pass arguments by reference to the extracted method to
keep the external behavior. Our tool uses an array type to
pass arguments by reference. Before invoking the extracted
method, arrays whose types are the same of variables in
the target code fragment are newly defined and initialized
with each of the values. These arrays are passed to the
method. In the method, the array element at index zero is
referenced. After invoking the method, each array element
at index zero is assigned back to each variable. These
processes are devices of implementation for automated
refactoring, not for manual refactoring.

Step3: Compiling and testing edited source files
In Step3, source files edited in Step2 are compiled and

tested. At first, compilation is performed. After compila-
tion gets success, test runs. If both compilation and test
get success, edited source files are recorded as selectable
source files. If either compilation or test fails, edited source
files are not recorded.

Step4: Selecting edited source files
After Step2 and Step3 are performed on each of the

clone sets detected in Step1, Step4 is performed. In Step4,
the selectable source files whose reduced LoC is the largest

All Detected Clone Sets

Refactorable Clone Sets

A

B

Fig. 7: Target clone sets

is selected. Then, Step1∼Step4 are repeatedly performed
on the selected source files.

V. Experiment
A. Experimental Design

We apply our technique to open source software (in
short, OSS). Additionally, we compare our technique to
the existing technique [6].

B. Experimental Item1
We investigate how different reducible LoC is obtained

in considering refactorability. First, clone sets are detected
from the target OSS by using our technique. These clone
sets correspond to A in Figure 7. Then, the existing tech-
nique is applied to them, and a reducible LoC is estimated.
Finally, we use our technique to calculate a reducible LoC
from target OSS and compare the two techniques.

C. Experimental Item2
We investigate how different reducible LoC is obtained

in considering clone overlapping. First, clone sets are
detected from the target OSS by using our technique.
Second, the source files in the target OSS are edited
to merge each clone set, and compilation and test are
performed. As a result, we obtain refactorable clone sets.
These clone sets correspond to B in Figure 7. Then, the
existing technique is applied to them, and a reducible LoC
is estimated. Finally, we use our technique to calculate
a reducible LoC from target OSS and compare the two
techniques.

The difference between Item1 and Item2 is the target
clone sets, in Item1, the targets are all detected clone sets
(A in Figure 7) while the targets are only refactorable clone
sets (B in Figure 7) in Item2.

D. Experimental Targets
We experimented on OSS written in Java. Our targets

are composed of jEdit, JFreeChart, JRuby, Ant, and
JMeter, which existing research of clone refactoring [16]
targets and Closure Compiler (in short, Compiler) and
Joda-time, which Defects4J [17] targets. Defects4J is
a collection of reproducible bugs and a supporting in-
frastructure with the goal of advancing software engi-
neering research. The reason why we add Compiler and
Joda-time to the targets is that we think the projects
possess sufficient tests. The proposed technique runs tests
to verify the external behavior. Thus, it is to be desired
that the target projects possess sufficient tests to verify

the external behavior. The projects targeted in Defects4J
possess tests which can detect the bugs, and we think they
possess sufficient tests.

Table I shows the name, version, and total LoC of the
target projects. We do not target test code and tutorial
code of the targets. We measure the total LoC after we
use the formatter (see Section IV).

E. Results and Discussion of our technique
Table II shows the results of our technique performing

on the target projects. We use a personal workstation in
this experiment.

• CPU: 2.40GHz, 12Core
• Memory: 32GB
• OS: Ubuntu18.04
As a result, the refactorable and line-reducible clone sets

(Herein, line-reducible clone sets mean that refactoring
them can reduce LoC of the target projects) account for
5∼10 percent of the all detected clone sets. The major
causes why compilation or test fails are shown below.

• The types of variables between different code frag-
ments in a clone set are different.

• There are clones including references to a Superclass.
• Exceptions thrown in the clone fragment are caught

at the outside of the fragment.
• Loop control statements(e.g., break) are used in the

clone fragment, but loop statements(e.g., for) are
used in the outside of the fragment.

Some clone sets will be refactorable if we devise to
implement our tool. For example, if all code fragments of
a clone set are in a class and the code fragments include
references to a Superclass, extracting the code fragments
as a method in the same class can generate compilable
source code.

F. Results and Discussion of Topic1
Table III shows the results of Experimental Item1. The

existing technique regards the larger number of clone
sets as refactorable than the number of clone sets that
the proposed technique was actually able to refactor and

TABLE I: Target OSS
Name Version Total KLoC
jEdit 5.4.0 163

JFreeChart 1.0.19 236
JRuby 1.7.27 334

Ant 1.10.1 231
JMeter 3.2 79

Compiler 20190618 250
Joda-Time 2.10.3 74

TABLE II: Results of our technique
Name #Detected #Merged Reducible Execution

CS CS LoC Time
jEdit 423 57 534 40m

JFreeChart 848 145 1104 2h48m
JRuby 858 236 1281 6h4m

Ant 635 7 327 20m
JMeter 114 5 21 3m

Compiler 286 27 183 3h13m
Joda-Time 89 9 61 7m

814 for(int col = fromCol; col = toCol; col++){
815 int minimumColWidth = minimumColWidths[col];
816 if((Integer.MAX_VALUE - minimumColWidth) < currentMinimumColWidth) {
817 currentMinumumColWidth = Integer.MAX_VALUE;
818 } else {
819 currentMinimumColWidth += minimumColWidth;
820 }
821 int preferredColWidth = preferredColWidths[col];
822 if((Integer.MAX_VALUE - preferredColWidth) < currentPreferredColWidth) {
823 currentPreferredColWidth = Integer.MAX_VALUE;
824 } else {
825 currentPreferredColWidth += prefferedColWidth;
826 }
827 int maximumColWidth = maximumColWidths[col]
828 if((Integer.MAX_VALUE - maximumColWidth) < currentMaximumColWidth) {
829 currentMaximumColWidth = Integer.MAX_VALUE;
830 } else {
831 currentMaximumColWidth += maximumColWidth;
832 }
833 }

cloneA cloneB

Fig. 8: Real overlapped clones

estimates more reducible LoC. This is because the existing
technique does not consider the refactorability of the clone
sets and estimates reducible LoC on non-refactorable clone
sets. Thus, if directly the existing technique is applied to
clone sets detected by a clone detection tool, it estimates
more reducible LoC than actual and the value is improper.

G. Results and Discussion of Topic2
Table IV shows the results of Experimental Item2. The

number of clone sets that the proposed technique merges
and the reducible LoC that the technique calculated is
equal to or greater than the existing technique. This is
because when overlapped clone sets are detected, the ex-
isting technique merges the most line-reducible clones and
ignores the others while the proposed technique merges
the most line-reducible clone sets, detects clone sets again,
and merges the other overlapped clone sets if they are line-
reducible. Figure 8 shows examples of such clone sets. Both
clone A and B are detected in jEdit. Clone A includes B.
Clone A is 20-LoC, and the clone set consists of 2-clones.
Thus, 16-LoC can be reduced when they are merged. On
the other hand, B is 5-LoC, and the clone set consists
of 6-clones. Thus, 17-LoC can be reduced when they are
merged. In this case, the existing technique targets the
clone set of clone B and ignores A. However, at first,
the proposed technique merges the clone set of clone B.

TABLE III: Results of Topic1

Name
Existing technique Proposed technique

#Merged Reducible #Merged Reducible
CS LoC CS LoC

jEdit 237 2115 57 534
JFreeChart 462 5168 145 1104

JRuby 519 4201 236 1281
Ant 371 3633 7 327

JMeter 49 291 5 21
Compiler 179 1599 27 183

Joda-Time 23 171 9 61

TABLE IV: Results of Topic2

Name
Existing technique Proposed technique

#Merged Reducible #Merged Reducible
CS LoC CS LoC

jEdit 55 517 57 535
JFreeChart 142 1098 145 1104

JRuby 231 1270 236 1281
Ant 7 327 7 327

JMeter 5 21 5 21
Compiler 27 183 27 183

Joda-Time 9 61 9 61

Then our technique detects clone sets, and the clone set
of cloneA whose code fragments of cloneB is replaced to
a method invocation is detected. Thus, our technique can
target the clone set of clone A and calculate a reducible
LoC by merging both clone sets.

The results of Subsection V-F and Subsection V-G, we
can say that our technique can calculate reducible LoC of
projects more accurately than the existing technique.

VI. Threats to validity
We experimented on seven OSS. However, if experi-

ments are done on other projects, the results may be
different from this study.

In java, method declarations consist of method body
and an additional 2-line code. The additional code is com-
posed of a method signature line and a close bracket line.
However, other programming languages are not always
fitted this rule. Therefore, such languages require different
formulas of reducible LoC, and the result may be different
from this study.

We implemented the proposed technique as a tool, but
some of the implementations are still insufficient. If we
improve our implementation, the more correct reducible
LoC calculation can be expected.

Existing research proposes not only Heuristic Method
but also Complete Method to estimate reducible LoC. In
Complete Method, each clone is divided into multiple code
fragments, each of which includes no partial overlapping
fragment with any other clones. Complete Method is de-
signed to aim at merging and removing all clones. How-
ever, the possibility of dividing clones is not considered
in Complete Method. For example, when a code fragment
is divided into two code fragments, and each of them is
extracted as a method, the latter method cannot reference
variables declared in the former method. Existing research
explains that Complete Method gives an upper bound of
the reducible LoC and do not care about the feasibility
and usefulness of this merging in practice. Thus, we did
not compare our proposed technique to Complete method.

VII. Conclusion
In this paper, we proposed a new technique to calculate

lines of code that are reduced by removing clones. The
proposed technique performs a loop of detecting clones,
removing clones, compiling the edited source code, and
testing it fully automatically. Thus, the proposed tech-
nique calculates reducible lines of code from only clones
that actually can be removed while an existing technique
estimates it without considering refactorability of clones.

The followings are our future work.

Utilizing other refactoring patterns
At this moment, the proposed technique utilizes Extract

Method pattern to remove clones. However, there are var-
ious ways to remove clones: for example, Pull Up Method
or Form Template Method. Considering other refactoring

patterns to remove clones, calculated reducible LoC will
get closer to the real value when developers appropriately
remove clones.

Avoiding compilation errors
As described in Section V, we encountered many com-

pilation errors in the experiment. However, most of such
compilation errors are avoidable if we devise an implemen-
tation. If we do so, we will be able to get better reducible
LoC.

Acknowledgment
This work was supported by MEXT/JSPS KAKENHI

17H01725.

References
[1] B. P. Lientz and E. B. Swanson, Software Maintenance Manage-

ment. Addison-Wesley Longman Publishing Co., Inc., 1980.
[2] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and

A. Mockus, “Does code decay? Assessing the evidence from
change management data,” IEEE Transactions on Software
Engineering, vol. 27, no. 1, pp. 1–12, 2001.

[3] T. M. Pigoski, Practical Software Maintenance: Best Practices
for Managing Your Software Investment, 1st ed. Wiley Pub-
lishing, 1996.

[4] H. M. Sneed, “Planning the reengineering of legacy systems,”
IEEE Software, vol. 12, no. 1, pp. 24–34, Jan 1995.

[5] M. Fowler, Refactoring: Improving the Design of Existing Code,
ser. Addison-Wesley Signature Series. Pearson Education,
1999.

[6] N. Yoshida, T. Ishizu, B. Edwards, III, and K. Inoue, “How
Slim Will My System Be?: Estimating Refactored Code Size
by Merging Clones,” in Proceedings of the 26th Conference on
Program Comprehension, 2018, pp. 352–360.

[7] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a mul-
tilinguistic token-based code clone detection system for large
scale source code,” IEEE Transactions on Software Engineering,
vol. 28, no. 7, pp. 654–670, 2002.

[8] Y. Higo, S. Matsumoto, S. Kusumoto, T. Fujinami, and
T. Hoshino, “Correlation Analysis between Code Clone Metrics
and Project Data on the Same Specification Projects,” in Proc.
of the 12th International Workshop on Software Clones, 2018,
pp. 37–43.

[9] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD:
Scalable and Accurate Tree-Based Detection of Code Clones,”
in Proceedings of the 29th International Conference on Software
Engineering, 2007, pp. 96–105.

[10] J. R. Cordy and C. K. Roy, “The NiCad Clone Detector,” in
2011 IEEE 19th International Conference on Program Com-
prehension, 2011, pp. 219–220.

[11] “CCFinderX,” http://www.ccfinder.net/.
[12] “Eclipse,” https://www.eclipse.org/.
[13] “Eclipse java development tools,” https://www.eclipse.org/jdt/.
[14] R. Komondoor and S. Horwitz, “Effective, automatic procedure

extraction,” in 11th IEEE International Workshop on Program
Comprehension, 2003, pp. 33–42.

[15] National Institute of Standards and Technology, “Secure Hash
Standard,” 2015.

[16] N. Tsantalis, D. Mazinanian, and S. Rostami, “Clone Refac-
toring with Lambda Expressions,” in Proceedings of the 39th
International Conference on Software Engineering, 2017, pp.
60–70.

[17] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A Database of
Existing Faults to Enable Controlled Testing Studies for Java
Programs,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, 2014, pp. 437–440.

