
Toward Introducing Automated Program Repair Techniques
to Industrial Software Development

Keigo Naitou∗, Akito Tanikado∗, Shinsuke Matsumoto∗, Yoshiki Higo∗, Shinji Kusumoto∗,
Hiroyuki Kirinuki∗∗, Toshiyuki Kurabayashi∗∗, Haruto Tanno∗∗

{k-naitou,a-tanikd,shinsuke,higo,kusumoto}@ist.osaka-u.ac.jp
∗Osaka University, 1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

∗∗Nippon Telegraph and Telephone Corporation, 2-13-34, Konan, Minato-ku, Tokyo, 108-8019, Japan

ABSTRACT
Automated program repair (in short, APR) has been attracting
much attention. A variety of APR techniques have been proposed,
and they have been evaluated with actual bugs in open source
software. Currently, the authors are trying to introduce APR tech-
niques to industrial software development (in short, ISD) to reduce
development cost drastically. However, at this moment, there are
no studies that report evaluations of APR techniques on ISD. In
this paper, we report our ongoing application of APR techniques
to ISD and discuss some barriers that we found on the application.

CCS CONCEPTS
• Software and its engineering→ Genetic programming;

KEYWORDS
Automated program repair, Industrial application
ACM Reference Format:
Keigo Naitou∗, Akito Tanikado∗, Shinsuke Matsumoto∗, Yoshiki Higo∗,
Shinji Kusumoto∗, Hiroyuki Kirinuki∗∗, Toshiyuki Kurabayashi∗∗, Haruto
Tanno∗∗. 2018. Toward IntroducingAutomated ProgramRepair Techniques
to Industrial Software Development. In ICPC ’18: ICPC ’18: 26th IEEE/ACM
International Confernece on Program Comprehension , May 27–28, 2018,
Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3196321.3196358

1 INTRODUCTION
Software developers spend 50% of their programming time to find
and fix bugs [1]. Thus, debugging support is a hot topic in the field
of software engineering. Debugging operation can be separated
into two sub-operations: bug localization and bug modification.
There are a variety of studies on bug localization [2–5]. Nowa-
days, automated program repair (in short, APR)—fully automated
bug localization and modification—is attracting much attention.

GenProg is a breakthrough technique in APR [6].GenProg takes
a buggy program and a set of test cases and then it generates a
modified program that passes all the given test cases. GenProg’s
bug modification is performed by deleting the localized code or
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196358

inserting a code line to the localized code. A genetic algorithm is
used in GenProg’s bug modification process, which enables Gen-
Prog to generate a modified program even if a given buggy pro-
gram includes multiple bugs and/or it requires many lines of code
to remove bugs. Le Goues et al. applied GenProg to eight open
source software, so that GenProg was able to fix 55 out of the 105
bugs in total [7]. After Le Goues’s experiment, other researchers
conducted experiments to evaluate GenProg’s capability. Many
other APR techniques also have been proposed afterGenProg. Bug
datasets created on actual bugs of open source software [8, 9] are
mainly used to evaluate APR techniques including GenProg.

At this moment, there is no data on how APR techniques work
on bugs in industrial software and what are issues to introduce
APR techniques to industrial software development (in short, ISD).
Thus, it is unclear whether applying APR techniques to ISD in-
cludes different issues applying them to open source software or
not. Currently, we are conducting an academic-industrial collabo-
ration towards introducingAPR techniques to ISD. In this research,
we are trying to apply GenProg and NOPOL [10] to 22 bugs that
had been given from a company. We succeeded to fix a couple of
bugs with the tools and found three issues inherent to ISD appli-
cation. Please note that our first aim is to reveal unknown issues
of applying APR techniques to ISD, not to fix bugs in industrial
software as many as possible.

2 ANSWERS TO THE REQUIREMENT IN CFP
What is the new idea? Why is it new?

This is the first research that the APR techniques have been
applied to ISD. This research is still on the early stage; only
two tools have been applied to a single system. However,
the authors believe that the current experimental results are
valuable for researchers and practitioners because we found
that it is not easy to introduce the APR techniques to IDS.

What is the single most related paper?
The authors consider literature [11] is the most related pa-
per. The research applied GenProg, NOPOL, and one more
tool to real bugs in open source software. As a result, Gen-
Prog andNOPOL generated one and five correct patches for
224 bugs, respectively.

What feedback do the authors expect from the forum?
The authors would like to exchange information with other
researchers and practitioners who are interested in APR
techniques: which tools are better? what kinds of settings
work well? what kinds of new APR techniques should be
effective to fix more bugs? The authors are happy if we talk

https://doi.org/10.1145/3196321.3196358
https://doi.org/10.1145/3196321.3196358
https://doi.org/10.1145/3196321.3196358

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
Keigo Naitou∗, Akito Tanikado∗, Shinsuke Matsumoto∗, Yoshiki Higo∗, Shinji Kusumoto∗, Hiroyuki Kirinuki∗∗, Toshiyuki Kurabayashi∗∗,

Haruto Tanno∗∗

developers of any of APR techniques in person at the con-
ference.

3 APR TECHNIQUES
In this research, currently we are using two APR tools, ASTOR [8]
and NOPOL [10]. There are some reasons why we are using these
tools: they can handle Java version 5, 7, and 8; they are written
in Java because we need to run them in Windows environment;
they are publicly available and have been used in other research
[11]. Both of the tools use the Ochiai algorithm [12] to localize
buggy code. ASTOR employs theGenProg algorithm [6] to modify
localized buggy code. GenProg is a search-based technique while
NOPOL is a semantic-based one.

There are many other techniques on APR. The search-based
techniques (also known as generate-and-validate approach) search
within a defined search space to generate a repair candidate and
validate it with a given set of test cases. SPR [13], HDRepair [14],
and Prophet [15] are classified into the search-based approach.

The semantic-based techniques synthesize a modified program
by leveraging semantic information of the buggy program. Sym-
bolic execution and constraint solving techniques are widely used
in the semantic-based approach. Angelix [16], DirectFix [17], and
SemFix [9] are classified into the semantic-based approach.

4 RESEARCH MOTIVATION
As shown in Section 3, many APR techniques have been proposed
before now. However all of them are evaluated on bug datasets of
open source software. Such bug datasets are specialized for eval-
uating APR techniques, so that they are detached from reality, es-
pecially from real bugs in ISD.

Thus, it is still unknown how well APR techniques work
for bugs in ISD, which is our research target of this academic-
industrial collaboration. Besides, if APR techniques do not work
well for ISD, there may be some particular issues in ISD. We also
aim to reveal what kinds of issues exist for industrial applications.

In other words, in this academic-industrial collaboration, we are
researching to reveal the following research questions.

RQ1: How well do APR techniques work for bugs in ISD?
RQ2: What kinds of issues exist in ASD application?

5 RESEARCH PROCEDURE
we are conducting an experiment and an investigation.

Experiment: we are appling APR techniques to ISD.
Investigation: we have regular meetings with the company

that developed the target software to discuss issues to ap-
plying the APR techniques to the target software.

Regarding the investigation, we have 1-hour meetings
once/twice a month. Our university is far from the company, and
so we are usually having video conferences. In video conferences,
firstly we explain our progress to the company and our issues
on APR application. Then, the company gives us some advice to
overcome the issues. The company’s advice is project-specific
ones rather than APR technical ones. The authors are experts in
APR techniques but not in ISD including the target software. The
company has significant knowledge about the target software

but not about APR techniques. This meeting is inevitable for our
collaboration.

In the remainder of this section, we describe our experiment.

5.1 Experiment
The targets of our experiments are 327 real bugs found in ISD. The
software was developed in Java. The software includes approxi-
mately 190 kilo lines of code.

In this experiment, we used two tools, ASTOR [8] and NOPOL
[10]. Before applying the tools, we extracted a set of bugs that can
be removed by modifying only source files. The followings are the
steps of our bug extraction procedure. The prefix numbers mean
the number of extracted bugs.

327: the bugs that we obtained from the company.
132: the bugs that were found in the process of unit testing.
78: the bugs that we could identify their fixing commits.
22: the bugs in whose modification commits only source files
were modified.

Firstly, we explain why we used only bugs that had been found
in the process of unit testing. In the target software development,
test cases for unit testing are written with JUnit and they can be
executed automatically. On the other hand, integration testing and
system testing were conducted with scenarios. In other words, to
conduct a test case of integration/system testing, a developer needs
to intervene. It is difficult to run test cases of integration/system
testing of the target software. ASTOR and NOPOL, which we use
in this experiment, executes all test cases to generate a modified
program. Thus, automated execution of test cases is mandatory in
our experiment. That is why we used only bugs of unit testing. If
test cases of integration/system testing were able to run automati-
cally, we could have used the bugs in integration/system testing in
our experiment. In the target software, found bugs were managed
with a spreadsheet. We checked the spreadsheet and extracted the
bugs that had been found in the unit testing process.

Secondly, we explain why we used only bugs that we had been
able to identify their modification commits. GenProg’s output is a
program that passes all the test cases. However, passing all the test
cases does not equal to being a correct program. If given test cases
are not sufficient, amodified program passing all the test casesmay
still include bugs. Thus, we need to examine whether an output
program is truly correct or still buggy. To conduct such examina-
tions, developer’s modification is necessary for the authors. The
company gave the authors a copy of SVN repository of the tar-
get software. The authors tried to identify modification commits
for each of the unit testing bugs by using bug IDs written in the
spreadsheet. For some bugs in the spreadsheet, we were not able
to identify their modification commit because their bug IDs did
not appear in any commit logs. There are commits where multiple
bugs were modified all together, so that we were not able to obtain
modified code for each of the bugs. Consequently, in this filtering
step, we extracted the bugs that we had been able to obtain their
developers’ modifications.

Finally, we explain why we used only bugs in whose modifica-
tion commits only source files had been modified. APR techniques
includingGenProg andNOPOL canmodify only source files. How-
ever, the target systems include other kinds of files such as .prop-
erty files and .xml files. If such files were changed for modifying a

Toward Introducing Automated Program Repair Techniques
to Industrial Software Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

...
for(int i; i < num; i++){

if(checkNum(num)) {
list = new ArrayList<String>();

+ break; // Developer’s modification
+ return list; // jGenProg’s modification

}
list.add(num);

}
return list;
...

Figure 1: A modification example
bug, APR techniques cannot theoretically modify it. Thus, in this
experiment, we extracted the bugs in whose modification commits
only source files had been modified.

Unfortunately, for most of the 22 bugs, there were no test cases
to expose the bugs1. Consequently, we created new test cases for
each of such bugs because APR techniques require a set of test
cases including at least one failing one as input.

6 RESULTS
Herein, we show the results of our experiment and investigation.

6.1 Experimental results
Currently, we have succeeded to prepare a set of test cases includ-
ing failing ones for 9 out of the 22 bugs. We have applied AS-
TOR and NOPOL to the 9 bugs. Table 1 shows our current suc-
ceeded/failed status for the target bugs. The followings are brief
explanations for each status of the table.

Succeeded: the tool was able to generate a modified program.
Failed (Timeout): the tool execution was not finished within

a given time-out period.
Failed (NoModificationPoint): the Ochiai algorithm calcu-

lated a suspiciousness value for each of the target software,
but the tool was not able to decide where to modify. This
error is due to tool’s/environmental issues. However, more
investigation is required for this error.

Failed (ExecutionException): the tool execution
stopped with ExecutionException2. This error is due
to tool’s/environmental issues. More investigation is
required for this error.

Failed (BugLocalization): the bug localization did not work
due to insufficient test cases.

Failed (NoSolution): there was no solution in the search
space of the tool.

ASTORwas able to fix a bug (BUG-1 in Table 1) in a similar way
to developer’s modification. Figure 1 shows ASTOR’s modification
and developer’s modification for BUG-13. The developer inserted
a break-statement while ASTOR inserted a return-statement. The
kinds of inserted statements are different from each other, but
we can see that the two modifications are semantically the same.

1The target software included many test cases for unit testing. But, all of them passed
for the buggy versions of the target program
2java.util.concurrent.ExecutionException
3Please note that we cannot show raw source code of the target software because it
is not open source software. In Figure 1, surrounding code not related to the bug and
variable names are not real ones.

Moreover, the understandability of the code modified by ASTOR
is reasonable. Actually, the developer of the software told us that
the ASTOR’s modification is acceptable. This fact means that APR
techniques hold the promise of being useful for some specific bugs
in ISD. However, ASTOR was not able to fix the other bugs. We
shows the reasons in Subsection 6.2.

6.2 Investigation results
At this moment, we have found the following issues of APR appli-
cation to ISD:

• the number of modifiable bugs,
• parameter adjustments, and
• the number of test cases.

The reminder of this subsection explains each issue in detail.

The number of modifiable bugs
As described in Subsection 5.1, there are some restrictions to apply
APR techniques. The authors received 327 bugs from the company,
but only 22 out of them became the targets of APR techniques. In
the case of our experiment, APR techniques are applicable to only
7% bugs. The second filtering, which is extracting the bugs whose
modification commits we were able to identify, is an experimental
restriction, not a real one. By the second filtering, 54 bugs were
removed. However, even if APR techniques can be applied to all
the 54 bugs, the ratio becomes only 23%. This low ratio is the first
issue of ISD application.

The fact that only 22 out of the 327 bugs are in source code
is an important finding. This fact means that, we need to enhance
APR techniques for other kinds of files than source files to fix more
bugs. There is a technique to handle bugs in configuration bugs
[18], which is a kind of interactive bug modification rather than
automated program repair.

The authors carefully checked developers’ modified code for the
22 bugs. As a result, we found that ASTOR and NOPOL can fix
five and one out of the 22 bugs in theory, respectively. Previous
studies reported that NOPOL fixed more bugs than ASTOR, but
our investigation come out the opposite of the previous studies.
This is because only a small percentage of bugs are due to wrong
condition of if-statements.

Parameter adjustments
ASTOR and NOPOL have 67 and 15 parameter, respectively4. The
followings are some parameters in ASTOR:
Table 1: Current succeeded/failed status for the target bugs
Bug ID ASTOR NOPOL
BUG-1 Succeeded Failed (Timeout)
BUG-2 Failed (NoModificationPoint) Failed (ExecutionException)
BUG-3 Failed (BugLocalization) Failed (BugLocalization)
BUG-4 Failed (BugLocalization) Failed (BugLocalization)
BUG-5 Failed (BugLocalization) Failed (BugLocalization)
BUG-6 Failed (BugLocalization) Failed (BugLocalization)
BUG-7 Failed (BugLocalization) Failed (BugLocalization)
BUG-8 Failed (NoSolution) Failed (Timeout)
BUG-9 Failed (NoSolution) Failed (Timeout)

4We carefully checked all the options of ASTOR andNOPOL not to count the options
that do not affect generating a modified program. For example, some options such
as showing the help messages and executing the tools for the sample bugs are not
included in those numbers.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
Keigo Naitou∗, Akito Tanikado∗, Shinsuke Matsumoto∗, Yoshiki Higo∗, Shinji Kusumoto∗, Hiroyuki Kirinuki∗∗, Toshiyuki Kurabayashi∗∗,

Haruto Tanno∗∗

• the number of variant program per generation in a genetic
algorithm,

• the maximum generation in a genetic algorithm, and
• the time-out period.

We cannot easily decide optimal values for some parameters be-
cause bug modifications of APR techniques depend on target pro-
gram size, the number of passing/failing test cases, the kinds of
target bugs, and other elements. The purpose of using APR tech-
niques is reducing the debugging cost, so that spending long hours
to find optimal values for parameters is misplacing its priorities.

The number of test cases
The developers of the target software took count of code cover-
age such as statement coverage and condition coverage when they
made test cases for unit testing. They also tried to achieve high
coverage with a small number of test cases. This developers’ strat-
egy has poor compatibility with APR techniques. In some cases,
the number of test cases was too small to apply APR techniques,
so that bug localization did not work well. That is the main reason
for “Failed (BugLocalization)” in Table 1. Bug localization is im-
portant because bug modification is performed for localized code.
If buggy code is not localized well, it is difficult to modify it with
APR techniques. The same issue occurs in open source software
[19]. Consequently, the essential issue is that a sufficient set of test
cases for developers to check program behavior is different from a
sufficient set of test cases for bug localization of APR techniques.

6.3 Answers to RQs
From the results, we answer the two RQs as follows.

Our answer to RQ1: APR techniques hold the promise of be-
ing useful for some specific bugs in ISD.

Our answer to RQ2: We found the following three issues.
The first issue is a low ratio of modifiable bugs with APR
techniques. The second issue is a difficulty in adjusting pa-
rameter of APR techniques. The third issue is an essential
difference between test cases for checking program behav-
ior and for bug localization of APR techniques.

7 THREATS TO VALIDITY
We are aware that our experimental results depend the APR tools
that we used. Especially, the parameter adjustment issue is clearly
specific to Astor and NOPOL. However, we consider this results
are enough valuable because other researchers and practitioners
may apply the tools to industrial software.

To avoid personal mistake, four persons in the authors had dis-
cussions about each of the bugs to understand its symptoms and
the developer’s modification for it. Then, the four persons added
failing test cases for the target bugs. The authors took a couple of
hours for each of the bugs to add failing test cases. We referred
to the existing test cases as much as possible when we create test
cases. We also sent the added test cases to the developers of the
software and they checked the test cases. However, if the developer
added failing test cases by themselves, different test cases might
have been added.

At the submission time, we have succeeded to apply the APR
tools to only nine bugs, which is of course too small to draw

a conclusion. We are now trying to perform the APR tools for
the remaining 12 bugs. Each of the bugs requires special arrange-
ments for the tools. For example, we need to pass JVM options (“-
javaagent” and “-noverify”) to run some attached test cases; how-
ever the tools have no function to pass them to GZolter, which is
an implementation of the Ochiai algorihm and used in the tools.

8 CONCLUSION
In this paper, we reported our collaboration on introducing auto-
mated program repair techniques to industrial software develop-
ment. Before now,we have succeeded to fix a real bug in a company
project. On the other hand, we have revealed three issues for indus-
trial application of automated program repair techniques. In the
near future, we are going to try other automated program repair
techniques. We are also going to derive techniques/methodologies
to overcome/avoid the three issues.

REFERENCES
[1] J. Fishman. University of Cambridge Study: Failure to Adopt Reverse

Debugging Costs Global Economy $41 Billion Annually (visited 5/Jun/2018).
[Online]. Available: https://goo.gl/Dj7gC3

[2] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint: Problem
Determination in Large, Dynamic Internet Services,” in DSN’02, pp. 595–604.

[3] J. A. Jones and M. J. Harrold, “Empirical Evaluation of the Tarantula Automatic
Fault-localization Technique,” in ASE’05, pp. 273–282.

[4] D. Saha, M. G. Nanda, P. Dhoolia, V. K. Nandivada, V. Sinha, and S. Chandra,
“Fault Localization for Data-centric Programs,” in ESEC/FSE’11, pp. 157–167.

[5] D. Zuddas, W. Jin, F. Pastore, L. Mariani, and A. Orso, “MIMIC: locating and un-
derstanding bugs by analyzing mimicked executions,” in ASE’14, 2014, pp. 815–
826.

[6] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically Finding
Patches Using Genetic Programming,” in ICSE’09, pp. 364–374.

[7] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each,” in ICSE’12, pp.
3–13.

[8] M. Martinez and M. Monperrus, “ASTOR: A Program Repair Library for Java,”
in ISSTA’16, pp. 441–444.

[9] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. C handra, “SemFix: Program
Repair via Semantic Analysis,” in ICSE’13, pp. 772–781.

[10] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote, T. Durieux,
D. Le Berre, and M. Monperrus, “Nopol: Automatic Repair of Conditional State-
ment Bugs in Java Programs,” IEEE TSE, vol. 43, no. 1, pp. 34–55, 2017.

[11] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus, “Automatic
Repair of Real Bugs in Java: A Large-scale Experiment on the Defects4J Dataset,”
Empirical Software Engineering, vol. 22, no. 4, pp. 1936–1964, 2017.

[12] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “An Evaluation of Similarity
Coefficients for Software Fault Localization,” in PRDC’06, pp. 39–46.

[13] F. Long and M. Rinard, “Staged Program Repair with Condition Synthesis,” in
ESEC/FSE’05, pp. 166–178.

[14] X.-B. D. Le, D. Lo, and C. L. Goues, “History Driven Program Repair,” in
SANER’16, pp. 213–224.

[15] F. Long andM. Rinard, “Automatic Patch Generation by Learning Correct Code,”
in POPL’16, pp. 298–312.

[16] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable Multiline Program
Patch Synthesis via Symbolic Analysis,” in ICSE’16, pp. 691–701.

[17] ——, “DirectFix: Looking for Simple Program Repairs,” in ICSE’15, pp. 448–458.
[18] A. Weiss, A. Guha, and Y. Brun, “Tortoise: Interactive System Configuration Re-

pair,” in Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, 2017, pp. 625–636.

[19] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the Cure Worse Than the
Disease? Overfitting in Automated Program Repair,” in ESEC/FSE’15, pp. 532–
543.

https://goo.gl/Dj7gC3

