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Abstract—Browser-based volunteer computing (BBVC) is one
of the distributed computing paradigms, attracting researchers’
and developers’ attention for its portability and extraordinary
potential of computing power. However, BBVC still has two
significant challenges: low programmability and performance.
These challenges are a heavy burden for users and prevent BBVC
from wide-spreading. In this paper, we propose a novel BBVC
framework to solve the challenges by using MapReduce and
WebAssembly. Our framework reduces the total execution time
by 64% compared with a traditional BBVC mechanism. We also
show a practical scenario and its performance.

Index Terms—Volunteer computing, web browser, MapReduce,
WebAssembly, JavaScript.

I. INTRODUCTION

In the field of computer science, we are facing numerous de-
mands for computational power to process compute-intensive
and data-intensive problems. To meet the demands, there has
been a state-of-the-art distributed computing paradigm, called
browser-based volunteer computing (BBVC) [1], [2], which
extends volunteer computing (VC) [3], [4] to working on web
browser. BBVC has a tremendous potential that every web user
could easily become a worker of distributed computing [2].

However, BBVC remains a significant challenge for soft-
ware developers to implement parallel processing programs
due to the heterogeneity of BBVC workers. The parallel
programming has two kinds of difficulties: how to parallelize
a given problem? and how to manage multiple workers? The
former difficulty is a fundamental problem of the parallel
programming. A developer needs to consider task and data
parallelism [5] according to the characteristics of her/his prob-
lem. In addition, BBVC workers are heterogeneous in terms
of their runtime environment (e.g., CPU, memory, network,
and software platform). Such kind of heterogeneity makes it
more difficult to achieve efficient parallel processing.

BBVC also has a performance issue because at present
only JavaScript is used as an implementation language for
processing program. The runtime performance of JavaScript
is known to be insufficient [6], [7] for compute-intensive
applications like numerical calculation. JavaScript code is
dynamically interpreted and optimized on web browser on
demand of user requests. Thus, the execution of JavaScript re-
quires additional preprocessing phases compared to statically-
compiled programming languages. Moreover, in the compiling
phase, JavaScript engine spent much time to generate multiple
binaries of the same source code because variable types are

determined at runtime. This generation also leads to perfor-
mance degradation.

In this paper, we propose a novel BBVC framework,
named Madoop, to address the above challenges by incor-
porating concepts of MapReduce [8] and WebAssembly [7].
MapReduce is a programming model which simplifies the
development of parallel programming by abstracting away the
low-level complexity involved in distributed systems. Based
on MapReduce, parallel processing can be achieved only by
implementing map and reduce functions in MapReduce. The
performance issue is also relieved by introducing WebAssem-
bly as an implementation language instead of JavaScript.
WebAssembly is an emerging web standard which enables to
execute low-level and assembly-like language on web browser.

As an evaluation, we conduct an experiment to show the
performance improvement by Madoop compared with the
traditional BBVC. The results show that the execution per-
formance improved about 50 to 64% for a compute-intensive
problem.

II. PREPARATIONS

A. VC: Volunteer Computing

VC is a traditional paradigm to perform network-based
distributed computing. VC is constructed from many and un-
specified heterogeneous computers connected to the internet.
Generally, most computers consume their uptimes as an idle
state. As the computing resources (i.e., worker nodes), VC
uses these unused processing powers provided by volunteers.
These worker nodes are physically distant from each other, so
they are interconnected over the internet, not a LAN.

B. BBVC: Browser-Based Volunteer Computing

BBVC is an extension of VC for web browsers. VC runs
on a dedicated client-side application, while BBVC runs on
various web browsers accessing a specific URL. Each web
browser keeps performing BBVC computation during the
user’s stay on the page.

Web browsers are generally installed in most computers,
so that users do not have to install any additional programs
for participating in BBVC. Hence, BBVC targets internet
surfing users all over the world, and its potential computing
ability is immeasurable. Gray et al. [2] estimate that the
total BBVC computing ability on YouTube could reach about
46.4 PFLOPS, if 25% resources of each YouTube user’s
computer were available for BBVC. This is about half of the
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Fig. 1. Screenshot of Madoop demonstration page

computing power of Sunway TaihuLight, the world’s fastest
supercomputer as of April 2017 [2].

There is another benefit in BBVC, which is that developers
can develop the client-side program just as a web application.
Compared to VC, it costs much less to develop a client-
side program for BBVC since web browsers hide each user’s
operating system or architecture.

C. Challenges in BBVC

As we mentioned, BBVC provides promising solutions
for some VC problems. However, BBVC still remains the
following challenges.

1) Difficulties in developing distributed computing pro-
grams (P1): Distributed computing requires complicated
mechanisms such as synchronization of workers, appropriate
data division and distribution, tolerability of worker failures
and integration of processed results [1], [2]. MapReduce
paradigm is famous as a technology to support the imple-
mentation of distributed computing. However, there are few
MapReduce libraries for web browsers [1]. As a result, when
developers prepare BBVC programs, they have to implement
the whole system by themselves with the above considerations
in their minds. This is a heavy burden for developers and can
be a factor preventing BBVC from being spread.

2) Low runtime performance of JavaScript (P2): In BBVC,
there have been no options except for JavaScript as the pro-
cessing language, because of the nature that processing is per-
formed on web browser. However, JavaScript is a dynamically-
typed scripting language and is inferior to statically-typed
compiled languages in terms of execution performance due to
runtime analysis overhead. For example, Merelo et al. pointed
out that JavaScript is 30% slower than Java when processing
numerical calculation [6].

III. MADOOP

A. Overview

This paper proposes a novel BBVC framework called
Madoop1 which introduces MapReduce and WebAssembly to

1Named for the author’s name Matsuo and Apache Hadoop which is
famous for MapReduce implementation. Madoop is published as open-source
software: https://github.com/h-matsuo/madoop/

solve problems P1 and P2 mentioned in the previous section.
Madoop enables to facilitate the development of parallel
programming based on the concept of MapReduce. The per-
formance issue is also relieved by introducing WebAssembly
as the processing language on worker nodes. Figure 1 shows
the screenshot of Madoop demonstration.

B. Adopted Technologies

1) MapReduce: Madoop leverages MapReduce to solve the
problem P1: difficulties in developing distributed computing
programs.

MapReduce [8] is one of the distributed computing
paradigms proposed by Google. MapReduce abstracts a series
of operations in distributed computing into two functions: map
and reduce. The overview of MapReduce processing is below.

1) MapReduce system divides input data into appropriate
units.

2) Each node receives input data and map function. The
map function outputs a set of (key, value) pairs as
an intermediate value.

3) MapReduce system collects all intermediate values as-
sociated with the same key and generates a set of
(key, list(value)) pairs.

4) Each node receives a pair of (key, list(value))
and reduce function. The reduce function aggregates
list(value) and outputs the results.

Developers only need to implement map/reduce functions
and do not have to consider complicated mechanisms in
distributed computing. Thus, MapReduce succeeded in making
the development of distributed computing programs easier.
The idea of MapReduce is famous in the world, so that any
developers who have developed MapReduce programs can
begin to use Madoop with low learning cost.

2) WebAssembly: We introduce WebAssembly to solve the
problem P2: low runtime performance of JavaScript.

WebAssembly [7] is a binary format which is executable
on web browser. Strictly speaking, it is designed as a binary
format for a stack-based virtual machine, and we can consider
that this virtual machine is installed in every web browser.
Some languages such as C/C++ already support WebAssembly
as a compilation target. All major modern web browsers
are compatible with WebAssembly and its support rate have
reached about 80% as of December 20182. In other words,
Web-Assembly now can be executed in many users’ environ-
ments.

The most significant advantage of leveraging WebAssembly
is a performance improvement. WebAssembly enables web
browser only need to interpret and execute the pre-compiled
binary so that the performance gets equivalent to the statically-
compiled languages. Indeed, there are the benchmark results
that the performance of WebAssembly is equivalent to that
of the native applications when comparing the duration of
numeric calculation [7].
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Fig. 2. Architecture of Madoop

C. Architecture

Figure 2 depicts the architecture of Madoop. This archi-
tecture contains three actors and two servers highlighted in
boldface.

Job requester. Those who would like to perform distributed
computing on Madoop.

Content provider. Those who post web contents such as
blog articles.

Website visitor. Those who access the web contents using
a web browser.

Main server. A web server with Madoop installed.
Content server. A web server which stores and serves the

web contents.
The following list describes the procedure for processing

the job. The numbers in the list correspond to the numbers in
the figure.

1) A job requester registers a job request to the main server.
The job request includes map/reduce functions and input
data to be processed on Madoop. High performance
can be expected by writing the map/reduce functions
in C/C++ and compiling them into the WebAssembly
format3. Madoop divides the registered job into appro-
priate units and holds them as tasks to be processed on
each worker node.

2) A content provider creates and posts a web content such
as a blog article to the content server.

3) The content server embeds a code snippet in the pro-
vided web content in order to let browsers perform
distributed computing.

4) A website visitor accesses the content server using
her/his web browser and the browser downloads various
files such as HTML files and JavaScript files. Then, the
code snippet embedded in step 3) begins to perform
distributed computing. During a stay on the page, this
web browser functions as a worker node for BBVC.

2https://caniuse.com/#search=wasm
3Madoop is also designed to be able to register the map/reduce functions

written in JavaScript.

5) A worker node retrieves a task from the main server
then processes the task. This task is safely executed
because web browser provides a sandboxed environment
and restricts the task from accessing the entire computer.

6) The worker node returns processed results to the main
server. The worker node repeats steps 5)–6) until the
website visitor leaves the page or there are no tasks to
be processed.

7) After all tasks are processed, the job requester can check
the results.

D. Scenarios of Madoop

The key factor to process computational complexity prob-
lems on Madoop is to ensure a great number of volunteer
workers. In this section, we introduce three scenarios of
ensuring Madoop workers.

1) Use Your Website Visitors: As we mentioned in Section
III-C, only a modern browser is necessary to become a
Madoop worker. Therefore, if you have your own website, you
can make all visitors become workers by embedding Madoop’s
JavaScript snippet in the webpage. This portability enables that
Madoop has a possibility to be an alternative to the online
advertising platform, such as Google AdSense4. These days
many website owners place advertisements on their websites
and make revenue from their contents. However, these ads
may become negative factors for website visitors. Goldstein
et al. point out that the animated ads make users annoyed [9].
Madoop and traditional online ads have trade-off relationship
between borrowing computational resource (including battery
consumption) and sacrificing UI/UX for website visitors.

There needs to provide a means for visitors to opt out of
being a worker. This kind of ethical issue has been discussed in
the field of BBVC. However, there is also an opinion that it is
essential to show the potential of BBVC-related technologies
before deeply exploring the ethical topics [2].

2) Use Cloud Instances: You can also use cloud services,
such as Amazon Web Services and Microsoft Azure, as
Madoop workers. You do not have to set up the messy
clustering environment. You can obtain your own distributed
computing environment with high scalability, by just instan-
tiating some virtual machines with a modern web browser
installed. In the experiments, described in the next section,
we introduce more details of this scenario.

3) Build BBVC Community: The last scenario is building
a special BBVC community where many members participate
with a common purpose. For example, if a researcher of soft-
ware repository mining creates a specific BBVC community
with many participants, they acquire their high-performance
computing environment. Participants are not required to install
a dedicated client program. By keeping launching a web
browser all the time, every member can contribute to mining
studies.

4https://www.google.com/adsense
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IV. EXPERIMENTS

A. Overview

The purpose of this experiment is to evaluate the perfor-
mance improvements by introducing WebAssembly, compared
to the conventional method which uses JavaScript. We set up
the main server with Madoop installed and multiple client
computers with a web browser installed. Then, we measure
the duration from distributing a job to the completion of its
computation to compare Madoop and the conventional method.

B. Experimental Environment

We use an Amazon EC2’s t2.large instance as the main
server. We install Madoop version 0.1.6 on the instance and
make it public so as to be accessed from the outside. For
simplicity, the main server also works as a content server in
this experiment. We also use Amazon EC2’s m3.medium in-
stances for workers. Each worker has Google Chrome version
67.0.3396.87 and Mozilla Firefox version 60.0.2, then the web
browser on each instance will access to the main server.

C. Experimental Objects

Table I shows the parameters for each experimental object.
The details will be described below.

1) Rainbow Table Generation (E1): Rainbow table [2]
generation is known as a numerical calculation processing for
efficiently performing brute force attack on a login password
of a website. For security reasons, the user’s login password
is usually stored in a hashed form in the website database.
Rainbow table is obtained by calculating the correspondences
between password candidates and their hash values so that the
memory efficiency is improved.

In this job, each worker only takes a string and the number
of times for calculating the hash value as an input data. Its data
size is so small that it can be neglected. On the other hand,
since each worker calculates a large amount of hash value
every time, the total computational complexity is very high.
In this way, rainbow table generation has the characteristic of
small amount of data and high complexity.

2) Word Count (E2): Word count is one of the typical jobs
in big data processing using MapReduce, which analyzes a
large capacity text file and outputs a list of words with the
number of their occurrences.

In this job, the amount of input data for each node is large
(several MB to tens of MB), but the complexity of processing

TABLE I
PARAMETERS FOR EXPERIMENTAL OBJECTS

Common parameters
# of worker nodes 1, 2, 3, 5 or 10
# of trials 10

E1: Rainbow table generation
Total # of hash calculations 10,000,000
# of hash calculations per task 1,000,000
Hash algorithm MD5

E2: Word count
Total data size of text data 380 MB
Data size per task 44 MB
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Fig. 3. Results of E1: rainbow table generation

to count the words is low. This characteristic is in contrast to
the previous E1: rainbow table generation job.

D. Results and Discussion

1) Rainbow Table Generation (E1): Figure 3 shows the
results of E1. We conduct each experiment for 10 times and
average the results. In this bar chart, the vertical axis represents
the execution time of the entire job, and the horizontal axis
represents the number of workers. The yellow-colored bar
and the purple-colored bar shows the results of the conven-
tional method using JavaScript and the proposed method (i.e.,
Madoop) using WebAssembly, respectively. The left figure
shows the results in Chrome, and the right figure shows the
results in Firefox. Let n be the number of workers. Figure
3 reveals that as n increases, the execution time decreases
in inverse proportion. In both browsers, the proposed method
takes less time than the conventional method. Focusing on
the results of n = 10, Chrome completes the job in 19.2 [s]
with the proposed method and 37.8 [s] with the conventional
method. Firefox also finishes in 26.3 [s] with the proposed
method and 73.2 [s] with the conventional method. These
results show that the proposed method has a definite advantage
for jobs with high complexity and small input data, such as
E1, and improves the runtime performance by about 49 to
64%.

It is also remarkable that the proposed method of n = 5
takes less execution time than the conventional method of n =
10. Figure 3 also shows that the performance appropriately
scales according to the number of workers. For example, the
execution time ratio of n = 10 to n = 1 is almost equivalent
to the theoretical value, which is 1/10 = 0.1.

2) Word Count (E2): Figure 4 shows the results of E2.
Similarly to E1, the execution time becomes shorter in inverse
proportion to n. However, there are many results that the
execution time of the proposed method, colored in purple, is
longer than that of the conventional method, colored in yellow.
When n = 10, Chrome executes the job in 53.6 [s] with the
proposed method and 49.5 [s] with the conventional method.
Firefox also executes in 54.0 [s] with the proposed method
and 51.7 [s] with the conventional method. This shows that the
proposed method takes 4 to 8% more execution time compared
to the conventional method.
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This increase is caused by the overhead when web browser
interprets and executes a WebAssembly binary. Compared
to the execution of pure JavaScript programs, WebAssembly
requires web browser to do extra preparations such as recom-
piling the binary for optimization, allocating memory space
for WebAssembly stack machine and freeing the allocated
memory space. Hence, if executing a low-complexity task
with WebAssembly, the time increased by this overhead may
overtake the time reduced by introducing WebAssembly. E2 is
a low-complexity job, so that the use of WebAssembly leads
to slow down the computing.

V. RELATED WORK

Gray Computing [2] is a well-designed and well-established
BBVC framework using some modern web technologies. A
fundamental open question of Gray Computing is to confirm
feasibility and cost-effectivity of data processing using website
visitors. In contrast to that, Madoop addresses two crucial
BBVC challenges, runtime performance and ease of devel-
opment. Therefore, our work can be used in combination with
Gray Computing.

Popular browser vendors, such as Chrome, Firefox, and
Safari, have been attempting to improve the performance
of JavaScript engines. This attempt includes; Native Client
(NaCl) [10] and WebAssembly [7]. These technologies share
the same concept to execute low-level code on a web browser
to avoid just-in-time compilation and runtime type inference.
Our proposed Madoop addresses the performance problem by
incorporating WebAssembly which is the latest web standard
to enable near-native performance on a web browser.

VI. CONCLUSION

In this paper, we proposed a novel BBVC framework
named Madoop and evaluated how much it improves execution
performance compared to a traditional BBVC method. The
results show that execution time improves about 50 to 64%
for a compute-intensive job. However, it worsens about 4 to
8% for a data-intensive job. These results indicate that Madoop
is better suited for high-complexity problems.

Madoop has some limitations. One limitation is that job
requesters cannot know when their jobs will be accomplished.
Madoop’s main server follows HTTP’s request and response

model, so that its tasks are “pulled” from the main server
by web browsers. There is also a risk of the task being
killed before its completion. Thus, it is harder to estimate the
remaining time to complete a job, compared to the traditional
grids or clusters, whose tasks are “pushed” to slaves by a
master node [1]. Another limitation is the less number of
implementation languages for MapReduce jobs. Currently,
there are not many languages which support WebAssembly
as its compilation target. However, many languages, including
Java, are under active development to support WebAssembly5.
It is only a matter of time before developers can freely select
the implementation language.

As future work, we plan to invent an effective scheduling
algorithm which considers the properties of each worker node.
Madoop currently distributes the same size tasks equally to all
workers. However, there are many characteristics across the
workers (i.e., web browsers) such as communication situation,
processing performance, and dwell time on the page. These
characteristics may lead to a severe performance slowdown
because one worker could be a bottleneck for the whole
progress. There need to be improvements in the scheduling
algorithm in order to boost Madoop’s performance more.

ACKNOWLEDGEMENTS

This work was supported by JSPS/MEXT KAKENHI Grant
Number 16H02908 and 18H03222.

REFERENCES

[1] T. Fabisiak and A. Danilecki, “Browser-based harnessing of voluntary
computational power,” Foundations of Computing and Decision Sci-
ences, vol. 42, no. 1, pp. 3–42, 2017.

[2] Y. Pan, J. White, Y. Sun, and J. Gray, “Gray computing: A framework
for computing with background javascript tasks,” IEEE Transactions on
Software Engineering, 2017.

[3] O. Nov, D. Anderson, and O. Arazy, “Volunteer computing: A model
of the factors determining contribution to community-based scientific
research,” in Proceedings of the 19th International Conference on World
Wide Web. ACM, 2010, pp. 741–750.

[4] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“Seti@home: An experiment in public-resource computing,” Commun.
ACM, vol. 45, no. 11, pp. 56–61, 2002.

[5] J. Subhlok, J. M. Stichnoth, D. R. O’Hallaron, and T. Gross, “Exploiting
task and data parallelism on a multicomputer,” in Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. ACM, 1993, pp. 13–22.

[6] J. J. Merelo Guervós, M. G. Valdez, P. Á. C. Valdivieso, P. Garcı́a-
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