
Visualizing Code Genealogy
— How Code is Evolutionarily Fixed in Program Repair? —

Yuya Tomida, Yoshiki Higo, Shinsuke Matsumoto and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan

{y-tomida, higo, shinsuke, kusumoto}@ist.osaka-u.ac.jp

Abstract—Automated program repair (in short, APR) tech-
niques that utilize genetic algorithm (in short, GA) have a
capability of repairing programs even if the programs require
multiple code fragments to be changed. Those techniques repeat
program generation, program evaluation, and program selection
until a generated program passes all given test cases. Those
techniques occasionally generate a large number of programs
before a repaired program is generated. Thus, it is difficult
to understand how an input program is evolved in the loop
processing of genetic algorithm. In this paper, we are inspired
by genealogy and propose a new technique to visualize program
evolution in the process of automated program repair. We have
implemented the proposed technique as a software tool for
kGenProg, which is one of GA-based APR tools. We evaluated
the proposed technique with the developers of kGenProg. In
the evaluation, the developers found latent issues in kGenProg’s
processing and came up with new ideas to improve program
generation. From those results, we conclude that our visualization
is useful to understand program evolution in the APR process.

Index Terms—Automated Program Repair; Code Genealogy;
Evolution History; Visualization; Genetic Algorithm

I. INTRODUCTION

Debugging takes considerable time and effort in software
development. There is a research report that debugging oc-
cupies even over 50% of total development cost [1]. Thus,
debugging support is a promising way to reduce development
cost and achieve high reliability. A variety of debugging
support techniques have been proposed, such as program
slicing [2], automated test generation [3], and fault localization
[4].

Automated program repair (in short, APR) is one of the
most emerging and promising technique to facilitate debug-
ging. The input of APR technique is a buggy program and a
set of test cases. APR generates a repaired program without
any human intervention. GenProg, which is an APR with
genetic algorithm [5], is the most popular technique [6]. In
the repairing process, GenProg generates multiple programs
that are slightly changed from the input one and runs all test
cases for each generated program. If none of the generated
programs passes all the test cases, GenProg selected some of
them and generated programs based on them again. GenProg
repeats this process until a generated program passes all the
test cases.

If GenProg cannot repair a given buggy program, re-
searchers and practitioners want to know why the input
program was not repaired and what they can do to repair
it. By analyzing how the genetic algorithm proceeds for the
given program, they might be able to find more appropriate

parameters for GenProg or come up with some ideas to
improve the APR technique. However, GenProg generates a
large number of programs in the repairing process; just logging
the process is not enough to support developers/practitioners
to analyze the APR process.

In this paper, we propose a new methodology to visualize
how the input program is evolved with genetic algorithm.
Our methodology visualizes program evolution as genealogy.
We have implemented a tool based on the methodology and
applied it to repair real bugs. We interviewed developers of an
APR tool with genetic algorithm to evaluate our methodology
qualitatively.

II. PRELIMINARIES

A. Automated Program Repair

APR is a technique that takes a buggy program and a set of
test cases as its input and outputs a repaired program. Herein,
a buggy program means a program that fails at least a test
case and a repaired program means a program that passes all
the test cases.

B. GenProg

GenProg is an APR technique with genetic algorithm. Al-
though the primary objective of GenProg is to fix existing bugs
of program, GenProg has a significant potential to generate
a program from scratch [7]. In GenProg, each generated
program is regarded as a variant. Each variant is represented
as a list of genetic operators to generate it. Thus, an input
program (an initial variant) includes an empty list. GenProg
improves an input program by applying genetic operators
repeatedly. Hereafter, we call a list of genetic operators to
generate a variant base.

Figure 1 shows an overview of GenProg. Firstly, GenProg
infers lines including the bug by utilizing a fault localization
technique. Secondly, GenProg generates multiple variants by
changing the inferred lines. Then, GenProg runs all test cases
for each generated variant. If there is a variant that passes all
the test cases, GenProg outputs it as a repaired program. If not,
GenProg selects some of the generated variants and generates
new variants based on them. GenProg repeats this process
until a generated variant passes all the test cases. In GenProg,
selection, mutation, and crossover are defined as follows:

• Selection: GenProg picks up some variants from all the
variants in the latest generation. Picked-up variants are
used for generating next-generation variants. GenProg has
a fitness function for the selection. In the fitness function,

Generate variants

Execute test

Is test successful?
NO

YES

Buggy program
Test cases

Repaired program

Fault Localization

Evaluate variants

Fig. 1: Overview of GenProg

variants that pass more test cases are regarded as better.
GenProg remains some variants that were generated dur-
ing previous generations because all variants in the latest
generation might be worse than the variants in previous
generations. We call remaining variant copy operation.

• Mutation: mutation means generating a new variant by
adding a small change to a selected variant. A mutation
operation is either of insertion, deletion, or replacement.
In the case of insertion and replacement, GenProg utilizes
an existing program statement in the initial variant.

• Crossover: crossover means generating a new variant
by mixing bases of two selected variants. There are
three types of crossover: single-point crossover, uniform
crossover, and random crossover.

III. PROPOSED VISUALIZATION METHOD

A. Overview

In order to support to understand how GA-based APR
works, we propose a visualization system of program evo-
lution. Usually, GA generates a massive number of variants
in an evolution series. Although evolution history can be
represented as simple topology (i.e., tree structure), the history
becomes complex and vast to understand. There are two key
factors of the visualization. The first factor is to provide an
overview of the evolution, namely, code genealogy. The code
genealogy helps to answer the following questions. How was
the buggy program evolved? Which type of code generation
was effective? How many generations were necessary to repair
the program? The second key factor is to help dig into details
of each generated variant such as test results and what kind
of operations were performed to generate the variant.

B. Visualization Strategy

The proposed visualization strategy is to represent a code
genealogy as a tree structure for a bird’s eye view. Further-
more, the detailed variant information is also shown according
to user interaction. Figure 2 shows a concrete example of the
proposed visualization. By scrolling down this view, users can
grasp transition of code evolution.

Insertion operation
Deletion operation
Replacement operation
Crossover
Copy

Generated variant

Copied variant

Invalid variants

Fitness Value

High

Low
3

42nd generation

Initial variant

1st generation

Fig. 2: Visualization example

Each node represents a single variant. Nodes located in
the same Y-axis mean that they were generated in the same
generation. A circle node means that a variant newly generated
in the generation. A tiny circle shows that the node was
copied from the previous generation. In other words, the shape
means that the variant has already been generated before this
generation. A cross represents either of two cases: a variant
failed to be compiled or a variant coincidentally has the
same source code as any of variants that have been generated
in the past genealogy. In this paper, we call them invalid
variants because of their compilation error and redundancy.
The number of invalid variants is also shown in the side of
the cross mark. This information helps to understand which
operation is likely to generate these invalid variants. Color of
circle nodes represents an increase or decrease in fitness value.
White nodes mean that their variants have the same fitness
value as the initial variant. Green means better and red means
worse. This coloring helps APR users to grasp does APR work
well or not, intuitively. The type of the ingoing edge of a node
expresses what kind of operations was performed to generate
the variant.

Details of generated variant can be confirmed by clicking
each node. The detail includes diffs of source code and its test
results.

C. Use Case

1) APR tool improvement: We introduce a use case scenario
where an APR developer tries to develop a smarter generation
operation. He/she might understand does the new operation
generate better variants by checking overall generation history
using our visualization. If edges of the operation are more
likely to connect with green circles, it means the operation
works well. For more detailed analysis, he/she can confirm
does the new operation work as he/she had expected by
checking diff of generated variants.

2) APR parameter adjustment: Here is another scenario
where an APR user tries to repair a bug in his/her program. Pa-
rameter adjustment is a significant activity in such a situation.
One important option for the adjustment is depth-first or width-
first. Depth-first means that the number of max generations

Clicked node

Ancestor

Descendant

Diff

Test results

Genealogy view

Insertion operation
Deletion operation
Replacement operation
Crossover
Copy

Generated variant

Copied variant

Invalid variants

Fitness Value

High

Low

Fig. 3: Screenshot of code genealogy visualized by Macaw

(i.e., depth) to be large and the number of generated variants in
a single variant (i.e., width) to be small. Depth-first would be
an adequate choice when a repaired program fails many tests.
In such a case, the repaired program is necessary to evolve
with many generations. In contrast to that, when a program
fails a single test, width-first might be a better choice. Our
visualization helps APR users to choose these parameters to
adjust. For example, let us consider a case where fitness value
of generated variants seems unchanged during code evolution.
This situation can be regarded as the bug may difficult to fix
by applying some mutation operations. In other words, more
mutation operations may be necessary to fix the bug. So, APR
user should adjust parameters to be depth-first.

D. Implementation

We implemented our methodology and named the tool as
Macaw1. Macaw is written by Javascript framework Vue.js2

and runs on modern Web browsers such as Google Chrome,
Firefox, Safari, and Microsoft Edge. SVG3 is used to render
nodes and edges. Macaw is open source software4. Figure 3
shows a snapshot of Macaw. The left pane shows code
genealogy and the right pane shows the detailed variant infor-
mation. The highlighted path shows ancestors and descendants
of a clicked variant. It can be seen that the clicked variant
was generated by applying crossover. Also, the variant had
many children. The concrete diff information is also shown
in the right pane. The variant is generated by just removing
two statements. The bottom test summary pane gives further

1Macaw is an ARP Comprehension Assist tool With visualization
2https://vuejs.org
3Scalable Vector Graphics
4https://github.com/ty-v1/Macaw

helpful information that 22 tests were passed but four tests
were still failed. Which means, the variant is necessary to
continue to evolve more.

IV. CASE STUDY

To evaluate the usefulness of our visualization, we con-
ducted a case study. In the case study, we visualized evolution
of variants generated by kGenProg [8]. Our targeted bugs are
ones of Apache Commons Math. Those bugs were collected
from Defect4J [9]. The target bugs are shown in Table I.
Generated code genealogy strongly depends on parameters

such as the maximum number of generations, and the number
of variants generated in each generation. In order to conduct
a case study using various code genealogies, we executed
kGenProg with various parameters. For example, Math95,
which contains a single failed test, was executed under two
situations: width-first (i.e., max generation = 300, number
of variants = 10) and depth-first (i.e., max generation =
40, number of variants = 75). The total number of variants
in both situations are the same. The participants include
two professors, four graduate students, and an undergraduate
student. All participants are developers of kGenProg.

A. Procedure

The case study was conducted with the following steps.
Firstly, we explained to the participants how to use Macaw.
Then, the participants used Macaw for a practice of using our
visualization. The subject of this practice was not an actual but
a tiny buggy example. This example can be fixed within three
generations with less than 100 variants. These preparation
steps took about 20–30 minutes. Finally, the participants
discussed the target bugs. A time limitation was not set for
the discussion. Each participant used Macaw freely.

Single parent

Fig. 4: Crossover bug found by Macaw

B. Results

1) Suggestions for Improvement of kGenProg: Four sug-
gestions were given by the participants. The first suggestion
was how to select variants for crossover. In Math43, a solution
was generated by crossover and test results between its parents
greatly differed. Therefore, there was a suggestion that kGen-
Prog would search the solution more efficiently if kGenProg
selects variants whose test results are different from each other
for crossover.

The second suggestion was that kGenProg did not utilize
the feature of GA because kGenProg did not define the fitness
value well. kGenProg defines the fitness value as the rate of
test success, but most bugs in Defect4J fail only one test case.

Thirdly, there was a suggestion that the insertion operation
of kGenProg would be improved if kGenProg insert multiple
program statements at once. For example, inserting a statement
including a variable reference and the statement including the
definition of the variable is a typical case.

Finally, a suggestion for the insertion operation was ob-
tained. The suggestion is that if many invalid variants were
generated from a certain variant, the certain variant should
be excluded from the target of the selection. The participants
found that variants that have not been found yet were not
generated from those variants in many cases. Related to that,
they found that more invalid variants were generated and a
variety of variants got poor as the generation proceeded. To
solve this problem, the participants proposed a new fitness
function that regards newer variants as better.

2) Bugs in kGenProg: Two bugs of kGenProg were found
in the case study. The first bug was that older variants
were unintentionally selected with higher priority when fitness

values of multiple variants were the same. The second bug was
in the crossover. The number of variants used for the crossover
must be two, but the number of some variants generated by the
crossover was one. Nodes surrounded by red boxes in Figure 4
show the bug.

3) Suggestions for Visualization: Some participants gave
positive suggestions for improvement of Macaw’s visualiza-
tion. Figure 5 shows two suggestions.

Figure 5a is to show a percentage of applied operations as
a pie chart. Although Diff information shows the finest code
differences, the percentage of applied operations is difficult
to grasp. In the case of Figure 5a, the focused variant is
generated by many deletion operations. This bug might be
fixed by removing some statements.

Another idea is to visualize further useful metrics in each
variant. The idea is shown in Figure 5b. In this case, readability
and performance for each variant are visualized. Readability
can be roughly measured by traditional complexity metric and
code size. Also, performance can be measured by executing
test cases. We can see that significantly low performance
variants were generated in the second generation. It means
that the overall APR performance will decrease by such slow
variants. By visualizing this information, APR users can try
to adjust parameters and to make better fitness functions.

C. Discussion

In this section, we discuss why those suggestions were
obtained.

1) Suggestions for Improvement of kGenProg: A suggestion
that kGenProg searches solutions more efficiently by using
variants whose test results are largely different from each
other were obtained because the participants can understand
what kinds of operations were performed to variants by the
operation visualization.

The participants found that the fitness value did not change
when kGenProg generated the solution by the fitness value vi-
sualization. This means that GA did not work well. Therefore,
they suggested that kGenProg did not define the fitness value
well.

The participants easily found statements inserted by the
insertion operation by the source code differences and the op-
eration visualization. They found that most statements inserted
by the insertion operation included references to undefined
variables. This means that generated variants including such
statements were invalid ones. Accordingly, they suggested that

TABLE I: Visualized code genealogies used in the case study

Bug ID # failed tests Max # variants # variants # variants selected Crossover typegeneration generated by mutation generated by crossover in every generation

Math95 1 300 10 0 5 No crossover
40 75 0 5 No crossover

Math43 6 200 10 5 5 Random crossover
40 55 5 5 Random crossover

Math2 1
400 2 40 20 Random crossover
400 2 40 20 Uniform crossover
400 2 40 20 Single-point crossover

Delete
Replace

Insert

(a) Visualizing a percentage of applied operations

Performance
Readability

(b) Visualizing useful metrics

Fig. 5: Suggestions of visualization improvement

the insertion operation of kGenProg would be improved if
kGenProg inserts multiple program statements at once.

There were many copied variants in the visualized evolu-
tion. The participants found that more invalid variants were
generated and a variety of variants got poor as the generation
proceeded. Therefore, they suggested that if many invalid
variants were generated from a certain variant, the certain
variant should be excluded from the target of the selection.

2) Bugs in kGenProg: There were many copied variants
and the parent-child relationship was represented by edges so
that the participants found a bug that older variants were un-
intentionally selected with higher priority when fitness values
of multiple variants were the same.

Related to the above, some variants had only a single
crossover incoming edge. Therefore, the participants found a
bug that only a single variant was used for crossover.

3) Summary: We conclude that our visualization is useful
for developers of GA-based APR tools. Especially, kGenProg

can be improved based on the suggestions that were obtained
based on our visualization.

V. CONCLUSION

In this paper, we proposed a new visualization of how an
input program is evolved in GA-based APR tools. We also
conducted a case study with developers of a GA-based APR
tool to evaluate our visualization. We obtained many opinions
through the developers. The opinions include suggestions of
the insertion operation of the tool and even latent bugs in the
tool.

There are still many improvements for Macaw. For example,
if Macaw visualizes how many times each operation such
insert or crossover is applied to and how many invalid variants
are generated by each operation, users can easily understand
which operation is useful to generate a repaired program.

ACKNOWLEDGMENTS

This work was supported by MEXT/JSPS KAKENHI
17H01725.

REFERENCES

[1] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen,
“Reversible Debugging Software: Quantify the time and cost saved using
reversible debuggers,” 2013.

[2] M. Weiser, “Program Slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. IEEE Press, 1981,
pp. 439–449.

[3] L. A. Clarke, “A System to Generate Test Data and Symbolically Execute
Programs,” IEEE Transactions on Software Engineering, vol. SE-2, no. 3,
pp. 215–222, Sep. 1976.

[4] J. A. Jones and M. J. Harrold, “Empirical Evaluation of the Tarantula
Automatic Fault-localization Technique,” in Proceedings of the 20th
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2005, pp. 273–282.

[5] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A Systematic
Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8
Each,” in Proceedings of the 34th International Conference on Software
Engineering, 2012, pp. 3–13.

[6] K. F. Man, K. S. Tang, and S. Kwong, “Genetic algorithms: concepts and
applications [in engineering design],” IEEE Transactions on Industrial
Electronics, vol. 43, no. 5, pp. 519–534, Oct. 1996.

[7] K. Shimonaka, Y. Higo, J. Matsumoto, K. Naito, and S. Kusumoto,
“Towards Automated Generation of Java Methods: A Way of Automated
Reuse-Based Programming,” in Proc. of the 12th IEEE International
Workshop on Software Clones, Mar. 2018, pp. 30–36.

[8] Y. Higo, S. Matsumoto, R. Arima, A. Tanikado, K. Naitou, J. Matsumoto,
Y. Tomida, and S. Kusumoto, “kGenProg: A High-performance, High-
extensibility and High-portability APR System,” in the 25th Asia-Pacific
Software Engineering Conference, Dec. 2018, pp. 697–698.

[9] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, 2014, pp. 437–440.

