
Impacts of Daylight Saving Time
on Software Development

Junichi Hayashi, Yoshiki Higo, Shinsuke Matsumoto and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan

{j-hayasi, higo, shinsuke, kusumoto}@ist.osaka-u.ac.jp

Abstract—Daylight saving time (DST) is observed in many
countries and regions. DST is not considered on some software
systems at the beginning of their developments, for example,
software systems developed in regions where DST is not observed.
However, such systems may have to consider DST at the requests
of their users. Before now, there has been no study about the
impacts of DST on software development. In this paper, we
study the impacts of DST on software development by mining
the repositories on GitHub. We analyze the date when the code
related to DST is changed, and we analyze the regions where the
developers applied the changes live. Furthermore, we classify the
changes into some patterns.

Index Terms—Daylight Saving Time, Code Change Analysis,
Geographical Analysis

I. INTRODUCTION

Many countries and regions observe daylight saving time (in

short, DST). DST is the practice of advancing clocks during

summer months, so that evening daylight lasts longer while

sacrificing normal sunrise times. In 2018, there was much

controversy over whether to introduce DST before the 2020

Tokyo Olympic games in Japan because introducing DST can

reduce physical burden for athletes by playing their games in

the early morning. However, as a result, Japan ended up not

introducing DST because the Japanese business community

strongly opposed introducing DST. The community loudly

said that introducing DST requires enormous modifications

on software systems used in Japanese society and it is not

realistic to finish such modifications before the 2020 Tokyo

Olympic games.

The controversy gave the authors an idea that treating DST

in software systems may be a difficult task. We also consider

that there may be some coding patterns for practically treating

DST in software systems. In other words, the authors think

that DST probably has some impacts on software development

and maintenance. The authors found several research studies

from a sociological perspective [1]–[4] while we were not

able to find any research studies from a software engineering

perspective.

In this research, we investigated source code changes due

to DST by using Git repositories of OSS projects. The main

contributions of this paper are as follows.

• This is the first investigation on DST from a software

engineering perspective.

• We found that more mature projects have more modifi-

cations related to DST.

• Modifications related to DST do not depend on program-

ming languages. Software projects of any programming

languages have DST modifications.

• We found some change patterns in DST modifications in

Java projects.

II. DAYLIGHT SAVING TIME

Daylight saving time (DST) is a seasonal time change

measure where clocks are set ahead of standard time during

part of the year, usually by 1 hour. As DST starts, the sun rises

and sets later, on the clock, than the day before. Today, about

40% of countries and regions use DST to make better use of

daylight and to conserve energy [5]. For example, most of the

United States begin DST on the second Sunday in March and

revert to the standard time on the first Sunday in November [6].

A. Impacts on Society

Introducing DST has the following impacts on our society.

• DST makes an energetic economy and society [1].

• DST reduces the peak demand for electricity [2].

• DST increases the number of traffic accidents [3].

• DST increases the risks of acute cardiac infarction [4].

As shown in the above, there are several research studies

from a sociological perspective.

B. Impacts on Software Systems

There are multiple ways to treat date and time in the source

code. For example, the standard library of Java includes classes

java.time.ZonedDateTime and java.time.LocalDateTime.

The former one considers time zone, but the latter one does

not. If a developer does not know the differences between

the two classes, he/she may induce bugs in the source code.

The authors consider that introducing DST also has some

impacts on software development and maintenance. However,

we did not find any research studies on DST from a software

engineering perspective. In this research, we investigate the

impacts of DST on software systems by using Git repositories

of OSS projects. Hereafter, we call code changes related to

DST DST-changes.

III. RESEARCH QUESTIONS

We set up the following research questions in our research.

RQ1. How many projects conduct DST-changes?

RQ2. What kinds of software systems include DST-changes?

RQ3. When are DST-changes conducted?

502

2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR)

2574-3864/19/$31.00 ©2019 IEEE
DOI 10.1109/MSR.2019.00076

Fig. 1. Creation year of DST-repositories.

RQ4. Which countries and regions do developers of DST-

changes live in?

RQ5. How is code changed in DST-changes?

The following subsections of this section describe the

methodology, results and discussion for research questions

above.

A. RQ1. How many projects conduct DST-changes?

1) Methodology: We focus on pull requests (in short, PRs)

in Git repositories on GitHub in order to analyze DST-changes

conducted in OSS projects. The PRs that we focused on satisfy

the following both two conditions:

• PRs that are related to DST, and

• PRs that have already been merged.

We search for such PRs by keywords which mean DST, “day-

light saving” and “summer time”. These words are used in the

United States and the United Kingdom. The keyword “daylight

saving” is chosen to correct the orthographical variants of DST

(i.e., “daylight saving time” or “daylight savings time”) at a

time. We call repositories including DST-related PRs DST-
repositories.

The creation date of a repository is an attribute of the

software project. The creation date of each DST-repository

was retrieved by using a REST API provided by GitHub.

2) Experimental Results: There are 1,181 DST-related PRs

in 969 projects.

Figure 1 shows the distribution of years when the DST-

repositories were created. The Y-axis of the figure means

the ratio of the DST-repositories created in the year to all

repositories created in the same year. The number of all

repositories which were created in each year since 2011 was

aggregated using the data on GH Archive1. Since GH Archive

does not have data between 2008 and 2010, the number of all

repositories which were created in each year until 2010 was

extrapolated based on the article [7] of GitHub’s blog.

Many DST-repositories were created in 2008. The ratio of

the DST-repositories decreases as time passed. The absolute

value of the ratio of the DST-repositories gets decreased year

by year.

3) Discussion: The experimental results show that older

projects have more DST-changes than the projects started

recently. We consider the reasons for the results are that OSS

1https://www.gharchive.org/

projects acquire new users, that users report bugs related to

DST, and that users need the treatments for DST, as time

passed.

4) Answer to RQ: 969 projects are conducted DST-changes.

B. RQ2. What kinds of software systems include DST-
changes?

1) Methodology: We checked the following two attributes

of each DST-repository:

• the most used language in the repository, and

• the application domain of the repository.

The most used language in each repository is retrieved using a

GitHub API. If multiple languages are used in a given repos-

itory, the most used language in the repository is regarded as

the programming language of the repository. The application

domains are defined by Zapponi et al. as follows [8]:

• Application software: systems that provide functionalities

to end-users, like browsers and text editors.

• System software: systems that provide services and in-

frastructure to other systems, like operating systems,

middleware, servers and databases.

• Web libraries and frameworks.

• Non-web libraries and frameworks.

• Software tools: systems that support software develop-

ment tasks, like IDEs package managers, and compilers.

• Documentation: repositories with documentation, tutori-

als, source code examples, and so on.

We classified them into these domains manually by reading

the description and a README file of the DST-repositories.

2) Experimental Results: The left part of Table I shows

the top 10 languages used in the DST-repositories. For the

comparisons with all repositories on GitHub, the right part of

Table I represents the ranking of the most used languages for

all repositories in GitHub. This ranking is reported by GitHut

project [9]. In Table I, most of the languages listed in the

left part are listed in the right part. The proportions of each

language are almost the same as well. Thus, the tendencies

of the languages used in both the DST-repositories and all

repositories on GitHub are very similar.

Figure 2 shows the distribution of the application domains

of the repositories. The upper bar in the figure shows the

distribution of the DST-repositories, and the lower bar shows

the distribution of the top 2,500 starred repositories on GitHub

TABLE I
TOP-10 LANGUAGES USED IN DST-REPOSITORIES.

DST-repositories All repositories [9]
Language Proportion (%) Language Proportion (%)
Python 20 JavaScript 21
JavaScript 16 Python 15
Java 10 Java 11
Ruby 6 PHP 8
C++ 6 C++ 8
PHP 6 C# 6
C 5 Shell 4
HTML 4 Go 4
C# 4 Ruby 4
Go 2 C 4

503

Fig. 2. Application domains of DST-repositories.

according to Borges et al. [8]. Application software and Non-

web libraries and frameworks of the DST-repositories are more

than those of the top 2,500 starred repositories.

3) Discussion: The experimental results show that the rate

of each language that DST-changes conducted are almost the

same as the rate of each language in all GitHub projects.

Consequently, we consider that DST-changes are necessary for

any languages.

4) Answer to RQ: Software systems of Application software
and Non-web libraries and frameworks include more than ones
of other domains.

C. RQ3. When are DST-changes conducted?

1) Methodology: The creation date of a DST-related PR

means when a developer conducted DST-changes on source

code. The date merged the PR means when developers adopted

the changes. We retrieved those dates by the APIs of GitHub.

2) Experimental Results: Figure 3 shows the number of

the DST-related PRs created and merged in every year. The

parts of each bar in the figure are painted in different colors to

distinguish the year when the repository including the PR was

created. Figure 4 shows the number of the DST-related PRs

created and merged on every month. Note that each number

in Figure 4 is a total of the repositories created or merged on

the same months between 2011 and 2018.

The number of created PRs increases year by year as shown

in Figure 3. We can see that the DST-related PRs were created

and merged in summer more than in other seasons.

3) Discussion: The experimental results show there are two

tendencies in DST-changes.

• More DST-changes are conducted in recent years.

• More DST-changes are conducted during March to Oc-

tober, which is almost the same as the period of DST.

We consider the reason for the first tendency is that new

repositories treating DST are created every year. In such

systems, DST-changes are conducted every year after the

repository creation. The reason for the second tendency may

be that new bugs are found in operating software systems with

DST mode.

The results also show that there are repositories conducted

DST-changes constantly every year in spite of the years when

Fig. 3. The number of DST-related PRs which were created in every year.
The parts of each bar are painted in different colors to distinguish the year
when the repository including the PR was created.

Fig. 4. The number of DST-related PRs which were created every month
between 2011 and 2018.

they were created. This is another reason for the second ten-

dency and also leads to the reason why more DST-repositories

were created formerly than recently.

4) Answer to RQ: More DST-changes are conducted during
the period of DST than other.

D. RQ4. Which countries and regions do developers of DST-
changes live in?

1) Methodology: We identified the country or region of

each developer that conducted some DST-changes, based on

the top-level domains (TLDs) of their public email addresses.

Although every TLD does not indicate specific regions, we

investigated the email address with country code TLDs that

indicate the residential regions of the developer, because such

regions can be identified correctly and automatically.

2) Experimental Results: We found that 1,210 developers

modified some source code in the DST-related PRs and we

identified the residential regions where 274 developers out of

them live. Figure 5 shows the top 20 residential regions. In the

figure, the regions highlighted in green are observing DST at

present. The regions highlighted in yellow has observed DST

before, however, they do not observe it at present. The region

highlighted in red has never observed DST.

504

Fig. 5. Top 20 residential regions of the developers that modified some source
code in DST-related PRs.

As shown in the figure, most of the developers live in

the regions observing DST. In other words, most of DST-

changes were conducted by the developers living in the regions

observing DST.

3) Discussion: The experimental results show that DST-

changes are conducted by developers who live in DST coun-

tries or regions. The fact means that developers who live

in non-DST countries or regions tend not to conduct DST-

changes. Software systems used in non-DST countries and

regions do not count for DST, which may be a reason for

this tendency.

4) Answer to RQ: Most of developers conducting DST-
changes live in countries and regions that observe DST.

E. RQ5. How is code changed in DST-changes?

1) Methodology: We investigated code changes in the DST-

related PRs to identify common fixing patterns in the changes.

The changes are conducted in Java repositories because we are

used to reading Java code.

2) Experimental Results: We found the following patterns

of DST-changes from the DST-related Java repositories:

• adding the process that handles time zones, and

• using java.util.Calendar class for the calculation of date

and time.

The former change is applied mainly when different times

are given according to runtime environments because the time

zone was not considered before the change. The latter change

is that the calculation of date and time depends on classes of

the standard library of Java, instead of using constant values

without consideration of DST, e.g., a day is equal to 24×60×
60 = 86,400 seconds. Figures 6 and 7 are practical patterns

of the changes. In the figures, the lines added in the change

are highlighted in green and the lines removed in the change

are highlighted in red.

3) Discussion: The experimental results show that there are

many projects that had insufficient treatments for DST and

then they had received DST-changes. This may be because

testing code related to DST is difficult in non-DST season.

The existences of multiple ways for treating date and time

2https://github.com/apache/incubator-pinot/pull/992/files
3https://github.com/candlepin/candlepin/pull/1082/files

― public static DateTimeFormatter getDateTimeFormatterForDataset(TimeSpec
timeSpec) {

+ public static DateTimeFormatter getDateTimeFormatterForDataset(TimeSpec
timeSpec, DateTimeZone zone) {

String pattern = null;
TimeUnit unit = timeSpec.getDataGranularity().getUnit();
switch (unit) {
case DAYS:
pattern = DAY_FORMAT;
break;

case MINUTES:
pattern = MINUTE_FORMAT;
break;

case HOURS:
default:
pattern = HOUR_FORMAT;
break;

}
― DateTimeFormatter dateTimeFormatter = DateTimeFormat.forPattern(pattern);
+ DateTimeFormatter dateTimeFormatter =

DateTimeFormat.forPattern(pattern).withZone(zone);
return dateTimeFormatter;

}

Fig. 6. Example change adding the process that handles time zones, for
APACHE/INCUBATOR-PINOT2.

private Date getEndDate(Product prod, Date startTime) {
int interval = maxDevLifeDays;
String prodExp = prod.getAttributeValue("expires_after");
if (prodExp != null && Integer.parseInt(prodExp) < maxDevLifeDays) {
interval = Integer.parseInt(prodExp);

}
― return 1000 * 60 * 60 * 24 * interval;
+ Calendar cal = Calendar.getInstance();
+ cal.setTime(startTime);
+ cal.add(Calendar.DAY_OF_YEAR, interval);
+
+ return cal.getTime();
}

Fig. 7. Example change using java.util.Calendar class to calculate date and
time, for CANDLEPIN/CANDLEPIN3.

may be another reason for DST-changes. The code does not

consider DST may not be exposed before DST starts.

4) Answer to RQ: There are changes that classes and APIs
using management and calculation of date and time make more
appropriate.

IV. CONCLUSION

In this research, we investigated the impacts of daylight

saving time on software systems. Especially, we focused on

features of repositories where changes related to daylight

saving time were conducted, date and time of such changes,

and residence of developers who conducted such changes.

As a result, we found that more changes related to daylight

saving time are conducted in recent years and most of such

changes are conducted in the period of daylight saving time.

We also investigated what kinds of code had been modified

due to daylight saving time, and we found that software

systems occasionally get releases even they include insufficient

treatment of daylight saving time. In the near future, we are

going to investigate faults that are related to daylight saving

time. We are also going to conduct investigations of code

changes for other languages than Java.

ACKNOWLEDGMENT

This work was supported by MEXT/JSPS KAKENHI

17H01725 and 18H03222.

505

REFERENCES

[1] M. B. Aries and G. R. Newsham, “Effect of daylight saving time on
lighting energy use: A literature review,” Energy Policy, vol. 36, no. 6,
pp. 1858 – 1866, 2008.

[2] P. Hancevic and D. Margulis, “Daylight saving time and energy consump-
tion: The case of Argentina,” University Library of Munich, Germany,
MPRA Paper 80481, 2016.

[3] T. Monk, “Traffic accident increases as a possible indicant of desyn-
chronosis,” Chronobiologia, vol. 7, no. 4, pp. 527–529, 1980.

[4] M. R. Jiddou, M. Pica, J. Boura, L. Qu, and B. A. Franklin, “Incidence of
myocardial infarction with shifts to and from daylight savings time,” The
American Journal of Cardiology, vol. 111, no. 5, pp. 631 – 635, 2013.

[5] S. Thorsen, “Daylight Saving Time – DST – Summer Time.” [Online].
Available: https://www.timeanddate.com/time/dst/

[6] M. Fitzpatrick, Daylight Saving Time. Connecticut General Assembly,
Dec 2017.

[7] B. Doll, “10 Million Repositories,” Dec 2013. [Online]. Available:
https://github.blog/2013-12-23-10-million-repositories/

[8] H. Borges, A. Hora, and M. T. Valente, “Understanding the factors that
impact the popularity of github repositories,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME), Oct 2016,
pp. 334–344.

[9] C. Zapponi, “Github Language Stats,” Oct 2018. [Online]. Available:
https://madnight.github.io/githut/#/pushes/2018/3

506

