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ABSTRACT
Refactoring evaluation is a challenging research topic because right
and wrong of refactoring depend on various aspects of development
context such as developers’ skills, development cost, deadline and
so on. Many techniques have been proposed to evaluate refactoring
objectively. However, those techniques do not consider individual
contexts of software development. Currently, the authors are trying
to evaluate refactoring automatically and objectively with consid-
ering development contexts. In this paper, we propose to evaluate
refactoring with code naturalness. Our technique is based on a
hypothesis: if a given refactoring raises the naturalness of existing
code, the refactoring is beneficial. In this paper, we also report our
pilot study on open source software.
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1 INTRODUCTION
The source code of software systems decays due to repeated changes
such as fixing bugs and adding new functions [1]. Refactoring is
known as a promising technique to improve source code quality for
future maintenance tasks. Fowler et al. listed typical symptoms in
the source code that possibly indicate deeper problems (namely, bad
smells) and sophisticated ways to get out from under the symptoms
[2]. However, in practice, it is not easy to identify where/how to
refactor the source code. In fact, programmers rely on their experi-
ences and hunch to do refactorings.

Extract Method and Inline Method patterns should be a good
example for the refactoring difficulty. The two patterns are opposi-
tional operations on the source code. By applying Extract Method,
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methods become shorter and easier to understand while the code
becomes fragmented. By applying Inline Method, the fragmented
code gets together while the code becomes more complex. Using
code metrics is a way to identify where to be refactored [8] but
there is no general and strict standard for the code to be refactored.
Different projects and different developers have different standards
for good code. Thus, the authors consider that it is important to
take into account such differences for suggesting refactoring op-
portunities.

In this paper, we propose to use “naturalness of code” to eval-
uate refactorings. If a given refactoring raises the naturalness of
code, it is regarded as appropriate. Naturalness is a numerical value
calculated with probabilistics language models. Naturalness means
how natural a given word sequence is for the model. Recently, nat-
uralness has been used in software engineering research [4, 7]. The
advantage of the proposed technique is that it can evaluate a given
refactoring as a numerical value by considering characteristics of
its project and developers.

We have applied the proposed technique to a golden set of 28
good refactorings. As a result, the technique regarded 19 out of the
28 refactorings as good.

2 PROBABILISTICS LANGUAGE MODEL AND
NATURALNESS

Probabilistics language models are models to calculate generation
probability of a given word sequence. It can present naturalness
of a given token sequence as a numerical value. The generation
probability of word sequence S = w1w2 · · ·wm can be represented
by the following formula.

P(S) = P(w1)
m∏
i=2

P(wi |w1, · · · ,wi−1) (1)

Herein, P(wi |w1, · · · ,wi−1) is the probability that wordwi comes
nextw1, · · · ,wi−1. However, calculating P(wi |w1, · · · ,wi−1) is un-
realistic because the number of patterns ofw1, · · · ,wi−1 becomes
enormous. Thus, n − дram language model is used, which consider
only n-length subsequences in the given word sequence.

P(wi |w1, · · · , tw−1) ≃ P(wi |wi−n+1, · · · ,wi−1) (2)

P(wi |wi−n+1, · · · ,wi−1) is calculated with the following formula.

P(wi |wi−n+1, · · · ,wi−1) =
C(wi−n+1, · · · ,wi−1,wi )
C(wi−n+1, · · · ,wi−1)

(3)

C(wi−n+1, · · · ,wi−1) is the number of occurrence of
wi−n+1, · · · ,wi−1 in source code corpus, which is data used
for constructing a model.
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Figure 1: An overview of our technique

A raw value of P(wi |wi−n+1, · · · ,wi−1) is not easy to treat be-
cause it often become very small. In this research, we use natural-
ness N (wi ) of wordwi . N (wi ) is a logarithmic value as follows.

N (wi ) = log P(wi |wi−n+1, · · · ,wi−1) (4)

Consequently, N (S), which is the naturalness of word sequence
S = w1w2 · · ·wm can be represented with the following formula.

N (S) = log P(w1) +
m∑
i=2

log P(wi |wi−n+1, · · · ,wi−1) (5)

Probabilistics language models and naturalness are widely used in
the field of machine transition and speech recognition. Hindle et al.
found that language models also work well for program source code
[4]. Allamanis et al. proposed a technique to suggest appropriate
identifier names with language models [4]. Ray et al. investigated
the relationship between buggy code and naturalness [7]. They
found that buggy code tended to have a low naturalness and fixing
bugs tend to increase the naturalness. In this research, we propose
to use naturalness for evaluating refactorings.

3 NATURALNESS-BASED REFACTORING
EVALUATION

Herein, we propose a new technique to evaluate refactorings. Our
key idea is that source code becomes easier to understand by conduct-
ing good refactorings. If source code consists of stereotypical program
statements, developers will not find it difficult to understand it. How-
ever, if unusual and unfamiliar program statements exist, they will
find it difficult to understand.

In this research, we use naturalness based on n-gram language
model to represent the stereotypical degree of program statements.
Figure 1 shows an overview of the proposed technique. The pro-
posed technique takes source code corpus and target source code.
Its output is a numerical score of the given target source code. This
score gets lower if the source code becomes more natural. Thus, if
the score of the post-code of a given refactoring is lower than the
score of the pre-code, the refactoring is regarded as appropriate.

The proposed technique consists of two phases.
Phase-1 (Model construction): methods in the given source

code corpus are extracted. Then, a token sequence is gener-
ated from each of the extracted methods. Every n-gram in
the token sequences is used to construct a language model.
In this research, we use the model proposed in literature [9].

Phase-2 (Score calculation): token sequences are generated
in the same way as Phase-1. Then, naturalness is measured

Score

median

-12.7

Figure 2: An intuitive model of score calculation

for each line in the code. At last, a score is calculated by
using lines’ naturalness.

In Phase-2, the following formula is used to calculate the score.

score =
1
M

M∑
i=0

max(0, t − N (i)) (6)

Herein,M is the number of lines in the given source code, t is the
threshold, N (i) means the naturalness of the i-th line in the given
source code. We use the median value of naturalness of source
code corpus as the threshold. The lower score means that the given
source code is more natural.

We explain the meanings of the score calculation with Figure
2. In the figure, all lines in the given source code are sorted in
the ascending order fo their naturalness: the leftmost line is most
unnatural; the rightmost line is most natural. The dashed horizontal
line is the threshold. Thus, the formula means the score is the square
measure of the red-colored part in the graph. Consequently, if the
square measure is small, the given source code is more natural.

3.1 Example
We show a measurement example by using Figure 3a. The source
code in the figure includes a function to sum two hex numbers.
The two numbers are given to method add as String. Herein, we
assume that the median of the naturalness of source code corpus is
−5.7. The score of this source code becomes 145.6.

Figure 3a includes duplicated instructions that convert a string
to a hex number. Thus, we extracted the duplicated instructions
as a new method, convertHex (Figure 3b). The score of this source
code is 66.6. The score dropped by the refactoring.

The extracted method includes a complex instruction. Thus, we
dissolved this instruction into multiple simple instructions (Figure
3c). The score becomes 27.3, which means the second refactoring
also dropped the score.
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With the three types of source code, we can see that the two
refactorings make the source code easier to understand. The score
dropping represents the source code becomes easier to understand.

4 EXPERIMENT
We applied the proposed technique to actual good refactorings on
open source software. Then, we investigated whether the proposed
technique regarded each of the refactorings as good or not.

4.1 Procedure
We used an online dataset published by Higo et al [3]. This dataset
includes the source code of the Java projects in Apache Software
Foundation1. There are two reasons why we used this dataset.

• This dataset is large enough to construct an n-gram language
model. More concretely, it consists of 84 projects, 66,724 Java
source files, and 11.5 MLOC.

• Testing code and auto-generated code in the Java projects
were manually eliminated.

We selected JUnit42 as our target. JUnit4 is managedwith GitHub.
The developers review committed code each other, which pledges
that survived refactoring commits include good refactorings. Firstly,
we identified commits related to refactoring with keyword searches
on commit logs. We used “refactor” and “clean ” as keywords. Then,
we checked each of committed source code carefully. If the commit
included only one refactoring, we added the refactoring to our
golden set.

For each of the refactorings in the golden set, we measured
naturalness of each line of its pre-code and post-code. As a threshold,
we used median of line naturalness of the dataset by using leave-
one-out method. Then, we measured the score of the pre-code and
post-code of each refactoring and then we compare the two values.
If the score of the post-code is lower than the pre-code, a given
refactoring increases naturalness of the code. In other words, the
proposed technique regardes a given good refactoring as good.

4.2 Results
We confirmed that the proposed technique worked well for 19
out of the 28 target refactorings. The accuracy resulted in 67.8%.
However, currently, the proposed technique is naive. The proposed
technique performs a lexical analysis for given source files. How-
ever, we used obtained token sequences as they were. A couple of
optimization can be considered to make the proposed technique
better. For example, normalizing user-defined names with special
tokens will be effective because we construct language models from
different projects. Different project should have different name con-
ventions. Another enhancement is to eliminate trivial tokens (e.g.,
private, and final) included in token sequences. Source code con-
tains many such tokens and eliminating those tokens is effective
for code completion [5].

There were three refactorings on that the score did not change.
The refactorings were changing modifiers of a class field and mov-
ing method to another class. The proposed consider only source

1http://www.apache.org/
2https://github.com/junit-team/junit4

public void add(String left, String right){
int leftValue = 0;
for(int i = 0; i < left.length(); i++){
leftValue *= 16;
leftValue += 'A'<=left.charAt(i) && left.charAt(i)<= 
'F' ? left.charAt(i)-'A' + 10 : left.charAt(i) - '0';

}

int rightValue = 0;
for(int i = 0; i < right.length(); i++){
rightValue *= 16;
rightValue += 'A'<= right.charAt(i) && right.charAt(i) <=          
'F‘ ? right.charAt(i) - 'A' + 10: right.charAt(i) - '0';

}

System.out.println(leftValue + " " +  rightValue);
}

-4.4
-8.7
-6.6
-73.6

-0.8

-3.6
-8.4
-6.6
-73.8

-0.8

-7.9

Naturalness

(a) Original source code

public void add(String left, String right){
int leftValue = convertHex(left);
int rightValue = convertHex(right);
System.out.println(leftValue + " " +  rightValue);

}

public int convertHex(String str){
int value = 0;
for(int i = 0; i < str.length(); i++){
value *= 16;
value += 'A' <= str.charAt(i) && str.charAt(i) <= 'F' ? 
str.charAt(i) - 'A' + 10: str.charAt(i) - '0';

}
return value;

}

-9.3
-7.8
-8.1

-5.3
-5.8
-9.1
-60.6

-0.8
-3.5

Naturalness

(b) After extracting a new method

public void add(String left, String right){
int leftValue = convertHex(left);
int rightValue = convertHex(right);
System.out.println(leftValue + " " +  rightValue);

}

public int convertHex(String str){
int value = 0;
for(int i = 0; i < str.length(); i++){
value *= 16;
char c = str.charAt(i);
if('A' <= c && c <= 'F'){
value += c - 'A' + 10;

}else{
value += c - '0';

}
}
return value;

}

-9.3
-7.8
-8.1

-5.3
-5.8
-9.1
-6.8
-7.5
-12.3
-1.5
-11.8
-0.8
-0.8
-3.2

Naturalness

(c) After dissolving a complex statement

Figure 3: Example

code inside methods, which is why the proposed technique was
not able to treat the three refactorings.

Table 1 shows the detail results for each target refactoring. ✓in
the rightmost column means whether the proposed technique eval-
uated the refactoring appropriately or not.

We show a refactoring that the proposed technique evaluated
appropriately in Figure 4. Two methods were extracted in this
refactoring. We can see that the naturalness of the pre-code is
low: −84.4,−62.3,−90.8, and − 60.3. On the other hand, the post-
code has higher naturalness: −50.5,−44.2,−32.1,−36.7, and − 56.7.
These values mean that the two refactorings eliminated unnatural
program statements.
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+ private List getAnnotatedFieldsByParameter() {
+  return getTestClass().getAnnotatedFields(Parameter.class);
+ }

+ private boolean fieldsAreAnnotated() {
+  return !getAnnotatedFieldsByParameter().isEmpty();
+ } 

-50.5

-44.2

Naturalness

(a) Extracted methods

@Override
protected void validateConstructor(List<Throwable> errors) {

validateOnlyOneConstructor(errors);
- List<FrameworkField> annotatedFieldsByParameter = 

getTestClass().getAnnotatedFields(Parameter.class);
- if (annotatedFieldsByParameter.size() > 0) {
+   if (fieldsAreAnnotated()) {

validateZeroArgConstructor(errors);
}

}

@Override
protected void validateFields(List<Throwable> errors) {
super.validateFields(errors);

- List<FrameworkField> annotatedFieldsByParameter =
getTestClass().getAnnotatedFields(Parameter.class);

- if (annotatedFieldsByParameter.size() > 0) {
+   if (fieldsAreAnnotated()) {
+     List<FrameworkField> annotatedFieldsByParameter =   

getAnnotatedFieldsByParameter();

-19.2
-84.4

-62.3
-32.1
-2.9

-37.1
-90.8

-60.3
-36.7
-56.7

Naturalness

(b) Replacing code fragments with method invocations

Figure 4: A refactoring on that our technique worked well

4.3 Threats to Validity
The accuracy of the proposed technique depends on the quality
of source code corpus. In this experiment, we used popular Java
projects in Apache Software Foundation. Testing code and auto-
generated code are not included. Thus, we consider that the quality
of source code corpus is high enough.

We evaluated the proposed technique on only 28 refactorings.
Finding pure refactorings are not easy because many refactorings
are floss ones [6]. Anyway, we are going to find more pure refac-
torings for more rigorous evaluations.

5 CONCLUSION
In this paper, we proposed a new technique to evaluate refactorings.
The proposed technique measures naturalness of before/after code
of refactoring and then it compares the two values. The features
of the proposed technique are (1) evaluating refactoring as quanti-
tatively not qualitatively and (2) considering project-specific and
developer-specific standards on the source code. We applied the
proposed technique to a golden set of 28 good refactorings. As a re-
sult, the proposed technique evaluated 19 out of the 28 refactorings
appropriately.

We are still in the early stage of this research. Currently, our
model is naive. By using the optimization in the section4.2, we
are going to generate more sophisticated token sequences for con-
structing language models shortly. We are also going to compare
the method using naturalness and the method using source code
metrics. From the results, we are going to consider advantages
of our proposed technique and a combination of naturalness and
metrics.
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Table 1: The detailed results. Delta means the score differ-
ence between before/after refactoring.“✓” means that the
proposed technique evaluated the refactoring appropriately

Commit ID Refactoring Pattern Delta Aptness
#23793cd Extract class 0.46
#a7c4d03 Extract class -1.76 ✓
#7a2b046 Extract class -0.62 ✓

#fd1ef3c Extract method -0.21 ✓
#dbe7711 Extract method -0.49 ✓
#2240984 Extract method 0.07
#862f41c Extract method 0.91
#5976b1d Extract method -0.15 ✓
#0215c66 Extract method -2.78 ✓
#24cbcbc Extract method -2.19 ✓
#467dd07 Extract method -0.26 ✓
#e48f6d4 Extract method -1.09 ✓

#fe5d86e Inline method -1.01 ✓
#6838ac0 Inline method 0.49
#0030e51 Inline method 1.02
#ce9bc58 Move method 0.00
#f1f4fe2 Move method -0.72 ✓

#4c1758d Algorithm change -0.38 ✓
#66bfb24 Algorithm change -1.14 ✓
#df016dc Algorithm change -0.24 ✓

#17a2f11 Remove unused code -1.15 ✓
#9a0aec8 Remove unused inheritance 0.00
#a30e87b add final to variable 0.00
#db8d580 Remove code clone -0.49 ✓
#e77e1c4 Reuse existing method -0.23 ✓
#759061a Introduce Strategy pattern -0.04 ✓
#7f2569f Pull up method -0.46
#d064212 Rename method and class -0.50 ✓


