Beyond GumTree:
A Hybrid Approach to Generate Edit Scripts

Junnosuke Matsumoto, Yoshiki Higo and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan
{j-matumt, higo, kusumoto}Qist.osaka-u.ac.jp

Abstract—On development using a version control
system, understanding differences of source code is
important. Edit scripts (in short, ES) represent dif-
ferences between two versions of source code. One of
the tools generating ESs is GumTree. GumTree takes
two versions of source code as input and generates an
ES consisting of insert, delete, update and move nodes
of abstract syntax tree (in short, AST). However,
the accuracy of move and update actions generated by
GumTree is insufficient, which makes ESs more difficult
to understand. A reason why the accuracy is insufficient
is that GumTree generates ESs from only information
of AST. Thus, in this research, we propose to generate
easier-to-understand ESs by using not only structures
of AST but also information of line differences. To
evaluate our methodology, we applied it to some open
source software, and we confirmed that ESs generated
by our methodology are more helpful to understand the
differences of source code than GumTree.

Index Terms—Difference, Edit Script, GumTree

I. INTRODUCTION

It is inevitable to use a version control system when
developing software systems. Understanding code differ-
ences is required before a variety of activities in software
development and maintenance. Version control systems
provide a functionality to retrieve any past version of
source code. This is useful to compare two versions of
source code. Edit scripts (in short, ES) represent differ-
ences between two versions of source code. In general,
to generate ESs, diff command is used. diff command
is based on Myers algorithm [1] and generates ESs on a
line-based granularity, and line-based ESs consist of two
actions, insert and delete.

diff command has two problems. The first prob-
lem is, line-based differences are coarse-grained and do
not consider syntax information. For example, a line,
int foo = 0; is edited to final int foo = 0; , diff
command regards that all tokens of the line are edited. The
second problem is, diff’s ESs include only two actions.
Thus, they cannot sufficiently present developer’s intent.

To solve those problems, GumTree [2] was developed.
GumTree generates abstract syntax tree (in short, AST)-
based ESs. They consist of four actions, insert, delete,
move and update. GumTree’s ESs are used in many higher
level applications or further research [3]-[6].

However, GumTree has problems as well. One of them
is that occasionally GumTree cannot appropriately detect
move and update actions [7]. We applied GumTree to

many revisions of some open source software (in short,
0SS), to check whether the ESs were correct or not. As a
result, we found that many move actions were not correct
and many pairs of delete and insert should be update
actions. For example, GumTree outputs move actions
even though the code is not edited, moreover, GumTree
outputs delete and insert actions even though the code is
updated. Such inappropriate action generating makes ESs
unnecessarily longer. The longer ESs are, the more difficult
it is for developers to understand them [2], [8], [9].

In this paper, by shortening ESs, we propose to generate
easier-to-understand ESs. To improve accuracy of update
and move actions, it is necessary to enhance the algorithm
of matching nodes in two ASTs [10]. While GumTree
matches the AST nodes with only information of tree
structure, our methodology matches the AST nodes with
also information of diff command. Our methodology
divides AST nodes into two groups. The first group is
a set of AST nodes in lines not included in line-based
differences. The second group is a set of nodes in line-
based differences. Then, our methodology matches AST
nodes within the same groups. This strategy can avoid the
aforementioned problems of inappropriate ESs generating.

We applied it to many revisions of some OSS, and
we confirmed that it generated shorter ESs. We also ex-
perimented with research participants, and we confirmed
that our methodology is more helpful to understand code
differences than GumTree.

II. DIFFERENCES OF ABSTRACT SYNTAX TREE
A. Abstract Syntax Tree

An AST represents a tree structure of source code. An
AST node consists of the following information.

e A parent node: a reference to its parent. However, the
root node has no parent node.

o A type: a kind of a node (e.g., if statement, variable
declaration).

o A value: information of the node other than the type
(e.g., name of class).

B. GumTree

Our methodology is based on GumTree, thus, we show
GumTree’s algorithm in this subsection. GumTree takes
two versions of source code as input. GumTree makes
ASTs from each source code and generates an ES that



HOoONOUEAEWNR
HOoOONOUAEWNR

0.

0. }

. insert

public void clear() {

delete
. update

rootNode [KEY.ordinal()] = null;
rootNode [VALUE.ordinal()] = null; move

’s

original source code

edited source code

Fig. 1. An edit script generated by GumTree. The colored code presents the differences between the two versions (the length is 22).

e I —
—_— ) ——
— —— e o
matching lines o ® GumTree's matching
diff .. non-edited matching non-matched and
— |[—] command [—|[— divide nodes in lines nodes computing an edit script
- ||= = ||= Q= @
two versions of line-based edited @« ® edit script
source code differences o— 0
—

matching an insert action
and a delete action

matched nodes

Fig. 2. Overview of our methodology

presents AST-based differences. The length of an ES is
the number of edit actions included in it.

GumTree’s algorithm consists of the following two steps:

1. matching similar AST nodes from both ASTs, and

2. computing an ES from matching results

In the first step, a node in an AST can be matched
only with a node that has the same type in the other
AST. In the second step, from matching results, GumTree
computes information about (1)which nodes are inserted,
(2)which nodes are deleted, (3)which nodes are moved
to where, and (4)which nodes are updated to what. The
second step was sufficiently optimized [11], thus we focus
on the matching algorithm.

GumTree’s matching algorithm consists of two phases.
In the first phase, GumTree matches subtrees of both
ASTs. In the second phase, nodes in the matched subtrees
are matched if the nodes have the same type and the
Jaccard similarity between both subtrees of the nodes is
over the threshold.

However, GumTree’s matching algorithm has a prob-
lem [10]. GumTree often mismatches nodes against devel-
oper’s intent. As a result, GumTree generates unnecessar-
ily longer ESs. The longer ESs are, the more difficult it is
for developers to understand them [2], [8], [9]. We applied
GumTree to a revision of Apache Commons Collections.
Figure 1 visualizes a part of the results. While only the
lines 8 and 9 are edited, GumTree outputs some actions
for all lines. For example, while public in the line 4 is not
edited, GumTree outputs delete and insert actions. The
reason is that public in both ASTs are not matched.

III. RELATED WORK
A. The Imprecisions of GumTree

Guillermo et al. discussed the imprecisions of
GumTree [10]. In the paper, they applied GumTree

to a C# software system, and they found that 27% of
the 86 file version pairs is not optimal. They found that
there were issues in matching phase. They indicated that
GumTree treated source code as “just an AST”, and did
not consider many language features.

B. An Extension of GumTree

As an extension of GumTree, IJM was developed [7].
To improve accuracy of matching algorithm, IJM uses
the features of Java. IJM consists of three approaches:
Partial matching, Name-aware matching and Merging
name nodes. Partial matching decreases the amount of
nodes that are matched between different methods. Name-
aware matching takes the names and values of nodes into
account. Merging name nodes decreases the AST size by
merging some node types with their respective simple
name nodes.

IV. METHODOLOGY

Our methodology is based on GumTree. In GumTree,
calculating ESs after matching AST nodes is sufficiently
optimized. Thus, we propose to improve the matching al-
gorithm. Figure 2 gives an overview of our methodology. In
order to improve the matching algorithm, we use not only
AST information but also line-diff information calculated
by diff command. Before applying GumTree’s matching
algorithm, our methodology matches AST nodes based on
the line-diff information.

From the line-diff information, lines in the source code
are divided into edited lines and non-edited lines. AST
nodes in the edit lines are matched with only nodes in the
edited lines in the other AST. AST nodes in the non-edited
lines are matched in the same way.

Since not all AST nodes are matched, non-matched
AST nodes are matched by GumTree’s algorithm after our



/*x
* Removes all mappings from this map.
*/
public void clear() {
modify();

VS
* Removes all mappings from this map.
*/
public void clear() {
modify();

nodeCount = 0;
.+  rootNode[KEY.ordinal()]
o+ rootNode [VALUE.ordinal()

nodeCount = 0;

- rootNode[KEY] = null;
- rootNode [VALUE] = null;
0. }

null;

1 null;

POONOUAWN P
POONOUAWN P

0. }

original source code edited source code

Fig. 3. The results of diff command

matching algorithm. GumTree’s architecture is divided to
some modules (e.g., matcher, action generater). By giving
matching information to GumTree’s matcher, it tries to
match unmatched nodes. From the matching results of
our methodology and GumTree, an action generator of
GumTree calculates an ES.

A. Approach to non-edited Lines

We assume that lines which are judged as non-edited
by diff command are not edited by developers. Each
non-edited line has a perfectly matching line between two
versions of source code. In non-edited lines, AST nodes
that share the same type get matched.

Figure 3 shows the results that diff command has
been applied to the source code in Figure 1. For ex-
ample, the line 4 in the both source code is non-edited
line because the line is a perfectly matching line. Thus,
our methodology matches each node in the line 4. By
this matching algorithm, public node is matched, while
GumTree’s algorithm cannot match the nodes.

B. Approach to edited Lines

We assume that many nodes which should be matched
are slightly moved between two versions. In this assump-
tion, the nodes in the deleted and inserted lines are
matched with each other.

There are non-edited lines above and below edited lines,
thus, based on this information, our methodology makes
corresponding relationships between the deleted and in-
serted chunks.

For example, in the original source code, delete actions
are generated for the lines 8 and 9. The lines 7 and
10 which are above and below the lines, are non-edited
lines. In the edited source code, there is a line which is
completely matched with the line 7 of the original source
code, and then, the line is the line 7 of the edited source
code. In the same way, the line 10 of the both source code
is matched with each other. From those information, our
methodology matches a deleted chunk between the lines 7
and 10 of the original source code and an inserted chunk

— [ N w2
w (=3 W (=3
=) S =} S

The Median of Time(s)

—_
(=3
(=}

T

GumTree

w
[=}

.

Our Methodology

Fig. 4. Results of Exp-2: the medians of time for each difference

between the lines 7 and 10 of the edited source code.
After matching deleted chunks and inserted chunks, our
methodology matches the nodes within the deleted chunks
and the inserted chunks.

GumTree calculates the Jaccard similarity of two ver-
sions of subtrees for matching nodes. Our methodology
also calculates the Jaccard similarity for matching nodes.

V. EXPERIMENT

Toevaluate our methodology, we compared it with
GumTree in the following two experiments:

Exp-1: investigating whether ESs of our methodology
are shorter than the ones by GumTree, and

Exp-2: investigating whether ESs of our methodology
are more helpful to understand code differences
than the ones by GumTree.

We did not compare our methodology with IJM [7] because
IJM changes the structure of ASTs. It is difficult to
compare fairly ES generation techniques that use ASTs
of different structures.

A. Ezxp-1

We experimented to investigate whether our method-
ology generates shorter ESs than GumTree. Firstly,
GumTree was applied to all Java files in all commits
of some Java OSS in Table I. For the code differences
including 50 or longer ESs, our methodology was also
applied. Code differences of short ESs have less room for
improvement. Thus, we did not compare them.

The comparison results are shown in Table I. In all
the OSS, the sum and the median of the ESs which were
generated by our methodology are smaller than the ones
by GumTree. Moreover, for 30~50% of the differences, our
methodology generated shorter ESs than GumTree.

TABLE I
RESULTS OF EXP-1

0SS commits | differences”! sum median ratio of shorter ESs
GumTree Ours | GumTree  Ours | GumTree Ours

activemq 10,021 5,326 | 1,001,361 981,435 110.0 108.0 3% 33%
commons-collections 3,050 1,640 426,383 394,574 122.0 115.0 3% 50%
commons-io 2,116 782 180,821 176,596 124.5 117.5 8% 34%
commons-lang 5,263 2,375 627,934 600,855 130.0 126.0 5% 37%
commons-math 6,317 4,435 | 1,276,316 1,223,448 131.0 128.0 7% 39%
hibernate-search 7,163 4,364 766,425 750,287 105.0 103.0 13% 38%
spring-roo 6,132 4,880 | 1,296,941 1,271,632 130.0 129.0 12% 42%

*1 In this table, term “difference” corresponds to changes in a Java source file in a commit.



1. /%%

2. * Removes all mappings from this map.
3. */

4. public void clear() {

5. modify();

6.

7. nodeCount = 0;

8. rootNode [KEY] = null;

9. rootNode [ ] = null;

10. }

R OOO~NOOUTE WN =

.}

/*%
* Removes all mappings from this map. . insert
*/
public void clear() { delete
modify();
nodeCount = 0; . update
rootNode [ .ordinal()] = null;
rootNode [ .ordinal()] = null; move

original source code

edited source code

Fig. 5. An edit script generated by our methodology (the length is 6)

The results do not follow normal distribution. Thus,
we used the Wilcoxon signed rank test to check whether
the results are statistically significant. Since we obtained
p-values < 0.05 from all the results, the results of our
methodology were significantly different from GumTree.

B. Ezp-2

We experimented with 14 research participants to eval-
uate whether ESs of our methodology are more helpful to
understand code differences than the ones by GumTree.
The research participants consist of four undergraduate
students, nine graduate students, and one professor. All
of the participants are accustomed to using Git and Java
programming.

We chose the 15 code differences from commons-math.
The differences were selected by the following conditions.

e The size of GumTree’s ESs is from 50 to 200.
o It is the top 15 code differences where GumTree and
our methodology generated most different size of ESs.

The reason why we limited the size is that we did not
want to make a big burden for the participants. We used
the tool included in GumTree to confirm the ESs. The tool
visualizes ESs via a Web browser.

At first, to learn how to use the tool, the research
participants checked three code differences other than the
15 target code differences. Then, they checked the 15
code differences, with measuring the time and then they
answered how the source code had been changed.

The participants were divided into two groups, X and
Y. Each group checked each of the 15 code differences by
either of the GumTree or our methodology. X group used
GumTree for the odd-numbered code differences while Y
group used our methodology for them. For even-numbered
code differences, the two groups used the other tool.

Figure 4 shows the boxplot of the time that the par-
ticipants took to understand each code difference. From
those results, the median for all the code differences is less
than a half of GumTree. We found that there is a signifi-
cant difference of execution between our methodology and
GumTree by using the Mann-Whitney U test.

VI. DISCUSSION

We found that our methodology generates shorter ESs
than GumTree from Exp-1. The main reason is that our
methodology appropriately matches AST nodes in non-
edited lines. We discuss the differences of the source code in
Figure 1. In GumTree, the node of method declaration in

the line 4 is not matched, so that GumTree outputs an ES
that the node was deleted and inserted. Moreover, because
the node of method declaration is not matched, GumTree
recognizes that the parent node of the node in the line 5
gets changed. Thus, GumTree outputs an ES that the node
in the line 5 was moved. Figure 5 shows the results that
our methodology is applied to the source code in Figure
1. The ES is more helpful to understand than Figure 1.
For example, the line 4 has been regarded as non-edited
by diff command, then, our methodology matches the
node in the line 4. As a result, our methodology can find
that the node in the line 5 has the same parent between
two versions, then, our methodology generates an ES that
the node is not moved. In this way, matching a node
affects other nodes, then, we found that our methodology
generated shorter ESs.

From the results of Exp-2, we found that ESs of our
methodology are more helpful to understand code differ-
ences. The code differences which took a shorter time
to understand with a statistical significance, consist of
simple changes such as insertion of @Jverride. On the
other hand, the code differences which we could not obtain
a statistical significance consist of complicated changes.
From those results, our methodology is more helpful for
simple changes than complicated changes.

VII. THREATS TO VALIDITY

We conducted the experiments on Java OSS. While we
expect the same results for other programming languages,
we did not confirm that our methodology is more helpful
than GumTree.

VIII. CONCLUSION

In this paper, by using the line-based differences, we
proposed a methodology which generates shorter and
more helpful ESs than GumTree. To evaluate it, it was
applied to 7 OSS projects, and then, we succeeded in
generating shorter ESs. We also experimented with 14
research participants, and then we confirmed that ESs
of our methodology are more helpful to understand code
differences.

As a future work, we are going to apply our methodology
other programming languages than Java.

ACKNOWLEDGMENT

This work was supported by MEXT/JSPS KAKENHI
17HO01725.



(1]

2]

[4]

[5]

REFERENCES

E. W. Myers, “Ano(nd) difference algorithm and its variations,”
Algorithmica, vol. 1, no. 1, pp. 251-266, Nov 1986. [Online].
Available: https://doi.org/10.1007/BF01840446

J. Falleri, F. Morandat, X. Blanc, M. Martinez, and
M. Monperrus, “Fine-grained and accurate source code
differencing,” in ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, Vasteras, Sweden -
September 15 - 19, 2014, 2014, pp. 313-324. [Online|. Available:
http://doi.acm.org/10.1145/2642937.2642982

A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen,
L. Mast, E. Rademacher, T. N. Nguyen, and D. Dig, “Api code
recommendation using statistical learning from fine-grained
changes,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on  Foundations of Software
Engineering, ser. FSE 2016, 2016, pp. 511-522. [Online].
Available: http://doi.acm.org/10.1145/2950290.2950333

C. Macho, S. Mcintosh, and M. Pinzger, “Extracting
build changes with builddiff,” in Proceedings of the 14th
International Conference on Mining Software Repositories,
ser. MSR ’17, 2017, pp. 368-378. [Online]. Available:
https://doi.org/10.1109/MSR.2017.65

J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan,
and A. Roychoudhury, “A feasibility study of using
automated program repair for introductory programming
assignments,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software FEngineering, ser.
ESEC/FSE 2017, 2017, pp. 740-751. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106262

[6]

7]

[9]

(10]

(11]

Q. Hanam, F. S. d. M. Brito, and A. Mesbah, “Discovering bug
patterns in javascript,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, ser. FSE 2016, 2016, pp. 144-156. [Online].
Available: http://doi.acm.org/10.1145/2950290.2950308

V. Frick, T. Grassauer, F. Beck, and M. Pinzger, “Generating
accurate and compact edit scripts using tree differencing,” 2018
IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 264-274, 2018.

G. Dotzler and M. Philippsen, “Move-optimized source code
tree differencing,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering,
ser. ASE 2016, 2016, pp. 660-671. [Online]. Available:
http://doi.acm.org/10.1145/2970276.2970315

Y. Higo, A. Ohtani, and S. Kusumoto, “Generating simpler
ast edit scripts by considering copy-and-paste,” in The 32nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE2017), 10 2017, pp. 532-542.

G. de la Torre, R. Robbes, and A. Bergel, “Imprecisions
diagnostic in source code deltas,” in Proceedings of the 15th
International Conference on Mining Software Repositories,
ser. MSR 18, 2018, pp. 492-502. [Online]. Available:
http://doi.acm.org/10.1145/3196398.3196404

S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom, “Change detection in hierarchically structured
information,” in Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, ser.
SIGMOD 96, 1996, pp. 493-504. [Online]. Available:
http://doi.acm.org/10.1145/233269.233366



