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a b s t r a c t 

The Open Web Application Security Project (OWASP) defines Static Application Security Testing (SAST) 

tools as those that can help find security vulnerabilities in the source code or compiled code of software. 

Such tools detect and classify the vulnerability warnings into one of many types (e.g., input validation 

and representation). It is well known that these tools produce high numbers of false positive warnings. 

However, what is not known is if specific types of warnings have a higher predisposition to be false 

positives or not. Therefore, our goal is to investigate the different types of SAST-produced warnings and 

their evolution over time to determine if one type of warning is more likely to have false positives than 

others. To achieve our goal, we carry out a large empirical study where we examine 116 large and pop- 

ular C ++ projects using six different state-of-the-art open source and commercial SAST tools that detect 

security vulnerabilities. In order to track a piece of code that has been tagged with a warning, we use a 

new state of the art framework called cregit + that traces source code lines across different commits. The 

results demonstrate the potential of using SAST tools as an assessment tool to measure the quality of a 

product and the possible risks without manually reviewing the warnings. In addition, this work shows 

that pattern-matching static analysis technique is a very powerful method when combined with other 

advanced analysis methods. 

© 2019 Published by Elsevier Inc. 
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. Introduction 

Software bugs significantly reduce system quality and greatly

ncreases the cost. It is estimated that software bugs cost the

orldwide economy US$1.1 trillion in 2016 ( Baptista, 2017 ). Some

f the bugs are security vulnerabilities, which are exploitable code

rrors that may be manipulated to compromise the intended oper-

tion of the software in a malicious way. 

Exploiting vulnerabilities may lead to catastrophic conse-

uences resulting in harm to organizational assets, financial loss, or

arm to individuals ( Common Weakness Enumeration ). Static Ap-

lication Security Testing (SAST) tools can potentially detect soft-

are vulnerabilities early during the coding phase. They do this
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y statically examining the code, and providing the developer with

arnings in the code that could potentially be vulnerabilities. The

AST tools classify each warning into one of many types and as-

ign severity to them. Using such tools could lead to cost sav-

ngs ( Soni, 2006 ). However, SAST tools have not been well adopted,

s they may produce a high rate of false positive alarms since most

arnings do not indicate real vulnerabilities ( Christakis and Bird,

016; Johnson et al., 2013 ). 

Hence, an understanding of the warnings that are generated

y SAST tools, their characteristics, including their distribution

cross various types, and decay time, could be useful in improving

he quality of the SAST tools. For instance, if we find that many

arnings of a specific type are indeed false positives, then the

evelopers of SAST tools could then build a better detection al-

orithm for that type of warning or reduce its severity score.

lternatively, based on our approach and potentially our results,

evelopers could ignore the warnings that are more likely to be

alse positives, more readily. 
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Since understanding the characteristics of warnings from SAST

tools is an important problem, we are not the first to examine

them. Some studies have been conducted to evaluate warnings that

are generated by SAST tools, yet they mostly rely on test cases. For

instance, Díaz and Bermejo (2013) have provided an evaluation of

nine SAST tools against SAMATE Reference Dataset test suites to

analyze the performance of SAST tools in detecting security vulner-

abilities. However, software projects in this dataset and their vul-

nerabilities are well documented and freely available to everyone.

Hence, evaluating the goodness of a SAST tool on such datasets

have limitations since, the tools could have been trained to de-

tect this exact vulnerability in the dataset. Testing the tools and

examining the characteristics of the warnings produced on soft-

ware projects in the wild where one does not know where vul-

nerabilities exist, can be more useful. In fact, a study by the Na-

tional Security Agency (NSA) ( National Security Agency Center for

Assured Software, 2011 ) has emphasized the importance of evalu-

ating SAST tools against real software projects to precisely predict

the frequencies of warnings and detected vulnerabilities outside of

controlled studies. 

One such study that examined real-world software projects that

are not part of controlled studies is by Di Penta et al. (2009) .

In their study, they examined three networking systems to study

warnings detected by three freely available SAST tools. They used

the ldiff tool ( Canfora et al., 2009 ), to trace the source code lines

across subsequent commits, in order to see if a warning in the

source code in one commit is removed in a subsequent commit.

Their study obtained more realistic results since it evaluated such

tools against real-world projects. For this reason, we extend the

study by Di Penta et al. (2009) and investigate the nature of soft-

ware warnings as generated by SAST tools for C ++ projects. In-

stead of studying only three networking systems, we apply the

study on 116 real projects that belong to different categories, as

well as, four free and open source SAST tools and two commer-

cial closed source SAST tools. We use cregit + , which is a more re-

cent version of the state-of-the-art tool called cregit ( German et al.,

2019 ). cregit + takes full advantage of version control, that helps to

track file renames. Also, it tracks the source code at a finer gran-

ularity (at the token level rather than line level), which helps to

detect line split and merge. Our working assumption (like that of

Di Penta et al., 2009 ) is that if a warning was not removed and

remains in the same piece of code across many versions for a long

time (in our case more than five years), then the warning of that

type may not be that important, since the warning was not consid-

ered worth removing under any circumstance. Thus, that warning

is more likely to be a false positive. 

More specifically, the contributions of our study are as follows: 

– We first examine the distribution of the various types of SAST-

produced warnings through time. 

– We investigate how many of the warnings of each type remain

over time. 

– We also examine the rate of decay for warnings belonging to

different categories and produced by various SAST tools. This is

the time interval between the discovery and removal of a warn-

ings, to see how long different types of warnings tend to stay

in the project. 

– Finally, we investigate the distribution of real-world vulnerabil-

ity categories that are fixed by the project team in the studied

projects to see if the results are consistent with the rest of the

study. 

2. Related work 

Multiple empirical studies have been performed to under-

stand SAST performance ( Díaz and Bermejo, 2013; Kratkiewicz and
ippmann, 2005; Torri et al., 2010; Zitser et al., 2004 ); however,

any of the related work used benchmarks or test cases (some

ith small-sized systems). As mentioned in Section 1 , test cases

re software projects with known vulnerabilities that have been

urated and made available to everyone. Hence, the SAST tools

ould be tuned to detect the vulnerabilities in these test cases. For

nstance, Zitser et al. (2004) have conducted a study on three open

ource programs; BIND, WU-FTPD, and Sendmail that contain 14

xploitable buffer overflow vulnerabilities to test five open source

AST tools. While Torri et al. (2010) provided a similar study, it was

eneralized for multiple vulnerability types that are present in five

mbedded systems. Kratkiewicz and Lippmann (2005) have eval-

ated five SAST tools using a corpus of 291 small C program test

ases. Díaz and Bermejo (2013) run nine SAST tools against two

f SAMATE reference dataset test suites for C language. All of the

esearch mentioned above was conducted using test cases having

eal-world vulnerabilities that are known in advance, in order to

ssess the false positives. The main idea of our work, however, is

o study the historical evolution captured in the repositories that

re not part of any standard dataset to evaluate the false posi-

ives among the SAST-produced warnings on software projects in

he wild. 

Few papers involve manual examination to evaluate SAST-

roduced warnings ( Ayewah et al., 2007 ). Ayewah et al. (2007) run

indBugs against multiple large projects, such as the JDK, Glassfish

2EE server from Sun, and some portions of Google’s Java code-

ase. The authors found that Findbugs reports real but trivial bugs.

hey adopted manual analysis to evaluate bug warnings produced

y FindBugs, while we use a tool for tracing lines of code to extract

he extent of false positives, which makes our analysis scalable to

race warnings in hundreds of software projects. Also, we try to

nderstand how false positives from different SAST tools may re-

ate to different types of warnings using a well-known security

ulnerability taxonomy ( Tsipenyuk et al., 2005 ). 

Edwards and Chen (2012) examined historical releases of four

arge-scale projects; Sendmail, Postfix, the Apache httpd, and

penSSL. The main goal of the study is to investigate warnings

enerated by three SAST tools; the HP Fortify Source Code Ana-

yzer (SCA), IBM Rational AppScan, and Klocwork Insight, and vul-

erabilities published in the common vulnerabilities and exposures

CVE) dictionary. The authors examined the discovery rate of the

ulnerabilities appearing in the CVE database for the four projects

nd they correlated that to the output of SAST tools. The authors

bserved that the number of vulnerabilities does not always de-

rease with each new release. They also observed that the rate of

iscovery of vulnerabilities begins to drop three to five years after

he initial release. The study showed that the change in number

nd density of warnings generated by SAST tools is indicative of

he change in the rate of discovery of vulnerabilities for new re-

eases. Also, the authors demonstrated that SAST tools can be used

o make some assessments of risk even without a human review

f the warnings. However, they considered all the warnings in ag-

regate and not tracing each warning to see if the warning ends

p being a bug or even if it is removed, while our research traces

AST-produced warnings across historical versions of projects. Ad-

itionally, the goal of their project is to see if the number of warn-

ngs correlates with actual vulnerabilities, and not about studying

he characteristics of each warning type. 

Another research direction has focused on tracing SAST-

roduced warnings over time ( Di Penta et al., 2009; Kim and Ernst,

0 07; Spacco et al., 20 06 ). Spacco et al. (20 06) proposed a tech-

ique for tracking bugs across versions by using repository his-

ory and Findbugs. Kim and Ernst (2007) introduced a bug warning

rioritization method based on the software change history. They

sed bug warnings generated by three SAST tools for Java: Find-

ugs, Jlint, and PMD for three programs: Columba, Lucene, and
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carab. In that study, only bug warnings that are removed by fix-

hanges are considered to indicate real bugs. They found that bugs

hat were fixed in fix-changes represent a very small percentage

f bug removals, and about 90% of the bug warnings either re-

ain in the program or are fixed in non-fix changes that were

onsidered to be false positive warnings ( Kim and Ernst, 2007 ).

e follow a similar approach to understand the evolution of

he SAST-produced warnings using historical information. How-

ver, Kim and Ernst neglected bug warnings that appear in non-fix

hanges, we consider all bug warnings in fix or non-fix changes.

his is because researchers have emphasized that linking bugs

o the comments in the commit logs may produce biased re-

ults ( Bachmann et al., 2010; Kalliamvakou et al., 2014 ). For in-

tance, Bachmann et al. (2010) found that the bugs issued in a

ug tracking system could be biased since not all bugs are reported

o these systems. Another aspect is that sometimes it is difficult to

solate code changes due to bugs from other code changes due to

ifferent reasons. For instance, Murphy-Hill et al. (2015) reported

hat 75% of surveyed developers had to remove features from soft-

are to fix bugs, and are therefore not tagged as bugs. Hence, we

onsider all commits and see if the warnings remain or disappear

n subsequent versions. 

Di Penta et al. (2009) performed an empirical study to ex-

mine the evolution and decay of bugs in three networking sys-

ems detected by three freely available SAST tools. The main fo-

us of that study is to investigate warning categories and decay

ime. The researchers used the ldiff framework, tracing the source

ode changes across subsequent commits to extract needed infor-

ation. Our research extends their work ( Di Penta et al., 2009 ),

nd we use a similar method by employing a novel tool to trace

he line codes over time. However, our approach is different from

i Penta et al. (2009) approach in multiple aspects: 

– We use a different tracing tool, namely cregit + that traces to-

kens across commits and allowed to detect line split and merge

in subsequent versions and keeps track of the refactored files. 

– We conduct our study on 116 open source projects that belong

to various categories instead of only three networking systems. 

– We use free open source and commercial tools to conduct our

analysis. 

– We adopt a well-known security bug classification to aggregate

the results across tools and provide universal and comprehen-

sive results. 

. Definitions 

Below, we define some terms that we will use in the rest of the

aper and that are key to understanding our analysis. Note that

ur analysis examines the first available versions of the software

rojects in 2012 and 2017. We then see if the warnings that existed

n 2012 remain in 2017 or not. Note that we do not know if the

evelopers of the software used any of the SAST tools in this study

r not. We are not claiming that. We want to see if warnings that

ere present in the 2012 version of the software were removed for

ny reason by the developers of the software in a five year time

eriod or not. This is similar to the context under which Di Penta

t al., carried out their study ( Di Penta et al., 2009 ). 

Below we present the various scenarios of what could happen

o warnings from the 2012 version. 

– Remained Warnings - When a line of code in the 2012 version

also exists in the 2017 version (even if it has moved location

within the file, or the line of code was modified (e.g., a vari-

able name was changed)), and in both versions, the same warn-

ing exists. These warnings are likely to be false positives (FP),

even though the tool identified a potential problem within the
line, the warning has not been removed from the line, indicat-

ing that no problem has been found so far in it. Note that the

typical time to fix a bug is around three years ( Canfora et al.,

2009; Di Penta et al., 2009 ). 

– Modified Warnings - When a line of code in the 2012 version

also exists in the 2017 version, and the warning in the 2017

version is different from the warning in the 2012 version. These

warnings are likely to be true positives (TP), as the project de-

velopers have made an effort to change the code that led to

the disappearance of the original bug warning, yet they have

introduced a new bug which indicates incorrect fixes or buggy

patches ( Yin et al., 2011 ). For instance, a bug warning might be

raised because of the usage of strcpy function call. The strcpy

function call copies a source buffer to a destination buffer and

it has two arguments destination and source. So, if the source

buffer is lar ger than the destination buffer that might cause a

buffer overflow. A developer might change the code by replac-

ing the strcpy function call by strncpy function call that has

three arguments (destination, source, and the number of copied

bytes from source to destination). However, strncpy function

call has other problems. For instance, it doesn’t supply null ter-

mination at the destination buffer. (This category shows two as-

pects: on the one hand: the tool was able to spot a real bug, on

the other hand: the developer incorrectly fixed that warning) 

– Disappeared Warnings - When a line of code in the 2012 ver-

sion also exists in the 2017 version, but the warning present

in the 2012 version disappears and there is no new warning in

the 2017 version. We consider that a Disappeared Warning in-

dicates that the line was improved to remove the warning (and

potentially do other work), and thus is a true positive (TP). 

– Removed Warnings - When a line of code in the 2012 version
∗does not ∗ exist in the 2017 version and hence the warning

from 2012 also does not exist in the 2017 version. We cau-

tiously decided to make no assertion about Removed Warnings

(the line no longer exists). The reason is that we do not know

if the line was removed due to a bug fix or because the feature

is no longer necessary. 

In Di Penta et al.’s work ( Di Penta et al., 2009 ), they referred

o warnings as ‘Vulnerability’. We are not sure if they include

odified Warnings in Disappeared Vulnerabilities. In our paper, we

hose not to present or discuss results of removed warnings be-

ause we do not know why the line was removed. However, the

omplete dataset from our study that we share ( Aloraini et al.,

019 ) does have the removed warnings classified, if the reader

ants to examine them. 

. Research questions 

– RQ1: How are the warnings from each SAST tool distributed

across different warning types in 2012 and 2017? This re-

search question discusses the distribution of warnings detected

by various SAST tools across the various warning types at differ-

ent time periods: 2012 and 2017. This helps us understand the

emergence of warnings to see whether the density of a particu-

lar warning type shows any positive or negative trend between

2012 and 2017. 

– RQ2: How are true positive and false positive warnings dis-

tributed across different warning types and across different

SAST tools? Our goal is to understand the distribution of true

positive (TP) and false positive (FP) warnings that belong to dif-

ferent types as reported by SAST tools and have been removed

later from the source code. In particular, we are interested in

warnings that have been reported by SAST tools in 2012 and

their status in 2017. As per our definitions in Section 3 , we

present the results of Remained Warnings (which are likely to
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Fig. 1. Case study project selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Selecting static application security testing tools. 
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be FP), Modified Warnings and Disappeared Warnings (which are

likely to be TP). Hence, we trace the lines of code across each

project’s history using cregit + . 
– RQ3: How do different types of warnings evolve over time?

We are interested in warning decay, indicating the time inter-

val between detection until removal. To clarify this, we provide

this simple scenario: assume that a new project manager de-

cides to run SAST tools in a particular period of time (in our

case in 2012). We measure how long it took for the warning to

disappear. By knowing this, we would be able to see if warn-

ings of a particular type are removed sooner than others. In

RQ2, we examine if the warning disappears by 2017, and now

when between 2012 and 2017 it disappears. Hence, we focus

on TP warnings ( Modified Warnings and Disappeared Warnings )

that were detected by SAST tools and likely fixed in the code.

We only consider lines of code that include warnings and have

been altered, as this gives us the ability to trace the changes in

the lines of code. Whenever we find a warning that belong to

an altered line of code and disappeared in the recent version,

we trace the line of code that contains the bug warning back-

ward during the history to find the fix time and flag that to be

a bug fix version. 

5. Experimental design 

5.1. Selecting case study projects 

When we gathered projects to conduct the study, we consid-

ered the following four criteria: 

- Real-world projects: We aim at understanding SAST-produced

warnings against real-world large projects. This allows for

assessing software project warnings at scale and evaluate

SAST tools performance. 

- Programming language: We choose to analyze C ++ projects,

since it is ranked as the third most popular program-

ming language based on the TIOBE Index as of May 2019

( TIOBE index for May 2019, 0 0 0 0 ). Additionally, C ++ is gen-

erally more bug prone as well ( Ray et al., 2014 ). 

- Active: We mine projects that have adequately long and rich

historical data, as those projects are more likely to be more

mature and active. Thus, we focus on projects with high

popularity, as well as projects that have long and continu-

ous development histories for at least five continuous years

from 2012 to 2017. 

- Automation: As we need to run SAST tools on the projects,

and some of the SAST tools need to run on top of a build

system, we limit retrieved projects to those that use auto-

mated build systems. We choose to use projects that adopt

the cmake build systems. 

As shown in Fig. 1 , we use projects hosted on GitHub because

we want to analyze real-world projects . To compose the list of

repositories, we make use of the metadata provided by the Re-

poReaper dataset ( Nagappan et al., 2016 ), since it eliminates the
oise (e.g., repositories that are not engineered software projects).

ince we want to focus on the C ++ programming language , we fil-

er the RepoReapers dataset to obtain only projects that were writ-

en in C ++ . We sort the RepoReapers project names by the high-

st number of stars, then we select the top 15,0 0 0 projects on the

ist. After that, we randomly choose and clone 400 projects from

he 15,0 0 0 list. To ensure the activeness of the projects, we exclude

hose with fewer than 120 commits. 

In addition, we exclude projects that do not have an active de-

elopment history for at least five continuous years from 2012 till

017. To fulfill the automation criterion, we eliminate all projects

hat do not adopt the cmake build system and could not be built

moothly to run all SAST tools (e.g., due to dependency issues). Fi-

ally, we have 116 projects that fulfill all of the above criteria. 

.2. Selecting SAST tools 

When selecting the SAST tools that we want to study in this

aper (as shown in Fig. 2 ), we consider their diversity in terms

f availability and underlying inference algorithms to provide var-

ous types of security warnings. Consequently, we gather the fol-

owing eight SAST tools that analyze C ++ source code: Para-

oft C/C ++ test ( Parasoft C/C ++ test ), PVS-Studio ( PVS-Studio An-

lyzer ), Clang Static Analyzer ( Clang Static Analyzer ), Cppcheck

( Marjamki )), Flawfinder ( Wheeler ), RATS ( Rough Auditing Tool for

ecurity ), Polyspace Bug Finder ( Mathworks ), and Coverity Static

nalysis ( Coverity Static Analysis ) (academic version). However, we

nd that some of the SAST tools have restrictions on the number

f analyzed lines of code (LOC), such as the Coverity Static Analysis

ool (academic version). Also, some of the SAST tools do not gen-

rate warnings in an efficient format to analyze. For instance, the

olyspace Bug Finder only shows the warnings using a graphical

ser interface, which is highly ineffective in analyzing thousands of

arnings. Hence, we exclude them and study only six SAST tools.

able 1 summarizes all SAST tools used and related information.

able 1 illustrates different SAST tools with their underlying infer-

nce algorithms to infer the presence of security bugs. The infer-

nce algorithms that are adopted in the SAST tools are discussed

elow: 

1. Pattern-matching method is one of the earliest methods that

is used to detect security vulnerabilities ( Viega et al., 2002 ).

This method is based on lexical analysis that scans the source

code tokens. The goal is to identify potentially dangerous code

patterns, such as calls to vulnerable library functions (e.g., str-

cpy) and some bad practices (e.g., fixed-length array) that may

cause bugs. RATS and Flawfinder use this technique solely,
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Table 1 

Studied static application security testing tools for C ++ . 

Tool name Version Availability Inference algorithm 

RATS 2.4 Open source Pattern-matching 

Flawfinder 1.31 Open source Pattern-matching 

Cppcheck 1.76.1 Open source Value range analysis & data-flow analysis 

PVS-Studio 6.13 Commercial ∗ Pattern-matching & symbolic execution & data-flow analysis 

annotation-based (automatic) 

Parasoft C/C ++ test 9.6.1 Commercial Pattern-matching & abstract interpretation & data-flow analysis 

Clang Static Analyzer 3.8 Open source Symbolic execution & annotation-based & data-flow analysis 

∗ PVS-Studio provides a free academic license. 
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while other tools, such as Parasoft C/C ++ test and PVS-Studio

combine pattern-matching with other techniques. 

2. Data-flow analysis method was developed originally for opti-

mization ( Kildall, 1973 ). Data-flow analysis method collects in-

formation about the possible set of values propagating over dif-

ferent program paths. In SAST tools, the information collected

by data-flow analysis is used to validate safety properties. For

instance, constant propagation is a form of data-flow analysis

method. Constant propagation tracks constant values of each

program variable. Once a variable, that was folded to a con-

stant value, is used incorrectly in a sensitive operation (e.g.,

arguments of vulnerable library calls) the method generates a

warning. Cppcheck, Clang Static Analyzer, PVS-Studio, and Para-

soft C/C ++ test adopt this method. 

3. Value range analysis method has been used in the literature

to detect security vulnerabilities ( Wagner et al., 20 0 0 ). Value

range analysis uses data-flow analysis to keep track of possible

values that variables can be assigned at each point of program

execution. Then it solves safety constraints based on the given

range of the variables. For instance, if a variable x has range

of [3,10] and a variable y has a range of [6,9] throughout the

execution of a program. The method infers that the range of the

expression x + y is [9,19]. When such expression is evaluated to

have an upper bound that exceeds MAXINT (i.e., the maximum

value of an integer), this would be flagged as integer overflow

warning. Cppcheck performs this type of analysis. 

4. Symbolic execution method is another method to statically

detects security bugs ( Xie et al., 2003 ). The symbolic execu-

tion method uses symbolic values when concrete values are

not present. Hence, the output values calculated by the method

are represented as a function of the input symbolic values. The

method binds safety constraints to the symbolic expressions.

Then it solves safety constraints that when violated would

imply vulnerabilities. For instance, the method may evaluate

whether a buffer access is safe by producing safety constraints

at every buffer access. Hence, a constraint solver is run to

evaluate the values against the constraints (e.g., symbolic con-

straints between variables like x < y ). Clang Static Analyzer

and PVS-Studio perform this type of analysis. 

5. Abstract interpretation method is a general method for

approximating the behavior of programs ( Cousot and

Cousot, 1977 ). The method provides a mathematical guar-

antee that all properties calculated by the method hold for all

possible execution paths of the program. In this method, the

concrete values are replaced with abstract ones. For instance,

sign analysis can be performed using the Abstract Interpre-

tation method by mapping each variable to a sign instead

of mapping it into an integer. Then the instructions can be

interpreted by using rules of signs. Parasoft C/C ++ test adopts

abstract interpretation to detect security bugs. 

6. Annotation-based method requires program developers to an-

notate the program code with safety properties in terms of

preconditions and postconditions ( Evans and Larochelle, 2002 ).
After the code is annotated, the method analyzes the program

code starting from the annotated preconditions and validates

that the code implementation satisfies the postconditions. For

example, developers may annotate a parameter declaration us-

ing notnull annotation, which assumes that the passed value for

such parameter is not NULL, then the method can validate that.

PVS-Studio adopts this technique, and the tool has integrated

annotated C/C ++ standard functions among others, while Clang

Static Analyzer supports this technique, but it requires manual

annotation by developers. 

.3. Extracting security warnings 

After we choose the SAST tools and projects, we need to extract

he warnings that each SAST tool finds in each of the projects. The

pproach we use for this step is shown in Fig. 3 . One of our goals

s to see how the warnings evolve over time. Therefore, for each

roject, we check out two releases of their source code: the first

elease from 2012 and the first release from 2017. We choose 2012

nd 2017 so that we can be fairly certain that warnings from 2012

hat are not removed in 2017 do not affect the reliability of the

roduct. We then run each of the SAST tools on 2012 and 2017

eleases of every one of the 116 projects and collect the warnings. 

We use all available checkers and analysis modules in SAST

ools (e.g., when using the Clang Static Analyzer, we enable all

vailable checkers in the tool). Next, we revise all the generated

eports to ensure that they are relevant to the actual source code,

s we are only interested in source code files that represent the

rogram code, and not source code files for test purposes. There-

ore, we exclude all warnings in test files. We infer that from the

le path, which usually includes the keyword “test”. 

In addition, we only consider warnings that happened in C and

 ++ source and header files for our analysis. As a result, we find

91,794 warnings in 2012 and 348,441 warnings in 2017 when we

onsider all the core projects and the linked sub-modules in our

ataset, for all the six SAST tools. Finally, since each SAST tool has

ts own warning format, we produced a consistent and unified for-

at among SAST tools. Therefore, we save every warning from all

AST tools in one format in one file to process later. 

.4. Classifying security warnings 

One of the challenges that we face is that the security warn-

ng classifications used by the SAST tools are different among the

arious SAST tools, making it difficult to analyze them in aggre-

ate. Hence, we need to have one consistent classification across

he SAST tools to simplify the analysis. We map the generated

arnings by different SAST tools to the Seven Pernicious King-

oms (SPK) classification ( Tsipenyuk et al., 2005 ). The SPK classi-

cation provides a taxonomy of common types of security coding

rrors that might lead to vulnerabilities. This taxonomy is mainly

ased on the cause of a security vulnerability, but not necessarily

he effect, and it focuses on implementation issues. 
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Fig. 3. Extracting security warnings. 

Table 2 

Seven pernicious kingdom taxonomy of security warnings (only types related to C ++ and those that are language independent are included here). 

# Type Subtype # Type Subtype 

1 Input Validation and 

Representation (IVR) 

-Buffer Overflow 

-Command Injection 

-Cross-Site Scripting 

-Format String 

-HTTP Response Splitting 

-Illegal Pointer Value 

-Integer Overflow 

-Log Forging 

-Path Manipulation 

-Process Control 

-Resource Injection 

-Setting Manipulation 

-SQL Injection 

-String Termination Error Handling 

-Unsafe JNI 

-XML Validation 

2 Improper Fulfillment 

of API Contract, or API 

Abuse (API) 

- Dangerous Function 

- Directory Restriction 

- Heap Inspection 

- Often Misused: Authentication 

- Often Misused: Exception Handling 

- Often Misused: File System 

- Often Misused: Privilege 

Management 

- Often Misused: Strings 

- Unchecked Return Value 

3 Security Features (SF) - Insecure Randomness 

- Least Privilege Violation 

- Missing Access Control 

- Password Management 

- Password Management: Empty 

Password in Config File 

- Password Management: Hard-Coded 

Password 

- Password Management: Password in 

Config File 

- Password Management: Weak 

Cryptography 

- Privacy Violation 

4 Time and State (TS) - Deadlock 

- Failure to Begin a New Session upon 

Authentication 

- File Access Race Condition: TOCTOU 

- Insecure Temporary File 

- Signal Handling Race Conditions 

5 Error Handling (ERR) - Empty Catch Block, 

Language-Independent 

- Overly-Broad Catch Block 

- Overly-Broad Throws Declaration 

6 Indicator of Poor Code 

Quality (CQ) 

- Double Free 

- Inconsistent Implementations 

- Memory Leak 

- Null Dereference 

- Obsolete 

- Undefined Behavior 

- Uninitialized Variable 

- Unreleased Resource 

- Use After Free 

7 Insufficient 

Encapsulation (ENC) 

- Data Leaking Between Users 

- Leftover Debug Code 

- Mobile Code: Non-Final Public Field 

- Private Array-Typed Field Returned 

From a Public Method 

- Public Data Assigned to Private 

Array-Typed Field 

- System Information Leak 

- Trust Boundary Violation 

∗ Environment (ENV) - Insecure Compiler Optimization 

- Insecure Configuration Management 

 

 

 

 

 

 

 

 

Table 3 

Seven pernicious kingdom categories detected by each tool. 

Tool IVR API SF TS ERR CQ ENC ENV 

RATS 
√ √ √ √ 

✗ 
√ 

✗ ✗ 

Flawfinder 
√ √ √ √ 

✗ 
√ 

✗ ✗ 

Cppcheck 
√ √ 

✗ 
√ √ √ 

✗ ✗ 

PVS-Studio 
√ √ 

✗ 
√ √ √ √ √ 

Parasoft C/C ++ test 
√ √ √ √ √ √ √ √ 

Clang Static Analyzer 
√ √ √ √ 

✗ 
√ 

✗ ✗ 
Each SAST tool has a list of warning types that they can detect

in the documentation, along with a description for each of them.

The first author of the paper carefully analyzed these lists and de-

scriptions of warning types and manually classified each warning

type into one of the seven types described by the SPK classifica-

tion (see Table 2 for more detail). For each of the six SAST tools,

we determined which tool can identify which type of vulnerabil-

ity from the SPK classification. The results of that is presented in
Table 3 . 
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Fig. 4. Tracing evolution of warnings using cregit + . 

5

 

t  

t  

c  

s  

s  

c  

f

 

l  

c  

s  

i  

w  

s  

m  

b  

e

 

o  

p  

i  

l

5

 

t  

t  

v  

c  

a  

l  

g  

a

6

6

a

 

a  

w  

w  

f  

i  

p  

f  

w  

T  

i  

s  

i  

p

K  

g  

i  

t  

p  

c  

m  

g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.5. Tracing evolution of warnings 

Now that we have the warnings from each of the SAST tools for

he 2012 and 2017 releases of the 116 case study projects, we can

race their evolution.We track the location of each filename/line of

ode from the 2012 release into the 2017 release. We use the ver-

ion history and cregit + , to track the lines of code across the sub-

equent commits till 2017. When the 2012 line exists in 2017, we

an identify if the warning is still present, has changed, or is a dif-

erent one. 

Therefore, by using cregit + we are able to determine the exact

ine of code in the 2017 version of the project’s source code that

orresponds to the line of code under consideration from 2012 (as

hown in Fig. 4 ). We then check the warnings from 2017, to see

f the determined line of code has the same warning, a different

arning or no warning. Note that cregit + can come up with a re-

ult that the specific line of code from 2012 does not exist any-

ore (i.e., the line has been deleted). In this case too, there will

e no warning since the line of code does not exist. We classify

ach of these into the 4 cases as discussed in Section 3 . 

Note that since we are tracing the source code across the vari-

us commits in GitHub, we only include warnings from the core

roject and not any third-party. Hence, we trace 213,627 warn-

ngs from 2012. All of our empirical data are available for down-

oad ( Aloraini et al., 2019 ). 

.6. Extracting warning decay 

In this step, we want to calculate the time it takes for a warning

o disappear. We first included only warnings that disappear, but

he lines of code have not been altered drastically which may pro-

ide more concrete results. Hence, we compare the actual line of

ode in 2012 and the line of code in 2017 using Levenshtein distance

nd threshold of 0.8. Then, for each warning line, we extracted the

ist of commits that touched that particular line. We did this using

it-blame , for each line we found the last commit that touched it

nd repeated this process recursively. 

. Empirical study results 

.1. RQ1: How are the warnings from each SAST tool distributed 

cross different warning types in 2012 and 2017? 

Approach: In this RQ, we analyzed 291,794 warnings from 2012

nd 348,441 warnings from 2017 in 116 projects. For comparison,

e represent warning distribution using a box-and-whisker plot,

ith each data point representing a project. We present the plots

rom 2012 and 2017 side-by-side to see if the trends are chang-

ng. We present two sets of plots in this RQ. In one set, we com-

are the warning types and their trends between 2012 and 2017

or each SAST tool. This helps us understand if the distribution of

arning types in the same tool changes between 2012 and 2017.

hen, we compare the warnings across SAST tools for each warn-

ng type between 2012 and 2017. In this analysis, we are able to

ee which tool finds how many warnings of a particular type and
f that changes between 2012 and 2017. Thus, we are able to com-

are different SAST tools for the same warning type. 

Also, we combine the box-and-whisker plot with the Scott–

nott Effect Size Difference (ESD) test to cluster different cate-

ories of warnings into statistically distinct ranks in terms of mean

mportance ( Tantithamthavorn et al., 2017 ). The Scott–Knott ESD

est performs well, even when the dataset involves the overlap-

ing problem (i.e., the probability of one or more warnings to be

ategorized in more than one group). This test performs multiple

ean comparisons, as it separates means into statistically distinct

roups with non-negligible differences. 

Results: The following are the results of the analysis. 

1. Warnings within SAST tools: Fig. 5 a and b show the warnings

distribution when using the RATS tool in 2012 and 2017 re-

spectively. We include the results for the other SAST tools in

Figs. 12 and 13 located in Appendix A for readability purposes.

The plots include the box-and-whisker plot and the Scott–Knott

ESD test among warning types ordered from left to right by

their decreasing mean values. In these plots, different colors

represent distinct groups that are significantly different from

the other as determined by the Scott–Knott ESD test. 

From the plots, we can see that the distribution of warning

among different categories is almost the same in 2012 and

2017 for the RATS tool. We observe the same phenomenon

in all other tools as well (check Figs. 12 and 13 located in

Appendix A ). Thus, the warning distributions are stable even

after five years. What we can infer from these plots is that the

quality of the projects from the perspective of the SAST tools

are consistent. However, the different SAST tools have different

vulnerability types that they detect more of. 

RATS ( Fig. 5 a and b) and Flawfinder ( Fig. 12 c and d) detect

more Input Validation and Representation (IVR) warnings than

any other type of warning in both 2012 and 2017. In Cppcheck

( Fig. 12 e and f), the Clang Static Analyzer ( Fig. 13 a and b), PVS-

Studio ( Fig. 13 c and d), and the Parasoft C/C ++ test ( Fig. 13 e

and f), we observe that Indicator of Poor Code Quality (CQ)

warnings is the most significant type of warning that is being

reported in both 2012 and 2017. Although, in all the latter tools

IVR and API Abuse (API) warnings are the second and third most

significant types of warnings being reported in both 2012 and

2017 (similar to RATS and Flawfinder). 

What we can infer from the above result is that the trend

of reported bug warnings for each tool does not change over

time. This might indicate that the quality of projects does not

change over time, which is consistent with other research find-

ings ( Edwards and Chen, 2012 ). Another observation is that

most of the studied SAST tools produce a high number of IVR,

CQ, and API warnings in both 2012 and 2017. 

Takeaway 1: The trend of reported bug warnings for each 

tool does not change over time. This might indicate that 
the quality of projects does not change over time. 

2. Security warnings grouped by Seven Pernicious Kingdoms (SPK)

classification: In Fig. 6 a and b we show the percentage of IVR

warnings detected by the six different SAST tools in 2012 and

2017, respectively. We include the results for the other SPKs

in Fig. 14 and Fig. 15 located in Appendix B . We notice that

Flawfinder produces the highest number of IVR ( Fig. 6 a and b),

API ( Fig. 14 c and d), and Security Features (SF) ( Fig. 14 e and f)

warnings and they have the highest median among projects in

both 2012 and 2017. 
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Fig. 5. Box-and-whisker plot and Scott–Knott ESD test of the number of warnings detected by RATS. In this figure, the x -axis represents normalized number of bugs 

(bugs/LOC), and the y -axis represents different classes of SPK bugs. Each data point represents a project. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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We also observe that Time and State (TS) results ( Fig. 14 g and h)

is less stable between 2012 and 2017. RATS produces TS more

than other tools in 2102, while Flawfinder became the most

significant tool that generates TS in 2017. We also note that

PVS-Studio has generated the most warnings of CQ ( Fig. 15 a

and b), Error Handling (ERR) ( Fig. 15 c and d), and Environment

(ENV) ( Fig. 15 g and h) for both 2012 and 2017. The Parasoft

C/C ++ test is the only tool that produced Insufficient Encapsu-

lation (ENC) type of warnings ( Fig. 15 e and f), and it is neg-

ligible number warnings in both 2012 and 2017. The results

denote that IVR, API, TS, and SF are more generated by tools

that only use pattern-matching method, such as Flawfinder and

RATS, while CQ is produced more by tools that use more ad-

vanced semantic analysis. 

Takeaway 2: IVR, API, SF, and TS are more spotted by 
Flawfinder and RATS tools that use pattern-matching tech- 
niques, while CQ, ERR, ENC, and ENV are more reported by 
more advanced SAST tools. 
 

.2. RQ2: How are true positive and false positive warnings 

istributed across different warning types and across different SAST 

ools? 

Approach: We conduct our study on 213,627 warnings from

he 116 projects and their versions in 2012 (which is less than the

91,794 warnings discussed in RQ1 because we only consider the

ore projects here and not include the dependencies like in RQ1).

o answer this RQ we conducted the following analysis: 

– We show the Remained Warnings, Modified Warnings , and Dis-

appeared Warnings distributions across warning types for each

SAST tool and across SAST tools for each warning type, using

both box-and-whisker plot and the Scott–Knott ESD test. 

– We measure the likelihood of a warning that belongs to a spe-

cific warning type to be a real warning for different SAST tools

using the Odds Ratio (OR) similar to Di Penta et al. (2009) . OR

is the ratio of the odds of an event occurring in one set (in this

research the eliminated warning subset (TP including Modified

Warnings and Disappeared Warnings ) to the odds of it occurring

in another set (in this research the alive warning subset FP in-

cluding Remained Warnings ). An odds ratio of 1 means that the

detected warnings could belong to FP or TP equally likely. An



B. Aloraini, M. Nagappan and D.M. German et al. / The Journal of Systems and Software 158 (2019) 110427 9 

Fig. 6. Box-and-whisker plot and Scott–Knott ESD test of the number of warnings 

classified as Input Validation and Representation (IVR). In this figure, the x -axis rep- 

resents normalized number of bugs(bugs/LOC) and the y -axis represents different 

SAST tools. Each data point represents a project. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 7. Box-and-whisker plot and Scott–Knott ESD test of the Remained Warn- 

ings (FP), Modified Warnings and Disappeared Warnings (TP) among different warn- 

ing types by RATS. In this figure, the x -axis represents normalized number of 

bugs(bugs/LOC), and the y -axis represents different classes of SPK bugs. Each data 

point represents a project. (For interpretation of the references to color in this fig- 

ure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

odds ratio greater than 1 means that the detected warnings are

more likely to be TP, and an odds ratio less than 1 means that

detected warnings are more likely to be FP. 

– We apply a proportion test similar to Di Penta et al. (2009) that

shows whether the proportion of eliminated warnings differ

across warning types (H0: there is no difference among pro-

portions of eliminated warnings). This could provide a better

understanding of whether some types are receiving more at-

tention than others. 

Note that, in our analysis, we only consider Modified Warnings,

isappeared Warnings , and Remained Warnings . We ignore Removed

arnings (one where the entire line of code from 2012 no longer

xists in 2017), as this type of warning should be considered with

aution since it is hard to assume that the removal of lines of code

hat include warnings indicates a bug fix. The line removal could

e due to other reasons, such as code refactoring or deleting fea-

ures. 

Results: The following are the results of the analysis. 

1. Analysis of Warnings among SAST tools: This analysis is to com-

pare the FP and TP rates per warning types among SAST tools.

Fig. 7 a–c depict RATS to show Remained Warnings, Modified

Warnings , and Disappeared Warnings comparisons (other plots

for other tools are located in Figs. 16 and 17 in Appendix C ). We

observe that the Remained Warnings plots have a similar pattern

to the Disappeared Warnings plot for each tool. RATS ( Fig. 7 a–

c) and Flawfinder ( Fig. 16 d–f) show that the most significant

groups of Remained Warnings and Disappeared Warnings are IVR,

API, and SF, respectively. In Cppcheck ( Fig. 16 g–i), PVS-Studio

( Fig. 17 d–f), the Clang Static Analyzer ( Fig. 17 a–c), and the Para-

soft C/C ++ test ( Fig. 17 g–i), we note that CQ is the most types

of warnings that appear as Remained Warnings and Disappeared
Warnings . It is remarkable to see that in RATS, Flawfinder, and

the Parasoft C/C ++ test have some warnings in Modified Warn-

ings plots, which refers to the warnings that likely have been

resolved but there were other warnings have been introduced.

An example of that is when developers try to replace possibly

insecure function strcpy by another more secure but still vul-

nerable function strncpy . Hence, we infer from the above re-

sults that there is a strong correlation between the number of

FP and TP for each type of warning in each tool. For instance,

the most frequent type of false positive bug warnings produced

by RATS tool is IVR, and also IVR is the most frequent type of

bug warnings that disappeared. This means that the number of

false positive could be used as an indication of the potential

real bugs could be detected by each tool. 
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Fig. 8. Box-and-whisker plot and Scott–Knott ESD test of the Remained Warnings (FP), Modified Warnings and Disappeared Warnings (TP) among different warning types 

among Input Validation and Representation (IVR). In this figure, the x -axis represents normalized number of bug(bugs/LOC), and the y -axis represents different SAST tools. 

Each data point represents a project. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

Takeaway 3: For all the SAST tools used in this study, 
for each type of warning there is a strong correlation be- 
tween the number of true positive and the number of 
false positive warnings found. 

2. Analysis of Warnings among SPKs: Another analysis we per-

formed is to compare each type of warnings among different

SAST tools. Fig. 8 a–c display IVR warnings to show Remained
Warnings, Modified Warnings , and Disappeared Warnings rate

comparisons (while other plots for other tools are located in

Figs. 18 and 19 in Appendix D ). In IVR ( Fig. 8 a–c), API ( Fig. 18 d–

f), and SF ( Fig. 18 g–i) plots, we see that Flawfinder produces a

significant amount of Remained Warnings ; in addition, it has the

most significant number of warnings detected correctly in Dis-

appeared Warnings . RATS is the most tool that produces TS as

both Remained Warnings and Disappeared Warnings ( Fig. 18 j–l),

while PVS-Studio is the most tools that produces CQ ( Fig. 19 a–

c) and ERR ( Fig. 19 d–f) as Remained Warnings and Disappeared
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Table 4 

Numbers of all detected FP (which includes Remained Warnings ), TP (which includes Modified Warnings and Disappeared Warnings ), and 

Odds Ratio of with respect to FP. 

Tool Type Total Remained Modified Disappeared TP TP + FP Removed OR 

warning warning warning warning 

RATS IVR 37,776 26438(69.99%) 84(0.22%) 3681(9.74%) 3765 30,203 7573 0.020 

API 10979 6770(61.66%) 80(0.73%) 1772(16.14%) 1852 8622 2357 0.074 

SF 592 409(69.09%) 0 46(7.77%) 46 455 137 0.012 

CQ 157 104(66.24%) 0 25(15.92%) 25 129 28 0.057 

TS 1246 827 (66.37%) 3(0.24%) 140(11.24%) 143 970 276 0.029 

Flawfinder IVR 92,998 68126(73.26%) 320(0.34%) 5992(6.44%) 6312 74,438 18,560 0.008 

API 35,314 24491(69.35%) 234(0.66%) 2731(7.73%) 2965 27,456 7858 0.014 

SF 1157 882(76.23%) 4(0.35%) 48(4.15%) 52 934 223 0.003 

CQ 3250 2801(86.18%) 8(0.25%) 115(3.54%) 123 2924 326 0.001 

TS 2168 1315(60.65%) 5(0.23%) 144(6.64%) 149 1464 704 0.012 

Cppcheck IVR 274 144(52.55%) 0 41(14.96%) 41 185 89 0.081 

API 207 115(55.56%) 0 30(14.49%) 30 145 62 0.068 

CQ 1563 850(54.38%) 1 385(24.63%) 386 1236 327 0.206 

Clang Static IVR 1 0 0 0 0 0 1 - 

Analyzer CQ 31 14(45.16%) 0 5(16.13%) 5 19 12 0.127 

PVS-Studio IVR 7154 2408(33.66%) 1(0.01%) 3461(48.38%) 3462 5870 1284 2.067 

API 1656 635(38.35%) 0 679(41.00%) 679 1314 342 1.143 

CQ 16,808 6295(37.45%) 9(0.05%) 7464(44.41%) 7473 13,768 3040 1.409 

ERR 208 50(24.04%) 0 83(39.90%) 83 133 75 2.755 

ENV 29 16(55.17%) 0 11(37.93%) 11 27 2 0.472 

Parasoft C/C ++ test IVR 1835 961(52.4%) 152(8.3%) 658(35.9%) 810 1771 64 0.710 

API 1792 1010(56.4%) 158(8.8%) 554(30.9%) 712 1722 70 0.496 

SF 5 1(20.0%) 0 4(80.0%) 4 5 0 16 

CQ 78322 42541(54.3%) 1790(2.3%) 32764(41.8%) 34554 77095 1227 0.659 

TS 156 101(64.7%) 18(12.8%) 32(19.2%) 50 151 5 0.245 

ENC 2 2(100%) 0 0 0 2 0 - 

ENV 39 12(30.8%) 0 21(53.8%) 21 33 6 3.062 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Warnings . We note that ENC ( Fig. 19 g–i) are produced only by

the Parasoft C/C ++ test, but it is likely to be Remained Warnings

that are FP warnings. Similarly, the results indicate that a tool

that generates the highest number of false positive of a specific

warning type compared to other tools, it would be the tool that

the most disappeared warnings of the same type belong to. For

instance, Flawfinder generates the most false positive IVR bug

warnings compared to other tools, also the disappeared warn-

ings of the IVR mostly belong to Flawfinder. This also could be

used as an assessment to measure the potential real bugs of a

certain type could be detected by such SAST tool. 

Takeaway 4: Pattern-matching based tools, such as RATS 
and Flawfinder, produce a larger number of warnings 
(both FP and TP) of IVR, API, SF, and TS, while more ad- 
vance tools, such as PVS-Studio and Parasoft C/C ++ test, 
generate a larger number of CQ warnings (both FP and 

TP). 

3. Odds ratio analysis: Table 4 reports all SAST-produced warnings

in terms of: 

– The total number of warnings reported by each tool split by

warning type in 2012. 

– The number of warnings which exists in the same line of

code in both the 2012 and 2017 versions ( Remained Warn-

ings ). 

– The number of warnings from 2012 which disappear in

2017, but have a different warning in the same line of code

as compared to 2012 ( Modified Warnings ). 

– The number of warnings from 2012 that no longer exist in

the same line of code, but the line of code still exists, albeit

modified ( Disappeared Warnings ). 

– The odds ratio of a tool finding a warning in 2012. 

 

RATS, Flawfinder, Cppcheck, and Clang Static Analyzer have

Odds Ratio (OR) less than one for all warning types, indicating

that these types of warnings are likely to be FP. 

Conversely, PVS-Studio results denote that most reported warn-

ings in 2012 disappeared in 2017, hence they are more likely

to be real warnings. Only ENV type of warnings is the most

likely to be FP. Parasoft C/C ++ test is likely to be accurate

with SF warnings. We note that it has (OR = 16), which is a

very high odds ratio to be a real warning compared to other

types of warnings. Similarly, the ENV type of warnings show

(OR = 3.062), which indicates a higher probability of having real

warnings reported. That is because Parasoft C/C ++ test enforce

secure coding standards, such as MISRA, CERT, and ISO. Also,

Parasoft C/C ++ test detects Environment errors with high pre-

cision rate because it targets cross-compiler platforms. 

From the result above we note that tools that use pattern-

matching along with other advanced analysis methods, such as

PVS-Studio and Parasoft C/C ++ test, outperform other tools in

term of the likelihood of producing real security bugs. 

Takeaway 5: SAST tools in this study that use pattern- 
matching method along with semantic analysis are more 
likely to produce warnings that may be real warnings. 

4. Proportion test analysis: For warnings detected with RATS and

Flawfinder, the proportion test of likely resolved warnings sig-

nificantly varies across types ( p -value < 0.0 0 01), meaning that

there are some types receiving more attention and likely be-

ing resolved than others. A small p -value (typically ≤ 0.05)

indicates strong evidence against the null hypothesis, so we

could reject the null hypothesis, which states that there is

no difference among proportions. For warning detected with

Cppcheck, the proportion of likely fixed warnings slightly varies
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of vulnerabilities. 
across types ( p -value = 0.0025), which denotes that there is a

difference in the attention paid to different warning types de-

tected by this tool. When looking at PVS-Studio results, we ob-

serve that the proportion test of likely fixed warnings signifi-

cantly varies across types ( p -value = 4.008e −10). Finally, when

glancing at the Parasoft C/C ++ test, we find that the proportion

test of likely fixed warnings (TP) varies slightly across types

( p -value = 0.0 0 02). This denotes that there is a difference in

the attention paid to different warning types detected by this

tool. Thus, we conclude that for each studied SAST tool there

are some types of warnings that receive more attention from

the project teams to be eliminated, while other types of warn-

ings are likely are ignored suggesting that they are not critical

bugs. 

Takeaway 6: For every SAST tool, some types of warnings 
were more likely to be eliminated than other types. Hence, 
it is very likely that some types of warnings receive more at- 
tention from developers. 

6.3. RQ3: How do different types of warnings evolve over time? 

Approach: In this RQ, we focus on TP warnings ( Modified Warn-

ings and Disappeared Warnings ) that were detected by SAST tools

and eliminated in the code. We only consider lines of code that

include warnings and have been altered, as this gives us the abil-

ity to trace the changes in the lines of code. Whenever we find a

warning that was eliminated and belong to a line of code that was

altered in the recent version, we trace the line of code that con-

tains the bug warning backward during the history to find the fix

time and flag that to be a bug fix version. To answer this question,

we use git blame . This study involves 10,478 warnings that have

been eliminated by altering the lines of code. We present the re-

sults using box-and-whisker plots. In these plots each data point is

how long it took for a specific warning in a specific line of code

from one of the 116 projects, to disappear. 

Results: The following are the results of the analysis. 

1. Warnings decay among SAST tools: We analyze the set of Dis-

appeared Warnings and Modified Warnings that present in 2012

and the lines of code that were after being altered the warn-

ing disappeared. This helps us to measure the decay. Fig. 9

shows the decays (expressed in days) for each warning type

detected in the projects with different SAST tools. When look-

ing at the plots, we observe that most of the warnings that

belong to different types eliminated approximately within 2–

3 years. We observe also that in Flawfinder plot, the median of

API decay is significantly lower than the other warning types

(approximately less than one year) suggesting that there is a

tendency to eliminate this type of warnings faster than others.

Generally, we observe that API warnings disappeared relatively

faster than other types among tools. In addition, the Parasoft

C/C ++ test plot shows that TS warnings are eliminated rela-

tively fast, indicating that this type of warnings has less re-

moval time, which may indicate that this type of warnings is

more critical. 

Takeaway 7: Most of the bug warnings that belong to dif- 
ferent types disappeared approximately within 2–3 years. 
Generally, API warnings disappeared relatively faster than 

other types among tools. 
2. Warnings decay time among SPKs: Here, we are interested in

knowing if a certain type of bug warnings could be eliminated

faster if it is detected by a certain SAST tool. This allows us to

know if the underlying analysis method influences the removal

time of a bug warning of a certain category. Note that tools that

only use pattern-matching method would refer to an issue that

is seen clearly within the same line of code, while advanced

tools could comprehend errors that are scattered on multiple

lines and thus may be harder to be understood. Fig. 10 shows

the results of such an analysis. The results imply that for IVR

and CQ, the removal time is almost the same among all tools.

Also, it is interesting to note that IVR removal time for tools

that are only use pattern-matching analysis is slightly less than

other tools that use more advanced techniques. This could be

because these tools generated trivial bug warnings that are eas-

ier to understand and resolve. We perceive also that generated

API warnings by Flawfinder decay less than other API warnings

generated by other tools (in less than one year). Furthermore,

we see that TS generated by the Parasoft C/C ++ test decay in

approximately one year. Another remarkable observation is that

SF type of warnings usually takes more than three years to be

eliminated and this is longer than any other warning type de-

tected by most of the analysis tools. We note that there is no

connection between decay time and different SAST tools that

have different analysis methods. Hence, the nature of the bug

warning may not be a factor that influences removal time. 

Takeaway 8: There is no correlation between decay time 
and different SAST tools that have different analysis meth- 
ods. 

. Discussion 

.1. SAST warning patterns as and real-world vulnerabilities 

When observing the results from our analysis, we notice that

AST-produced warnings have stable patterns through time (check

Q1 in Section 6 ). This may indicate that the quality of the

roject’s development does not change over time. In addition, we

nd that most of the SAST tools focus on IVR, API, and CQ types of

arnings. This may denote that these types of warnings are criti-

al and could be the types of security vulnerabilities that occur in

eal-world. Real-world vulnerabilities are exploitable software bugs

hat have been discovered and published in recognized vulnerabil-

ty databases with unique identification numbers. To verify this, we

tudy the distribution of real-world vulnerabilities and associated

ulnerability classifications in the studied projects that are fixed

y the project developers, to see if this aligned with our findings.

o, we conduct the following analysis: 

.1.1. Identifying incidence of real-World vulnerabilities 

We choose to study vulnerabilities that have a Common Vulner-

bility and Exposures Identification Number (CVE-ID), in the 116

rojects in our dataset. The CVE-ID are unique numbers assigned

o publicly known security vulnerabilities. In this step, we extract

ll commit messages along with the description of each commit

ooking for the keyword “CVE-xxxx-xxxx” between 2012 and 2017.

e find that of the 1174 times a CVE-ID was mentioned in 18

istinct projects, 395 have a unique ID. This helps us to identify

ow real-world vulnerabilities are distributed across various types
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Fig. 9. Box-and-whisker plot of decays for various warning types in different SAST tools. In this figure, the x -axis represents decays in days, and the y -axis represents 

different classes of SPK warnings. Each data point represents a resolved bug warning time. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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.1.2. Results of real-world vulnerabilities distribution 

Fig. 11 displays the results of real-world vulnerabilities that

ave been fixed in the projects under the study. We can see that

he IVR vulnerabilities are the predominant type of vulnerability

hat has been detected and fixed in real-world scenarios. The num-

er of IVR vulnerabilities is 293. The other types of vulnerabilities

hat are given importance after IVR are CQ, API, and SF, respec-

ively. 

The results show that IVR is the most significant type of warn-

ngs being addressed in real-world vulnerabilities. Most of the

tudied tools produce a high number of IVR warnings. This may

efer to the importance of this type of warning and hence the im-

ortance of enhancing the static analysis methods to accurately de-

ect IVR. Also, CQ and API issues were being flagged in real-world,

imilarly to the output of SAST tools. Generally, we conclude that

AST tool warnings follow a similar distribution of the discovered

eal-world vulnerabilities in the studied projects, which is a finding

hat is consistent with other research ( Edwards and Chen, 2012 ). 
.2. Robustness of static analysis method 

The results of RQ2 in Section 6 highlight the odds of each type

f warning of being true or false alarms for each tool. The re-

ults indicate that PVS-Studio and the Parasoft C/C ++ test produce

arnings that are likely to be real warnings. PVS-Studio has higher

hances to produce real IVR, API, CQ, and ERR, while the Para-

oft C/C ++ test has higher chances to produce real SF and ENV.

hese two tools are the only tool who combine pattern-matching

ith more advanced semantic analysis (see Table 1 for more de-

ails). In fact, pattern-matching by it is own is a powerful method

hat can detect many real bugs. That is notable since Flawfinder

nd RATS outperform PVS-Studio in finding more IVR warnings,

nd Flawfinder outperforms PVS-studio in finding more API warn-

ngs in terms of the frequency/quantity. This denotes the value of

sing the pattern-matching method since pattern-matching tools

Flawfinder and RATS) could detect more real bugs (quantitatively

ot qualitatively). For example, Flawfinder detected 5992 of In-
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Fig. 10. Box-and-whisker plot of decays for various warning types in different warning types. In this figure, the x -axis represents decays in days, and the y -axis represents 

different SAST tools. Each data point represents a resolved bug warning time. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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put validation and representation bugs while PVS-Studio 3461 bugs

of the same type. Yet, Flawfinder has around 6.5% accuracy while

the PVS-Studio rate is 48% which is better qualitatively. However,

when combining pattern-matching with other analysis techniques,

such as symbolic execution or abstract interpretation, the accuracy
f the warning increases. Hence, we think that pattern-matching

s a robust technique but it needs to be combined with a more

dvanced analysis method to filter out any possible false posi-

ives. Also, ENV warnings are likely to be accurately flagged by

he Parasoft C/C ++ test than PVS-Studio. This is because that the
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Fig. 11. CVE vulnerabilities distribution based on the SPK taxonomy. In this figure, 

the x -axis represents the number of unique vulnerabilities and the y -axis represents 

different classes of SPK classification of bugs. 
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arasoft C/C ++ test highly focused to highlight software environ-

ental compliance. 

.3. SPK warnings decay time 

In RQ3 Section 6 , we observe that of those warnings that are re-

oved, the decay time is around 2–3 years. This result corresponds

o other research findings, such as Ozment and Schechter (2006) .

zment and Schechter (2006) study the vulnerabilities of OpenBSD

perating system to investigate whether the software vulnerabili-

ies are increasing over time. The authors measured the rate of re-

orted vulnerabilities over a period of seven and a half years that

pan 15 releases. The study showed that vulnerabilities seem to be

ersistent even for a period of 2.6 years. Also, among studied tools,

e find that generally, API has decay somehow faster compared to

ther types of warnings. This may imply the significance of such a

arning that may have serious consequences. This could be helpful

o give recommendations to developers about which bugs should

e fixed first. Another possible reason is that this is because these

ypes of bugs are easier to understand and fix since the API issue

s likely to manifest in the same line of code compared to other

ypes of bugs that could be caused by a different line of code. For

nstance, a buffer overflow warning that belongs to IVR class of bug

ould happen when a condition that does not validate the size of

uffer located in a different line of code. However, this is less likely

ince we have a limitation in RQ3 that we only examine warnings

hat disappear because the line of code has been modified. 

. Lessons learned 

In this section, we provide insights about how the findings can

mprove the state of the art and the state of the practice for devel-

pers, security testers, SAST tool designers, and researchers. 

– Software developers: Building secure software in the first place

is key to prevent security bugs from ever occurring. This not

only requires solid knowledge about secure coding practice but

also building practical skills that can be learned and built from

real-world problems. Although developers are expected to write

secure code, around 70% of developers said they get little guid-

ance or assistance according to a survey ( Thornburg, 2019 ). This

paper helps developers to be aware of common security bugs

that are regularly addressed. The paper shows that IVR issues

are the most types of vulnerabilities that have been fixed in

real-world projects. Also, this work demonstrates that most of

the SAST tools focus on IVR, CQ, and API types of issues. This

may indicate that these types of warnings are critical. Hence, it

would be advisable that developers build related secure coding

practice and be aware of that during coding and take the time

to ensure the code is free from these types of bugs. 
Additionally, SAST tools could generate a large number of warn-

ings that could overwhelm the most experienced software de-

velopers. This paper shows that some types of warnings are not

likely to be removed, hence they tend to be false positives. Code

that seems to be reliable and working well contains warnings,

hence aiming to remove all warnings might not be cost effec-

tive. 

Furthermore, one of the implications of this study is that

developers need to pay closer attention to the SAST tools ap-

propriate underlying design to detect a certain type of bug. For

instance, for developers who develop web applications and in-

terested in detecting IVR type of bug, it would be better to use

a tool that uses both pattern-matching and symbolic execution

which was shown in this work to have a higher chance that

generated warnings that are likely to be a real vulnerability. 

– Software security testers: Software testers are responsible for

investigating and evaluating the security and quality of soft-

ware components. Running SAST tools may produce many

warnings for a software component, and developers do not

care to remove them all. Therefore, it is important for software

testers to be able to prioritize bug warning categories into im-

portance, so when software testers scan the code, they should

look for those that are more likely to create bugs. In addition,

software testers usually need to provide early estimates and an

objective view of the software reliability or fault-proneness to

help code inspections and testing and understanding the risks

of software implementation. The empirical evidence in this re-

search (RQ2) shows that using SAST tools might be a suitable

method to measure the quality of the project despite the false

positive rates. Therefore, SAST tool warnings can predict the se-

curity risk of the products even without a manual review of

the warnings. Hence, false warnings are not completely unben-

eficial since we observe that the more false positive warnings

of a certain type by a SAST tool the more real bugs being fixed

(see RQ2 in Section 6 ). Also, this study demonstrates that secu-

rity bugs seem to be persistent even for a period of 2.6 years,

which is consistent with previous research studies ( Ozment and

Schechter, 2006 ). This means that when assessing a bug report,

it should be taken into consideration that some critical bug’s

lifetime can be long and not to neglect it for that reason. 

– SAST tool designers: The take home message for SAST tool de-

signers is that not all types of warnings appear to be critical to

developers. This paper shows that some types of warnings are

never removed, then the challenge is to identify or rank warn-

ings according to the likelihood that they will be a bug. While

this is ideal, the work herein provides an easier-to-implement

alternative: rank the importance of warnings based on whether

they will be removed in the future. While this is imperfect, this

might be better than no ranking at all. Moreover, this paper

finds in RQ2 that pattern-matching is a robust technique but it

needs to be combined with a more advanced analysis method

to filter out any possible false positives. We also noticed that

abstract interpretation can be an optimal approach to design

tools that focus on Security Features (FS) security bugs, such as

a privacy violation. 

Another point to be highlighted is that by observing that API

type of bugs decay faster than other types and underlying anal-

ysis techniques does not influence that. We think that these

types of bugs were fixed faster because once identified, it was

easier to understand and hence fixed. In fact, previous studies

have shown that the difficulty of understanding a bug warn-

ing may lead to neglecting it ( Johnson et al., 2013 ). Unlike API

bug that could manifest on one line of code, other types of bug

warning can include issues that are scattered across multiple

lines of code. Hence, bug warnings need to be represented well

to developers. For instance, instead of showing a line of code
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that includes a bug and explaining that abstractly. Tool design-

ers need to illustrate the set of lines of code that involve the

problem. 

– Researchers: This paper illustrates that some types of warnings

are more likely to disappear. Hence, research is really needed

into trying to understand if this is indeed because either: de-

velopers concentrate on these types of errors (they are low

hanging fruit during code reviews and other when they edit

the code around) or because they indeed create bugs and the

warning indeed show the cause of the problem. Another re-

search direction worthy of investigation is to comprehend the

reasons for short-lifetime of bug warnings, as well as incorrect

fixes and buggy patches. Also, researchers could benefit from

this research as they can continue this work and try to improve

it by tracking more data/better data, surveys, more systems, etc.

9. Threats to validity 

Threats to construct validity: In this study, we are not assum-

ing that developers have run the SAST tools in this paper. We

only measure the issue with the source code that could be flagged

by SAST tools and measure the FP and TP rate by observing the

change in the line of code. We make the following assumptions:

(a) If a warning exists in the released version of the project in 2012

and 2017, then that warning is a false positive warning. This is a

fairly reasonable assumption since any warnings that are present

in the released code for five years are likely do not affect the qual-

ity of the product. Hence, they are FP. (b) If a warning no longer

exists in the 2017 version, we assume that it is a TP. We do not

know why the developer resolved the warning, but just that the

warning no longer exists. Irrespective of the reason, since the de-

velopers chose to take some action that resulted in the warning

to go away, we assume that this is important. However, the de-

velopers may not remove the warnings consciously. Therefore, this

could be a problem. One action we took to address this is that we

do not discuss Removed Warnings (when a line is deleted) in our

paper. We believe that removing lines could be because of remov-

ing a feature. While editing a line is most likely to fix a bug or for

maintenance purposes. Hence, we only discuss Modified Warnings

and Disappeared Warnings . 

Additionally, we manually reviewed some bug warnings to miti-

gate the threats to validity of our results regarding 1) the false pos-

itives and true positives rates of the same warning types that vary

across tools, 2) decay time of bug removal of the same warning

types that differ across tools. Different tools produce different out-

puts in terms of false positive and true positive rates for the same

warning type. This is because different tools have different under-

lying analysis techniques (as discussed in Section 5.2 ). Hence, IVR

warnings generated by RATS, which is based on pattern-matching,

differ from IVR warnings generated by PVS-Studio, which is based

on pattern-matching and symbolic execution. However, our results

show that the underlying analysis method does not appear to in-

fluence how fast the bug is being fixed. Hence, to ensure that our

results are concrete we manually looked at a few cases of Modi-

fied Warnings and Disappeared Warnings to see if the developers

indeed removed the warnings. We manually analyzed 40 warnings,

by reviewing the commit notes and source code, and we found

that 28 cases of the fixed commits indicate bug fixing tasks. In
act, 11 commits out of 28 indicate that the bugs were detected by

AST tools, such as PVS-Studio and Cppchek among other tools. For

nstance, a warning that belongs to InsightSoftwareConsortium/ITK

roject has disappeared; the fixing commit a3793658d2 (i.e., the

ommit that removed the warnings as identified in RQ3) shows

his commit message “COMP: Fix all valid cppcheck warnings in

TK (last patch)”. While other commits do not have enough in-

ormation about bugs being fixed. In this case, we notice that

he source code includes many changes that are more important

n those versions, such as adding features which are project de-

endent. In fact, this issue was observed in Kim and Ernst work

 Kim and Ernst, 2007 ) (check Section 2 ), when the researchers

ound that bugs that were fixed in fix-changes represent a very

mall percentage of bug removals, and about 90% of the bug warn-

ngs either remain in the program or are fixed in non-fix changes. 

Threats to internal validity concern factors that could have af-

ected our findings. We ensure that the selected projects do not in-

roduce any biased results to our study. We study 116 popular C ++
rojects, yet they vary in terms of complexity, size, and activeness.

lso, when we mined the chosen repositories from GitHub, we en-

orce some criteria to ensure the robustness of our dataset. For in-

tance, we built a script to ensure that retrieved projects are C ++
rojects, and not falsely tagged in Github as C ++ . Another threat

s that we chose an analysis time frame of five years (2012–2017).

rom past research, we know that the typical time to fix a bug

s around three years ( Canfora et al., 2009; Di Penta et al., 2009 ).

ence, we considered a five-year time frame so that we can be

ure that if a warning existed in both versions, then it has a life

pan that is at least five years. Finally, we provide all our tools and

ata for replication ( Aloraini et al., 2019 ), and the methodology of

his study is described in details in Section 5 . 

Threats to external validity This study was conducted on 116 dif-

erent open source projects and six different SAST tools. Yet, ana-

yzing further projects, different programming languages, and other

AST that have different analysis techniques are desirable. 

0. Conclusion 

This work provides an empirical study to the warnings gener-

ted by SAST tools and investigates the history of these buggy lines

f code, using 116 large C ++ repositories. We find that the patterns

f the warnings are stable through time for all studied SAST tools.

lso, our results show that most of the tools produce on IVR, API,

nd CQ warnings. These types of warnings are detected in real-

orld with comparable patterns, but IVR is detected significantly

n real-world compared to others. Also, we observe that there is

 correlation between the number of bugs belong to different bug

ypes generated by such tool and the likely real bugs that were

esolved. This indicates that SAST tools could be used as an assess-

ent tool to measure the quality of a product and the potential

isks without manually review the warnings. Also, this study shows

he power of using pattern-matching algorithm along with other

dvanced analysis methods. The outcome of this research may have

ultiple possible future directions, such as bug warnings priori-

izing. Knowing the relation between static analysis methods and

alse alarm could help in designing better SAST tools to minimize

alse alarm rates. Moreover, it provides an insight into which static

nalysis algorithm is appropriate for different classes of warnings. 
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A SAST tools (RQ1) 

F

n

fi

ppendix A. Bug warning distribution in 2012 and 2017 among 
ig. 12. Box-and-whisker plot and Scott–Knott ESD of the number of bugs detected by RATS, Flawfinder, and Cppcheck. In this figure, the x -axis represents normalized 

umber of bug(bugs/LOC), and the y -axis represents different classes of SPK bugs. Each data point represents a project. (For interpretation of the references to color in this 

gure legend, the reader is referred to the web version of this article.) 
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Fig. 13. Box-and-whisker plot and Scott–Knott ESD of the number of bugs detected by Clang Static Analyzer, PVS-Studio, and Parasoft C/C ++ test. In this figure, the x -axis 

represents normalized number of bug(bugs/LOC), and the y -axis represents different classes of SPK bugs. Each data point represents a project. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

SPK categories (RQ1) 
Appendix B. Bug warning distribution in 2012 and 2017 among 
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Fig. 14. Box-and-whisker plot and Scott–Knott ESD of the number of bugs classified as Input Validation and Representation (IVR), API Abuse (API), Security Feature (SF), and 

Time and State (TS). In this figure, the x -axis represents normalized number of bug(bugs/LOC), and the y represents different SAST tools. Each data point represents a project. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 15. Box-and-whisker plot and Scott–Knott ESD of the number of bugs classified as Code Quality (CQ), Errors (ERR), Encapsulation (ENC), and Environment (ENV). In this 

figure, the x-axis represents normalized number of bug(bugs/LOC), and the y represents different SAST tools. Each data point represents a project. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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ppendix C. Bug warning rates among SAST tools (RQ2) 
ig. 16. Box-and-whisker plot and Scott–Knott ESD of the Remained Warnings (FP), Modified Warnings and Disappeared Warnings (TP) among different bug categories by RATS, 

lawfinder, Cppcheck. In this figure, the x-axis represents normalized number of bug(bugs/LOC), and the y represents different classes of SPK bugs. Each data point represents 

 project. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 17. Box-and-whisker plot and Scott–Knott ESD of the Remained Warnings (FP), Modified Warnings and Disappeared Warnings (TP) among different bug categories by Clang 

Static Analyzer, PVS-Studio, and Parasoft C/C ++ test. In this figure, the x-axis represents normalized number of bug(bugs/LOC), and the y represents different classes of SPK 

bugs. Each data point represents a project. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ppendix D. Bug warning rates among SPK categories (RQ2) 
ig. 18. Box-and-whisker plot and Scott–Knott ESD of the Remained Warnings (FP), Modified Warnings and Disappeared Warnings (TP) among different bug categories among 

nput Validation and Representation (IVR), API Abuse (API), Security Features (SF), and Time and State (TS). In this figure, the x-axis represents normalized number of 

ug(bugs/LOC), and the y represents different SAST tools. Each data point represents a project. (For interpretation of the references to color in this figure legend, the reader 

s referred to the web version of this article.) 
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Fig. 19. Box-and-whisker plot and Scott–Knott ESD of tthe Remained Warnings (FP), Modified Warnings and Disappeared Warnings (TP) among different bug categories among 

Code Quality (CQ), Errors (ERR), Encapsulation (ENC), and Environment (ENV). In this figure, the x-axis represents normalized number of bug(bugs/LOC), and the y represents 

different SAST tools. Each data point represents a project. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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