
unjQuerify
Migration of jQuery Snippets to Modern Vanilla JavaScript APIs

Dereck J. Bridie
Delft University of Technology

Delft, The Netherlands

D.J.Bridie@student.tudelft.nl

Shinsuke Matsumoto and Shinji Kusumoto
Graduate School of Information Science and Technology

Osaka University, Osaka, Japan

{shinsuke, kusumoto}@ist.osaka-u.ac.jp

Abstract—jQuery is a JavaScript library which can be used
by developers when creating webpages. It gained popularity
among web developers for normalizing web APIs in a time when
browser incompatibilities were more common. However, modern
browser vendors have adopted API standards which diminish
the need for such a library. When these modern API standards
are used instead of jQuery, page size is lowered, causing an
improvement in page performance. This paper introduces a tool
called unjQuerify which can transform snippets that make use
of jQuery’s functionalities into equivalent code that uses modern
web API standards. unjQuerify also aids developers by displaying
relevant documentation and the steps taken to transform the
code, increasing developer familiarity with modern APIs.

Index Terms—jQuery, JavaScript, browser incompatibility,
vanilla, abstract syntax tree

I. INTRODUCTION

JavaScript programmers often make use of libraries that

provide convenient functionality as a layer above existing

browser built-in APIs. An example of such a library is jQuery1,

a popular JavaScript library that boasts 97.0% market share

[8]. It was created in 2006 by John Resig [5] to simplify web

APIs such as HTML document traversal and manipulation

in a time when browser incompatibilitiy problems [4] were

common [5]. The most well-known browser incompatibility

problem concerns the instantiation of Ajax request objects.

An example of how it was constructed so that the Ajax object

could work across different browsers is illustrated as below.

1 var xhr;
2 if (window.XMLHttpRequest){
3 // If Chrome, Firefox, IE7+, Opera, Safari
4 xhr = new XMLHttpRequest();
5 }
6 // otherwise, use ActiveX for IE5.x and IE6
7 else if (window.ActiveXObject) {
8 try {
9 xhr = new ActiveXObject("MSXML2.XMLHTTP");

10 } catch (e) {
11 xhr = new ActiveXObject("Microsoft.XMLHTTP");
12 }
13 }
14 // Initialize request
15 xhr.open("GET", "http://example.com");
16 ...

Listing 1. Instantiation of Ajax object without jQuery

1jQuery: https://jquery.com/

This verbose instantiation process can be encapsulated by

jQuery. The $ identifier is an entry point to use all jQuery

functions.

1 $.ajax({
2 type: "GET",
3 url: "http://example.com",
4 ...
5)};

Listing 2. Instantiation of Ajax object with jQuery

Over the years, browsers have evolved to take World

Wide Web Consortium’s standards into consideration and

have become largely standards-compliant. A large majority

of users make use of such a standards-compliant browser

[9], meaning that the need for jQuery to bridge functional

incompatibilities has been diminished. Despite this, more than

73.3% of websites [8] continue to make use of the library.
Using jQuery can come with undesirable costs. Unnecessary

usage of jQuery can lead to performance penalties [10] due

to transfer speeds and parsing. These penalties are often not

mitigated by the usage of Content Delivery Networks due

to fragmentation of network providers and jQuery versions

[6]. Furthermore, the weight of jQuery also has an impact

on the loading times of a website. The size of version 3.3.1

of jQuery is 35kb (minified and gzipped). This is 10% of

the median transfer size of JavaScript and JSON data used

in webpages [1]. When uncompressed, this rises to a size of

87 kB, which may be order of magnitudes larger than the

code written by a developer. Aside from the costs of the data

transfer, parsing and executing the code of jQuery also takes

extra time, whereas modern vanilla JavaScript APIs are already

present in the browser and therefore carry no extra costs.

As the popularity of smartphones increase, we must consider

the high performance impact [11] on constrained computing

devices as well. Also, reliance on any framework can introduce

technical debt [2], [7].
For these reasons, it can be useful for a developer to

consider removing their reliance on jQuery in their webpages.

However, given the popularity of jQuery, it is possible that

a developer is unfamiliar with modern API standards. In

addition, maintaining and repairing steady JavaScript resources

may need to be decisive because of the difficulty of equiv-

alence checking [3]. Developers should be assisted in this

migration from code using jQuery to code without it.

618

2018 25th Asia-Pacific Software Engineering Conference (APSEC)

978-1-7281-1970-0/18/$31.00 ©2018 IEEE
DOI 10.1109/APSEC.2018.00077

In this paper, we introduce a tool called unjQuerify that can

remove jQuery usages from snippets using AST transforma-

tions. Given a snippet of JavaScript that makes use of jQuery

functionality, a translation is given that have near-equivalent

functionality, but make use of modern vanilla JavaScript APIs

instead of jQuery functionality. Furthermore, in the interest of

developer education, documentation is given that is relevant

to each transformation.

II. MOTIVATING EXAMPLE

To explore the feasibility of such transformations, an sample

will be given of jQuery code:

1 $("#btn").click(function() {
2 $("#result").addClass("important")
3 .text("The button was clicked.");
4 $("#btn").hide();
5 });

Listing 3. Sample jQuery snippet

This snippet defines a click event listener for the element

#btn using the click(fn) function. When the button is

clicked, the class "important" is added to the #result
element using the addClass(class) function. Also, its

inner-text is changed. Finally, the button is hidden using

hide() function to prevent multiple clicking.

For these expressions, vanilla DOM APIs exist that match

these functionalities almost precisely. Examples of such ex-

pressions are:

• click(fn): Adds a function that should be ap-

plied when the selected element is clicked. In mod-

ern vanilla APIs, this has the same functionality as

Element.addEventListener("click",
function).

• addClass(class): Adds the class(es) given in

the first parameter to the selected elements. Us-

ing DOM APIs, this functionality is related to

Element.classList.add(name).

• hide(): Hides a element. In modern vanilla APIs, this is

similar to Element.style.display = "none".

Equivalent code can be expressed as the following:

1 const button = document.getElementById("btn");
2 button.addEventListener("click", function() {
3 const res = document.getElementById("result");
4 res.classList.add("important");
5 res.textContent = "The button was clicked.";
6 button.style.display = "none";
7 });

Listing 4. Sample manual conversion

However, some jQuery features must be taken into account

when converting such code, as not all expression trees can be

easily mapped to vanilla code. One example of this is jQuery’s

method chaining, which allows methods calls to follow each

other without needing new statements. An example of this is

the expression $("div").filter(".post").hide(),

which has the same functionality as let x = $("div");
x = x.filter(".post"); x = x.hide();.

Furthermore, not all jQuery features can be transformed to

modern idiomatic vanilla JavaScript alone. An example of this

is fade, which should be implemented as a CSS transition

in webpages following best practices. These features will not

be transformed by this tool; instead, migration documentation

will be shown.

III. TOOL OVERVIEW

unjQuerify is a command-line tool that makes use of static

analysis to transform a given source file that uses jQuery to

DOM APIs using a set of rules. An abstract syntax tree (AST)

is built, and registered rules are used to transform expression

nodes to new nodes that use DOM standards. The tool is

also publicly available on https://www.unjquerify.com through

a web interface.

A. Architectural design
Figure 1 depicts a high-level overview of unjQuerify. un-

jQuerify uses babel2 to construct ASTs from JavaScript

source snippets and apply AST transformations.
The tool provides tree transformations that convert jQuery

expressions to vanilla DOM expressions. Each transformation

is annotated with documentation from the jQuery API guide-

book, documentation from Mozilla’s Web Docs3, and infor-

mation from Can I Use? browser compatibility information4.

Then, babel is used again to generate JavaScript source code

from the modified AST.
In the web presentation of the tool, each transformation is

displayed separately. For each transformation that was applied,

the documentation information is displayed along with the

chunks that were affected by a transformation.

B. Implementation
The following sections detail the steps taken by unjQuerify

after the input source code is converted to an AST.
1) Finding jQuery usages: jQuery defines two identical

entrypoints into the library: jQuery and $. From there, this

entry point can be used as a function (e.g. $("#btn")) or as

a member property of the identifier (e.g. $.isArray(id)).

Where applicable, function call chains are then dismantled

into links, which are then seperately processed by unjQuerify’s

plugins.
2) Plugins: An unjQuerify plugin defines a node search

strategy and a node replacement strategy. In the interest of

expandability, to eventually be able to transform the entirety

of jQuery’s functionality, plugins can be defined and added to

unjQuerify. These plugins are used when visiting each node

in the input tree, and the given replacement is executed when

a match is found.
3) Source generation and display: Each mutation to the

source tree made by the tool is tracked. This information is

used in the user interface as shown in Section III-C. The output

code is generated by converting the mutated AST back into

JavaScript code.

2https://babeljs.io/
3https://developer.mozilla.org/en-US/
4https://caniuse.com/

619

$("...").hide();
$("...").text("...");

Input Snippet

unjQuerify

node.style.display = "none";
node.classList.add("...");

Browser Developer

Parse

AST

AST

.text(String)

.click(fn)

.hide()
· · ·

Plugins

Find

jQuery

Apply

transformations

New AST

Generate

AST

Fig. 1. unjQuerify architecture

C. User presentation

Another component of unjQuerify is its web interface. An

actual screenshot of web interface is shown in Figure 2. The

snippet on the left side is unjQuerify input that uses jQuery

functions. The snippet on the right side shows the transformed

(i.e., vanilla) snippet. Input can be supplied from a variety of

sources, as well as from samples. These samples aim to ease

a developer into the usage of unjQuerify before use with their

own code. The modified code is displayed at the top. Under

it, each transformation step taken to arrive at this result is

shown. For each step, before and after snippets are shown,

and relevant documentation can be found that elaborates upon

the vanilla APIs which were used. Figure 3 shows an example

of such documentation.

D. Challenges in transformations

1) Method Call Chains: As mentioned before, jQuery

methods can be chained for ease of use. However, since vanilla

APIs do not support such a style of calling functions, chained

methods must be converted to support such expressions. When

unchaining, intermediate results are assigned to temporary

variables. However, this brings a set of challenges:

• Chains do not always operate upon the same collection.

An example of this is filter(String), which can

reduce the number of matched elements in a collections.

This means the new reduced collection must be assigned

to a new variable in order to continue the chain on the

correct set of elements.

• If a chain is on the right-side of a variable assignment,

the last temporary variable should match the assignment

of the original assignment.

• Unnecessary temporary variables should be avoided. An

example of this is hide(), which can be used in a chain

and does not cause a mutation of the original object. In

this case, creating a new temporary assignment creates

unnecessary clutter for a user to read.

unjQuerify adheres to the above rules when unchaining

expressions.

2) Collections: Generally, jQuery methods that mutate doc-

ument state operate on all elements in a selection. How-

ever, there are other methods that do not: an example is

is(String), which checks each element in a collection to

see if at least one element matches a selector. Conversely,

css(String) retrieves the value of an element collection’s

style property, but only using its first element. Each plugin

in unjQuerify is aware of which elements a function operates

upon.

3) Parameter Ambiguity: Some jQuery functions exist that

accept multiple types within a given argument. An example of

this is $.each(Object|Array, callbackFn), which

loops over the entries of an array when given an array, and

loops over the keys and values in an object when given an

object. An idiomatic transformation does not exist that accepts

both objects and arrays in vanilla APIs. Therefore, when the

type of this parameter cannot trivially be statically inferred

to distinguish between these cases, a satisfactory idiomatic

transformation cannot be given. In these cases, the tool must

give a longer, non-idiomatic transformation.

4) Non-similarity: There are methods in jQuery that do not

have a direct one-to-one mapping with vanilla functions. For

example, $element.parentsUntil(selector) finds

the ancestors of each element in the current set of matched

elements up until the element matched in selector. Though

this is one function call in jQuery, the equivalent function in

vanilla APIs requires a helper function which is comparatively

very verbose.

620

Fig. 2. Screenshot of unjQuerify web interface.

Fig. 3. Example of documentation given for a .click() transformation.

IV. PRELIMINARY EVALUATION

unjQuerify’s transformations should not introduce unsus-

pected behavioral changes, preventing code breakage after

transformation. A transformation that introduces a behavioral

change can cause bugs which do not become apparent from

visually inspecting the transformed code. Therefore, it is

important to verify that unjQuerify’s transformations result in

code that is functionally equivalent to the input code. Work

has been started to attempt to verify this property, described

in the following sections.

A. jQuery unit tests

jQuery uses a test-suite to verify the functionality of its

features. We modify these tests to verify the correctness of

the transformation by applying selective mutations to the tested

jQuery code. An example of a unit test in jQuery can be found

in code sample 5.

1 $("#nothidden").css("margin-top", "-10px");
2 var val = $("#nothidden").css("margin-top");
3 assert.equal(val, "-10px");

Listing 5. Sample jQuery test

When a transformation is known for the mutator of a CSS

property $element.css(property, value), its acces-

sor $element.css(property) can be used to confirm

that the mutator works as expected. unjQuerify’s correctness

tests use this property by, in the example, running one test

with line 1 transformed but not line 2, and another test with

line 2 transformed but not line 1. In this manner, both the

accessor and the mutator have been verified.

This manner of transforming tests can be automated. Such

a modified test has been used to test the functionality of

the mutators and accessors of CSS properties, and should be

extended to other functionalities in the future.

B. Application to small code sample set

For transformations that have been implemented, snippets

from QuackIt jQuery Examples5 have been collected and have

informally been used to verify that these samples behave

the same before and after transformations. These samples

have been grouped into 12 groups, each covering an aspect

of jQuery’s functionality. For 8 of these groups, unjQuerify

provides transformation plugins. Within these 8 groups, 32

5https://www.quackit.com/jquery/examples/

621

of the 49 given examples appear to work correctly after

unjQuerify’s transformations.

Using these tests, it has become clear that there are still

some difficult constructions that must be addressed. For exam-

ple, jQuery’s .click(fn) function also supplies the element

which was clicked in the implicit this context, whereas the

vanilla JavaScript equivalent does not. This causes a runtime

error in the output code. Future work should consider these

cases.

V. FUTURE WORK

As this tool is still a work-in-progress, unjQuerify can still

be improved. The following subsections elaborate upon several

ways in which the tool can be extended.

A. Introduction of types

unjQuerify does not attempt to statically infer the types of

identifiers. Therefore, each identifier which uses known jQuery

methods assumed to be a reference to a jQuery collection.

Code sample 6 illustrates a trival example of a heuristic

possibly being used incorrectly.

1 const a = { hide() { console.log("Hidden"); }};
2 const b = $(".post");
3 function hide(element) {
4 element.hide();
5 }

Listing 6. Example of unverifiable heuristic use

Without type information, it is not known if element used

in the function parameter is a jQuery object or some other kind

of object. In the given example, unjQuerify will incorrectly

apply a transformation which assumes that element is a

jQuery object that refers to HTML elements, resulting in a

runtime error.

Projects exist that aim to improve tooling on JavaScript

projects by introducing types, such as Microsoft’s TypeScript6

and Facebook’s Flow7. Using type annotations would allow

unjQuerify to be able to distinguish between these cases and

apply transformations only when the type is correct.

B. Improve evaluation

In order to check the applicability and validity of unj-

Querify for all jQuery snippets, using longer snippets could

be valuable. For this, manual verification of small snippets

and mutated jQuery unit tests have been used. However, this

evaluation could be expanded upon by using large software

repositories that are dependent upon jQuery and manually

verifying the results of unjQuerify’s transformations.

One dataset that could be used is NPM’s list of jQuery’s

dependents8. NPM is a software package manager that can

show which projects are dependent upon jQuery. Then, this

dependent code can be transformed with unjQuerify, then

manually verified or automatically verified using the project’s

own tests.

6https://www.typescriptlang.org/
7https://flow.org/
8https://www.npmjs.com/browse/depended/jquery

C. Increase compatibility
The compatibility of the given transformations can vary

from browser to browser. Developers may want to target other

browsers than only the newest set of ”evergreen” browsers,

which boast the highest compatibility with browser standards.

In this case, some of the given transformations might not

be compliant with older browsers. It could be useful for

unjQuerify to be able to suggest transformations that are

compatible with such browsers as well.
Furthermore, unjQuerify has only been used with a single

version of jQuery (v3.3.1). Since older versions of jQuery can

be used within a production environment, the effects of the

version changes should be evaluated and adjustments should

be made to unjQuerify to account for this.

VI. CONCLUSION

In this paper, a tool was presented to offer suggestions to

transform jQuery code snippets into modern vanilla JavaScript

code based on AST transformations. By using this tool,

developers can migrate their code so that it does not depend

on this library. Furthermore, developers can use the references

provided to increase their familiarity with modern documen-

tation resources. Testing has been done with jQuery’s unit

tests and small sample code sets. In the future, more progress

should be made to increase the accuracy and applicability of

the transformations provided by unjQuerify.

ACKNOWLEDGEMENTS

This work was supported by JSPS/MEXT KAKENHI Grant

Number 16H02908 and 18H03222. It could not have been

possible without JASSO scholarship funding and Osaka Uni-

versity’s FrontierLab program.

REFERENCES

[1] HTTP Archive. Page weight. https://httparchive.org/reports/
page-weight#bytesJs. Accessed: 20 June 2018.

[2] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. Technical debt:
From metaphor to theory and practice. IEEE Software, 29(6):18–21,
Nov 2012.

[3] Nuno P. Lopes and José Monteiro. Automatic equivalence checking of
programs with uninterpreted functions and integer arithmetic. Interna-
tional Journal on Software Tools for Technology Transfer, 18(4):359–
374, Aug 2016.

[4] Ali Mesbah and Mukul R. Prasad. Automated cross-browser compati-
bility testing. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 561–570, New York, NY, USA,
2011. ACM.

[5] Charles Severance. John Resig: building JQuery. Computer, 48(5):7–8,
2015.

[6] Steve Souders. HTTP archive: jQuery. http://www.stevesouders.com/
blog/2013/03/18/http-archive-jquery/. Accessed: 20 June 2018.

[7] Edith Tom, AybüKe Aurum, and Richard Vidgen. An exploration of
technical debt. J. Syst. Softw., 86(6):1498–1516, June 2013.

[8] Usage statistics and market share of JavaScript libraries for web-
sites, june 2018. https://w3techs.com/technologies/overview/javascript
library/all. Accessed: 20 June 2018.

[9] Can I Use? Browser usage table. https://caniuse.com/usage-table.
Accessed: 20 June 2018.

[10] TJ VanToll. Is jQuery too big for mobile? https://modernweb.com/
is-jquery-too-big-for-mobile/. Accessed: 20 June 2018.

[11] Bo Zhao, Byung Chul Tak, and Guohong Cao. Reducing the delay and
power consumption of web browsing on smartphones in 3g networks.
In Distributed Computing Systems (ICDCS), 2011 31st International
Conference on, pages 413–422. IEEE, 2011.

622

