
A Preliminary Study of Size Optimization for
Text-Based Web-Resource

Shinsuke Matsumoto
Graduate School of Information Science and Technology,

Osaka University
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

Email: shinsuke@ist.osaka-u.ac.jp

Masahide Nakamura
Graduate School of System Informatics,

Kobe University
1-1, Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan

Abstract—This paper discusses about file size optimization
of text-based Web resources with the aim of network traffic
reduction. From the perspective of network traffic reduction,
wasteful representations written in text-based resources (e.g.,
indent, line break and comment) should be eliminated by
applying any optimization techniques before the deployment.
However, there are no common-sense of size optimization for text-
based resources compared to multimedia resources. Our long-
term goal of this research is to create or develop a literacy of size
optimization for text-based resources on the Web. In this paper,
we organize some existing size optimization techniques with these
advantages and disadvantages. Next we conduct an experiment
to show the effect of two optimization techniques using three
famous JavaScript libraries. Finally, we discuss requirements and
measures of server-side size optimization plugin that keeps both
continuous of development and code openness of the Web.

I. INTRODUCTION

This paper discusses file size optimization of text-based Web
resources with the aim of network traffic reduction. The cur-
rent Web is composed of a variety of Web resources. They can
be broadly classified into two categories: multimedia resources
(e.g., image, audio and movie) and text-based resources (e.g.,
HTML, CSS and JavaScript).

A size optimization for the multimedia resources is already
widespread for most Web engineers because every multimedia
resource is basically have a large data size and occupies
network traffic. For the multimedia resources, these size
optimization is generally called video/audio/image coding or
compression. Applying these techniques are decided by the
trade-off of its quality and size. Web engineers select loss-less
format (e.g., png) or lossy format (e.g., jpeg, gif, mp4, mp3)
according to features of optimized resource. The remaining
challenges in the view of traffic reduction of multimedia
resources are on the field of data encoding.

In contrast to that, applying an optimization technique for
text-based Web resources is still unfamiliar compared to the
multimedia resources in spite of there are many optimization
tools. Optimizing text-based resources can affect to reduce
overall Web traffic because of the Web (or REST) architec-
ture called code on demand[1]. In this architecture, a server
transfers a set of raw source codes (i.e., text-based resources)
and a client executes itself on-demand. Therefore, preliminary
size optimization by a compiler is not necessarily applied

contrary to an architecture of binary (or multimedia) data
distribution. For example, code representations, which are
written for improving readability, such as indent, line break
and comment are completely unnecessary for the execution
on a browser. In addition, dead codes[2] such as unreachable
code, unused variable and debugging code statement are also
not necessarily eliminated.

From the perspective of reduction of network traffic, these
wasteful representations should be eliminated by applying any
optimization techniques before the deployment. Ihm and Pai
pointed out that the size composition of multimedia resources
takes over 50% in entire Web pages from the United States[3].
However, these multimedia resources have already optimized
or compressed. On the other hand, although text-based re-
sources takes about 30%, they might have a high potential
for saving Web traffic. Especially the size of JavaScript file
shall become larger with the future growth of HTML5 and
client-side scripting technologies.

Our long-term goal of this research is to create or develop a
common sense of size optimization for text-based resources on
the Web. In order to achieve the goal, we are needed to show
the effect of applying size optimization for the current entire
web data. Furthermore, it is necessary to provide a tool or
a server plugin that automatically applies some optimization
techniques to a set of deployed text-based resources based
on an user-specified optimization configuration. In this paper,
first, we organize some existing size optimization techniques
with these advantages and disadvantages. Next we conduct an
experiment to show the effect of two optimization techniques
using three famous JavaScript libraries. Finally, we discuss
requirements and measures of server-side size optimization
plugin that keeps both continuous of development and code
openness of the Web.

II. SIZE OPTIMIZATION TECHNIQUES OF TEXT-BASED
WEB RESOURCES

Many optimization techniques have already been proposed
and developed on the Web. In this section, we classify these
techniques into the following six categories and discuss their
features and side effects.

• Elimination of non-syntactical representations
• Abbreviation of syntactical representations



• Optimization of syntax tree
• Dynamic self decompression
• Combined resources
• HTTP compression

A. Elimination of non-syntactical representations

This technique eliminates some non-syntactical represen-
tations that include indent, comment, line-break and unnec-
essary white-space[4][5]. This technique is a most simple
and intuitive approach for minifying text-based resources. We
introduce a concrete example in follows. Here is a JavaScript
code which calculates and displays a result of sum of 1 through
10.

1 // initialization
2 var sum = 0;
3 // summation
4 for (var i = 0; i <= 10; i++) {
5 sum += i;
6 }
7 // output
8 alert(sum);

We can achieve the following code by applying the non-
syntactical elimination.

1 var sum=0;for(var i=0;i<=10;i++){sum+=i;}alert(
sum);

The effect of code size reduction is about 50% (102 bytes to
be 52 bytes). This technique may have high effects not only for
JavaScript but also for HTML and CSS because they basically
include a lot of indents and empty lines. The advantages of
this technique are high intuitiveness, high applicability and few
side effects to execution. Almost raw source code can be quite
minified by this technique. The disadvantage is decreasing
readability.

B. Abbreviation of syntactical representations

This technique abbreviates some syntactical representations
such as variable name, function name and removable semi-
colon to shortest possible[4][5]. A sample code described in
Section II-A is converted as below.

1 var s=0;for(var i=0;i<=10;i++){s+=i}alert(s)

A variable sum is abbreviated to s and two semicolons writ-
ten in summing statement and alert statement are eliminated.
The size reduction effect of this technique is 57% (102 bytes
to be 44 bytes). In addition, the following tricky code, called
condensed code[6], can be used in JavaScript.

1 var a = void 0; // var a = undefined;
2 var b = !1; // var b = false;
3 var c = {}; // var c = new Object();
4 var d = []; // var d = new Array();

This technique is also effective for HTML and CSS. In
HTML, some tag attributes such as id name or class name
can be abbreviated. CSS supports shorthand properties[7]
which abbreviate a color code or specifies many properties
simultaneously. The following raw CSS code:

1 #container {
2 margin: 0px 0px 0px 0px;
3 color: #EEEEEE;
4 font-style: italic;
5 font-size: 1.2em;
6 font-family: Arial, sans-serif;
7 }

can be shortened to the following

1 #container {
2 margin: 0;
3 color: #EEE;
4 font: italic 1.2em Arial, sans-serif;
5 }

C. Optimization of syntax tree

This technique applies code size optimization of logical
structure of the syntax tree. Examples are: elimination of
unused variable declaration, elimination of unreachable code,
elimination of redundant code, simultanous variable assign-
ment and optimization of program flow. Basically, these tech-
niques are applied for performance optimizion such as memory
size assignment and execution speed. In the code on demand
architecture, a size of source code can be reduced by applying
these performance optimization.

An example code, described in Section II-A, is minified as
follows by this optimization.

1 alert(55)

The most of popular JavaScript libraries including jQuery
and bootstrap are already optimized before release to CDN
server. These optimized libraries are basically named as
*.min.js. We argue that size optimization of JavaScript
libraries is already well developed.

D. Dynamic self decompression

In this approach, subject source code is regarded as just a
string and compressed by Huffman coding or LZW before the
deployment. Then, the compressed data is deployed with de-
compression code and a client decompresses dynamically[8].
Concrete procedure is follows.

1) A developer generates compressed string data
JScompressed from a raw source code JSraw.

2) The developer combines a compression function
decode() and JScompressed.

3) The developer embeds the combined JavaScript data to
a HTML file and deploys it on a server.

4) A client sends a HTTP request to the server and retrieves
web resources.

5) The client executes decode(JScompressed) dynamically,
generates JSraw and executes it by eval() function.

We show an example of source code. The following
JavaScript code includes a compressed string of a raw code,
described in II-A, and decompression function decode().

1 var decode = function(a) {
2 var d = ...; // huffman decoding
3 return d;



4 }
5 var compressed=’1B1b1e1f2J2Y1c3K3_1I1X1[1]3

V3a1Y2R2S 1P1S1T3O3P1Q2[2g1L1M3f3h1J3Z3e1E1F3]3ˆ1
C2h3 Y181;1>3‘1<2Z3X19242U163S142f3W’;

6 eval(decode(compressed));

This technique builds on “code on demand” architecture
which transfers a script code as a string data to a client and
execute on the client. Loss-less compression for source code
data may have high potential because source code characters
have high-frequency bias because of the reserved words (e.g.,
for and if). Furthermore, this technique allows combined
usage of the previous optimization techniques.

The disadvantages are on trade-off between size of raw code
and size of decode() function and on execution performance.
If a raw code is too short compared to a length of decode()
function, the deployed code should be larger. In the case of
above example, the size of code is five times larger than raw
(102 bytes to be 534 bytes). Additionally, a client is required
extra execution time to decompression.

E. Combined resource

Some HTTP requests and declarations of relationship of
multiple resources (e.g., src= and rel=) can be reduced by
combining many text-based resources into a few number of
files The following code which uses four libraries;

1 <script src="jquery.min.js">
2 <script src="jquery-ui.min.js">
3 <script src="jquery-mobile.min.js">
4 <script src="application.js">

is minified as follows by combining every libraries into a
single “unified.js”.

1 <script src="unified.js">

Although the size reduction effect is small, it has little side-
effect for client execution.

F. HTTP compression

HTTP compression is an optional feature of HTTP/1.1 [9]
to reduce the amount of HTTP traffic of Web contents [10]. It
allows Web contents to be compressed on server-side before
transferring to a client. In general, gzip format, which uses
Lempel-Ziv (LZ77) algorithm with Huffman’s coding, is used
as a compression algorithm.

An example of a sequence of negotiation is follows. First,
a client sends a request message to a server with “Accept-
Encoding” parameter in the request header to enable HTTP
compression.

1 GET /index.html HTTP/1.1
2 Host: example.com
3 Acccept-Encoding: gzip

Then, the server sends a response message with the follow-
ing response header.

1 HTTP/1.1 200 OK
2 Content-Type: text/html; charset=UTF-8
3 Content-Encoding: gzip

In this case, the requested and transferred HTML content
(i.e., http://example.com/index.html) written in the response
body is compressed by gzip. It is necessary for the client
to decompress the response body before parsing the HTML
content.

This technique is supported by a common Web server
software (e.g., Apache HTTP Server, Internet Information
Services and Nginx). However, the technique is disabled by
default because it takes a minor performance hit on both
client and server for the decompression. We consider that this
disablement can be potential for size reduction of JavaScript
resources.

III. COMPARISON OF SIZE OPTIMIZATION TECHNIQUES

A. Qualitative comparison

Table I shows comparison of six size optimization tech-
niques described in Section II-A to II-F. All optimization
techniques, except for HTTP compression, directly modify
text-based resources themselves. Therefore, they have a disad-
vantage of decrease of code readability. Especially, optimized
resources, which are applied optimization of syntax tree or
dynamic self decompression, are almost impossible to under-
stand without decoding. This reduction of readability may lose
concept of openness of the Web which allows everyone to make
copy or reference every Web resources.

HTTP compression and dynamic self decompression cause a
decrease in execution performance of a client because of their
extra process. Especially, dynamic self decompression may
have low practicality because it drastically increases execution
time and decreases code readability. On the other hand, the
current Web servers enable to use HTTP compression. The
current client devices have enough performance to decompress
the compressed HTTP data in an ignorable short time.

We conclude that almost size optimization techniques have
no adverse effects except decrease of code readability. Web
developers should positively consider to use these optimiza-
tions. One of the important concerns for practical use of size
optimization is how to avoid the decrease of readability.

B. Quantitative comparison

We have conducted an experiment in order to confirm
the reduction effects of size optimization techniques. The
experimental objects are famous and widely used JavaScript
libraries.

• jQuery (ver. 2.1.1)
• prototype.js (ver. 1.7.2)
• backbone.js (ver.1.1.2)
Although the three libraries are provided with an already-

minified version on their CDN servers (basically they are
suffixed with “.min.js”), we use non-minified version. Subject
optimization techniques includes HTTP compression (II-F)
and YUI tool[11]. YUI is a minification tool that can process
simple code optimization which includes both of elimina-
tion of non-syntactical representations (II-A) and abbreviation
of syntactical representations (II-B). The reasons why we
excluded other optimization techniques are: optimization of



TABLE I
COMPARISON OF SIZE OPTIMIZATION TECHNIQUES FOR TEXT-BASED WEB RESOURCES.

Technique Subject Side effect on client
HTML CSS JavaScript

Elimination of non-syntactical representations 3 3 3 reduce readability
Abbreviation of syntactical representations 3 3 3 reduce readability
Optimization of syntax tree n/a n/a 3 reduce readability, improve performance
Dynamic self decompression n/a1 n/a1 3 reduce readability, increase execution time
Combined resources 3 3 3 reduce readability
HTTP compression 32 32 32 increase execution time

1 Basically, this method can not be directly applied to HTML or CSS file. However, if they are written in JavaScript and are reconstructed by JavaScript dynamically, the
technique can be applied.

2 This technique can be applied to all Web resources because it compresses the subject data on HTTP protocol level. However, it has less effect for binary or multimedia resources.

TABLE II
EFFECTS OF SIZE OPTIMIZATION FOR POPULAR JAVASCRIPT LIBRARIES

Subject library Raw size YUI1 HTTP Both of YUI
compression and HTTP compr.

jQuery 241.6 KB 128.2 KB 72.9 KB 37.0 KB
(47%) (70%) (85%)

prototype 193.1 KB 102.3 KB 45.3 KB 33.0 KB
(47%) (77%) (83%)

backbone.js 59.6 KB 19.7 KB 17.3 KB 6.9 KB
(67%) (71%) (88%)

Bracket represents size reduction rate compared with raw file size
1 Applied YUI compressor[11]. This tool enables elimination of non-syntactical representations (II-A) and abbreviation of syntactical representations (II-B).

syntax tree (II-C) has strong constraints for subject code
to use it, dynamic self decompression is tricky and slightly
unpractical, and combined resources (II-E) may have small
effects compared with others,

Table II shows the result of the experiment. Percentage in
parentheses represents reduction rate. Script sizes are reduced
about 30% to 50% for each JavaScript library by applying YUI
tool. In other words, applying simple code optimization can
reduce the JavaScript size to 50% to 70%. HTTP compression
also have high reduction rate about 70%. This is because
Huffman coding provides effective performance for a text-
based file. Moreover, we can achieve 90% reduction rate by
using both optimization techniques. The reason is that the
processing result of code optimization is just a text (JavaScript)
file and HTTP compression is effective to a text-based file.
Therefore, both optimization can independently contribute to
size reduction.

The three JavaScript libraries have already been published
optimized file named *.min.js. Furthermore, their CDN
servers have also enable HTTP compression. We can argue that
developers of these famous libraries are contributing internet
traffic reduction by using various size optimization techniques.

IV. TOWARDS AUTOMATIC AND CONTINUOUS SIZE
OPTIMIZATION

In this section, we introduce three existing optimization
tools and discuss behavior of our proposed tool which provides
automatic and continous size optimization.

A. Existing tools

There have been provided many optimization tools and
services.

• YUI Compressor[11] is a well-known tool for JavaScript
minification. YUI supports elimination of non-syntactical
representations (e.g., omitting white-spaces, indents, and
line breaks) and abbreviation of syntactical representa-
tions (e.g., shrinking variable names). The advantage of
this tool is less side effects on script behavior compared
with other minification tools.

• Closure Compiler[12] is one of an optimization tools
provided by Google. In contrast to YUI Compressor,
Closure Compiler supports powerful code optimization
techniques. For example, the shortest optimized code de-
scribed at Section II-C is processed by this tool. However,
the tool imposes some restrictions on an optimized script
in order to retrieve a maximally-optimized code.

• packer[8] is described as an obfuscation tool of
JavaScript. However, in our classification, this tool can
be regarded as a tool for applying dynamic self decom-
pression. Firstly, the tool assumes subject code as just
a string data and applies loss-less compression using
Base62 encoding.

B. Idea of our proposed tool

Existing tools described in the previous section can be
used freely through the Web. However, it is difficult to use
continuously because subject source code need to be input by
a developer manually. Additionally, deployment of optimized
code may go against the concept of openness of the Web. The
optimized code is hard to understand and will lead to less
reusability. The current Web allows us to see and learn many
interesting code snippets written from raw source code.

We assume that our objective size optimization tool is
rquired to fulfill the following requirements.



http://…/

index.html

index.html
(optimized)

automatic & continuous
optimization

http://…/

index.raw.html

redirect

redirect

developer

index.html
(non-optimized)

deploy
serverclient

make

plugin .optimize
(config file)

Fig. 1. Processing flow of size optimization plugin

• R1: Providing automatic and customizable size optimiza-
tion.

• R2: Keeping openness of the Web for clients.
In order to meet the R1, optimization tool should be

provided as a server-side plugin. A developer create a file
for optimization customization like .htaccess file that is a
configuration file for access control of Web resources. When a
developer set the customization file (e.g., .optimization)
to the subject resource directory, a server applies specified
optimization techniques automatically.

To meet the R2, both of raw files and optimized files should
be published on a server simultaneously. In this case, URI
names of these two files must be different from each other.
For example, a file name, index.html, is already a de-
facto standard of welcome file name. Almost modern browsers
complement index.html when the accessed URI ends with
slash. If an optimized file is named index.min.html and
deployed on a server, this complementat of welcome file name
is disabled.

Figure 1 shows behavior of our proposed size optimization
plugin which meets both R1 and R2. First, a developer deploys
a HTML file (index.html) and an optimization customization
file (.optimize) to the directory on a Web server. The
plugin automatically loads these file and creates optimized
files as temporary. This automatic optimization meets R1.
When a client sends a HTTP request to http://.../index.html,
the server redirects to the optimized file. The client can
retrieve the optimized file and save network traffic without any
additional effort. An endpoint http://.../index.raw.html allows
access to non-optimized file in order to meet the R2. If a user
want to check raw source code, the user only has to specify
*.raw.html or *.raw.js.

V. DISCUSSION

There is an opposite approach to our aimed common
sense development of size optimization. Google provides an
option to enable Web data optimization in mobile version of
Chrome[13]. If a user enables this option, every HTTP request
are bypassed to a Google proxy server. Then, requested Web
resource is optimized on the proxy server and returns to the
client.

The advantages of common sense development compared
with the Google proxy are follows.

• Avoiding collection of browse history by Google.
• Enabling flexible and customizable size optimization.
• Faster response because of needless of proxy.
• Enabling size optimization to SSL traffic data.
The follows are disadvantages.
• Need to be developed common sense of size optimization.
• Impossible to optimize entire Web data.

VI. CONCLUSION

In this paper, we discuss about size optimization of text-
based Web resources with the aim of network traffic reduction.
We conduct an experiment to show the effect of two opti-
mization techniques using three famous JavaScript libraries.
Then we discuss requirements and measures of server-side size
optimization plugin that keeps both continuous of development
and code openness of the Web.

One of the most important future works is to conduct
a massive empirical study to confirm prevelance rate and
size reduction effect using a large number of current Web
pages. Additionally, we must discuss detailed description of
an customization file .optimization. We have a plan to
develop the server-side plugin described in Section IV-B.

ACKNOWLEDGMENT

This research was partially supported by the Japan Ministry
of Education, Science, Sports, and Culture [Grant-in-Aid for
Scientific Research (B) (No.26280115, No.15H02701), Young
Scientists (B) (No.26730155).

REFERENCES

[1] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[2] J. Knoop, O. Rüthing, and B. Steffen, Partial dead code elimination.
ACM, 1994, vol. 29, no. 6.

[3] S. Ihm and V. S. Pai, “Towards understanding modern web traffic,” in
Proc. Internet Measurement Conference, 2011, pp. 295–312.

[4] S. Souders, High Performance Web Sites: Essential Knowledge for
Front-End Engineers. O’reilly, 2007.

[5] G. Frederick and R. Lal, Optimizing Mobile Markup, Beginning Smart-
phone Web Development. Apress, 2009, pp. 213–238.

[6] SitePoint, “19+ javascript shorthand coding techniques,” http://www.
sitepoint.com/shorthand-javascript-techniques/, (last accessed at Decem-
ber 2015).

[7] MDN, “Shorthand properties,” https://developer.mozilla.org/en-US/docs/
Web/CSS/Shorthand properties, (last accessed at December 2015).

[8] D. Edwards, “A javascript compressor. version 3.0,” http://dean.edwards.
name/packer/, (last accessed at December 2015).

[9] R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, Hypertext Transfer Protocol HTTP/1.1. RFC Editor,
1999.

[10] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud’hommeaux, H. W.
Lie, and C. Lilley, “Network performance effects of http/1.1, css1, and
png,” in Proc. Conference on Applications, technologies, architectures,
and protocols for computer communication, vol. 27, no. 4, 1997, pp.
155–166.

[11] J. Lecomte, “YUI compressor,” http://yui.github.io/yuicompressor/, (last
accessed at December 2015).

[12] Google Inc., “Closure compiler,” https://developers.google.com/closure/
compiler/, (last accessed at December 2015).

[13] ——, “Data compression proxy,” https://developer.chrome.com/
multidevice/data-compression, (last accessed at December 2015).


