
kGenProg: A High-performance, High-extensibility
and High-portability APR System

Yoshiki Higo, Shinsuke Matsumoto, Ryo Arima, Akito Tanikado,
Keigo Naitou, Junnosuke Matsumoto, Yuya Tomida, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract—In this paper, we introduce our tool, kGenProg,
which is a new automated program repair system. kGenProg has
several remarkable features. Thanks to the features, kGenProg
got achieved high performance, high extensibility and high
portability.

Index Terms—Automated program repair, Tool development,
Fault localization

I. INTRODUCTION

Automated program repair (in short, APR) has been a hot

topic in the research field of software engineering during the

last decade. From the viewpoint of reducing the debugging

cost, APR is extreme support because exposed faults are

fully-automatically fixed by APR techniques. It means that

no human resources are required to fix exposed faults.

Various APR techniques have been proposed before now.

A most famous technique should be GenProg [1]. GenProg
leverages the genetic algorithm to find a modified version of

a given faulty program. A following research reported that

GenProg was able to generate modified versions that pass all

the given test cases for 55 out of 105 faulty programs [2].

An issue of GenProg is that it can fix a given fault only

if the fault can be fixed by reusing already-existing program

statements. Another research showed that only 10% faults can

be fixed with already-existing program statements in the same

program [3].

There is another approach that synthesizes a modified ver-

sion by leveraging semantic information of a given faulty pro-

gram. Symbolic execution and constraint solving techniques

are often used in this approach [4], [5]. This approach can

fix faults that require non-existing program elements in faulty

programs. However, due to calculation cost, this approach

targets only faults in conditional predicates such as if-statement
and while-statement.

Currently, the authors are developing a new system to im-

plement and evaluate APR techniques. The developing system

has the following features:

• in-memory computation,

• designed with Strategy pattern,

• high Portability, and

• visualizing the process of fault modification

In the next section, we introduce each of the above features.

II. KGENPROG

We call the new sytem kGenProg. The system is publicly

available at GitHub1. As its name represents, kGenProg is

a successor APR system to GenProg [1] and jGenProg [6].

kGenProg (and the other two tools) firstly localize code lines

that are likely causes of a given faults. Then, kGenProg
changes the localized code lines with simple manipulations

such as code insertion, deletion, and replacement. In this

processing, kGenProg generates not a single mutated program

but a multitude of mutated programs. Each mutated program

is validated with given test cases. If a mutated program passes

all the test cases, it is output as a modified version. kGenProg
iterates this generate-and-validate process until a modified

version is generated.

At this moment, kGenProg’s target programming language

is Java because many existing tools have been developed for

Java language.

A. In Memory computation

kGenProg performs the following computations in the pro-

cess of APR for a given faulty program:

1) building programs,

2) inserting logging instruments to Java bytecode, and

3) executing test cases with the instrumented bytecode.

Java compiler usually outputs bytecode in the file system.

However if we do so, the computation performance in 1)

will not be good because a large number of compilations are

performed and a bunch of file I/O happens in the iteration of

generate-and-validate. Consequently, we designed kGenProg
not to trigger file I/O as much as possible. In kGenProg,

bytecode is generated as a byte array in memory. Then, the

byte array gets instrumented for logging in memory. These

logging instruments are required for fault localization. After

that, kGenProg loads the classes of the byte array with a

specialized class loader and performs the given test cases

for the classes. In summary, kGenProg performs all the three

computations 1), 2), and 3) in memory with a single Java

VM process. Consequently, kGenProg get achieved a high

performance to execute the iteration of generate-and-validate
process.

1https://github.com/kusumotolab/kGenProg

697

2018 25th Asia-Pacific Software Engineering Conference (APSEC)

978-1-7281-1970-0/18/$31.00 ©2018 IEEE
DOI 10.1109/APSEC.2018.00094

B. Implementation with Strategy-pattern
A big reason why the authors selected the iteration of

generate-and-validate process of the genetic algorithm as

our target is that many algorithms in the iteration can be

replaced with other different algorithms. For example, cur-

rently, kGenProg uses ochiai algorithm [7] to localize faulty

code. However, there are other different algorithms for fault

localization. Another example is a selection of program state-

ments for insert operation. GenProg and jGenProg randomly

select already-existing program statements in a given faulty

program. On the other hand, more recent research proposed

effective strategies for selection [8], [9]. Consequently, it is

important to easily switch to different algorithms and evaluate

them. kGenProg is designed to use the Strategy pattern in the

selection points so as to easily switch to different algorithms

and even add new algorithms if necessary.

C. High Portability
At present, there is no APR technique that is superior to

any other techniques. Thus, comparing and evaluating the

differences among APR techniques. Authors of some APR

tools have published their tools. However, such published

APR tools are in the minority. Thus, if a research group

gets a new idea of APR techniques and implements it, it is

difficult to compare it with other already-proposed techniques.

We have actually faced this problem. To get APR tools,

we sent emails to authors of already-proposed techniques.

In most cases, we received no reply or the authors said

that the tools were unavailable. To promote easy-use and

easy-evaluation atmosphere, we made kGenProg’s source code

publicly available and also we made kGenProg as a single-jar

system. Only the jar file is required to execute kGenProg.

D. Visualizing APR processing
We are trying to improve kGenProg as a practical APR tool.

In such a development process, it is important to understand

what kinds of program changes contribute to fix a given fault.

In other words, the mutation genealogy of a given faulty

program is truly informative for improving the used algorithms

and inventing brand new algorithms. To obtain the genealogy

information, kGenProg preserves information of all generated

programs and their parent-child relationships. Currently, we

are implementing a visualization feature for the mutation

genealogy information.

III. MODIFICATION EXAMPLE

Figures 1(a) and 1(b) are a simple faulty program and its

test cases that are attached to the package of kGenProg. This

program takes an integer value as input and outputs an integer

value that is close to zero by 1. A fault is exposed by the

second test case in Figure 1(b). If we input the faulty program

and the test cases to kGenProg, it outputs a patch shown in

Figure 1(c) within a second.
Moreover, kGenProg has a command line option for the

number of patches to generate. If we set this option to

100, kGenProg generates 100 different patches for this faulty

program within a minute.

(a) Faulty program

(b) Test cases

(c) Generated Patch

Fig. 1: A simple program modification with kGenProg

IV. CONCLUSION

In this paper, we presented a new APR tool kGenProg.

Even kGenProg is still under development, we have already

succeeded in modifying some real faults in the Detect4J
dataset. In the future, we are going to invest more effective

algorithms for fault localization, selection for insert operation

and fitness function for the genetic algorithm.

REFERENCES

[1] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
Finding Patches Using Genetic Programming,” in Proc. of ICSE2009.

[2] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A Systematic
Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8
Each,” in Proc. of ICSE2012.

[3] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The Plastic
Surgery Hypothesis,” in Proc. of FSE2014.

[4] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable Multiline
Program Patch Synthesis via Symbolic Analysis,” in Proc. of ICSE2016.

[5] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic Repair
of Conditional Statement Bugs in Java Programs,” IEEE TSE2017.

[6] M. Martinez and M. Monperrus, “ASTOR: A Program Repair Library
for Java,” in Proc. of ISSTA2016.

[7] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the Ac-
curacy of Spectrum-based Fault Localization,” in Proc. of TAICPRT-
MUTATION2007.

[8] C. L. G. Xuan-Bach D. Le, David Lo, “History driven program repair,”
in Proceedings of SANER2016.

[9] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
Patch Generation for Better Automated Program Repair,” in Proc. of
ICSE2018.

698

