On the Naturalness of Auto-generated Code
—Can We Ildentify Auto-Generated Code Automatically?—

Masayuki Doi, Yoshiki Higo, Ryo Arima, Kento Shimonaka, and Shinji Kusumoto
Osaka University
Suita, Osaka, Japan
{m-doi,higo,r-arima,s-kento,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT

Recently, a variety of studies have been conducted on source code
analysis. If auto-generated code is included in the target source
code, it is usually removed in a preprocessing phase because
the presence of auto-generated code may have negative effects
on source code analysis. A straightforward way to remove auto-
generated code is searching special comments that are included in
the files of auto-generated code. However, it becomes impossible
to identify auto-generated code with the way if such special com-
ments have disappeared for some reasons. It is obvious that it takes
too much effort to see source files one by one manually. In this pa-
per, we propose a new technique to identify auto-generated code
by using the naturalness of auto-generated code. We used a golden
set that includes thousands of hand-made source files and source
files generated by four kinds of compiler-compilers. Through the
evaluation with the dataset, we confirmed that our technique was
able to identify auto-generated code with over 99% precision and
recall for all the cases.

CCS CONCEPTS

« Software and its engineering — Software creation and man-
agement;

KEYWORDS

Auto-generated code, N-gram language model, Source code anal-
ysis

ACM Reference Format:

Masayuki Doi, Yoshiki Higo, Ryo Arima, Kento Shimonaka, and Shinji
Kusumoto. 2018. On the Naturalness of Auto-generated Code —Can We
Identify Auto-Generated Code Automatically?—. In ICPC ’18: ICPC ’18: 26th
IEEE/ACM International Confernece on Program Comprehension , May 27—
28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3196321.3196356

1 INTRODUCTION

Recently, a variety of studies have been conducted on source code
analysis. Targets of source code studies research are quite often

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5714-2/18/05...$15.00
https://doi.org/10.1145/3196321.3196356

open source software. The source code of open source software oc-
casionally includes auto-generated code. If auto-generated code is
included in the target software, it is usually removed in a prepro-
cessing phase because the presence of auto-generated code may
have negative effects on source code analysis. For example, if we
conduct code clone detection on a set of source files including auto-
generated code, a large number of code clones are detected from
auto-generated code and code clones in hand-made code are indis-
tinctive [7]. However in clone analysis situations, code clones in
auto-generated code are rarely useful because they can be targets
of neither clone merging refactoring nor simultaneous changes for
fixing bugs. Another example is that presence of auto-generated
code unnecessarily increases execution time for mining source
code repositories [6].

A straightforward way to remove auto-generated code is
searching special comments that are included in files of auto-
generated code. However, it becomes impossible to identify auto-
generated code with the way if such special comments have disap-
peared for some reasons. It is obvious that it takes too much effort
to see source files one by one manually.

Shimonaka et al. proposed an automatic auto-generated code
identification technique [9]. They created a learning model by us-
ing the information of co-occurring tokens in source code. Then,
for a given unknown source file, four machine learning algorithms
(decision tree, naive bayes, random forest, and support vector ma-
chine) were applied. In most cases, their technique worked well.
Both precision and recall were over 90%. However, in some cases,
such values became less than 90%.

Currently, we are conducting research on automatic identifica-
tion of auto-generated code. In this paper, we propose a new tech-
nique to identify auto-generated code with the naturalness of auto-
generated code. In our proposed technique, two stochastic lan-
guage models are constructed: the first model is constructed with a
set of hand-made code; the other model is constructed with known
auto-generated code. Then, naturalness of unknown code is mea-
sured with the two models. If its naturalness as auto-generated
code is higher than its naturalness as hand-made code, the un-
known code is regarded as auto-generated code. We used a golden
set that includes thousands of hand-made source files and source
files generated by four kinds of compiler-compilers. Through the
evaluation with the dataset, we confirmed that our technique was
able to identify auto-generated code with over 99% precision and
recall for all the cases.

2 AUTO-GENERATED CODE

Auto-generated code is a program source code that has been gen-
erated by program not human. There are a variety of programs that

https://doi.org/10.1145/3196321.3196356
https://doi.org/10.1145/3196321.3196356
https://doi.org/10.1145/3196321.3196356

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

/* Generated By:JavaCC: Do not edit this line. */

int ABSTRACT = 12;
int ASSERT = 13;
int BOOLEAN = 14;
int BREAK = 15;
int BYTE = 16;

if ((active® & Ox1feoL) != OL) return 16;
if ((actived® & 0x6000L) != OL) return 45;
if ((active@ & OxffooL) != OL) return 74;

Figure 1: An example of auto-generated code

generate program source code. For example, GUI builders generate
parts of GUI programs and code translators transforms a program
source code of a programming language to a program of another
programming language. In this research, as a first step, our target
is code generated by compiler-compilers.

To grasp features of compiler-compiler code, we manually
checked hundreds of compiler-compiler code. As a result, we found
the following features in compiler-compiler code.

o There are contiguous variable declaration statements.
o Similar conditional blocks exist contiguously.

Figure 1 shows code generated by JavaCC, which is one of popu-
lar Java compiler-compiler. As shown in this figure, it is quite easy
to identify auto-generated code if we see it. However, it is unre-
alistic to see each of source files because a project can consists of
thousands of or more source files.

Auto-generated code ordinarily includes code comments that
represent it was generated automatically. The source code of Fig-
ure 1 includes such a comment in the first line. We can identify
auto-generated code automatically if we perform string search.
However, such comments are occasionally deleted in the process
of development. In the case where comments were deleted, it is
impossible to identify auto-generated code by string search. Even
if comments exists in auto-generated code, it is necessary to use
appropriate keywords for string search.

2.1 Auto-generated code identification with
machine-learning techniques

Shimonaka et al. proposed a technique to identify auto-generated
code automatically [9]. Their technique makes a vector from each
of target source files. Every element in the vector means the num-
ber of AST nodes of the specified types except comment nodes.
Their vector includes 81 node types for source files of Java version
1.6. Then, a learning model is created from vectors of known hand-
made and auto-generated source files. If an unknown source file is
given to the model, the model decides whether the given source
file is auto-generated code or not. In Shimonaka’s technique, four
kinds of machine-learning algorithms are used: decision tree, naive
bayes, random forest, and support vector machine.

They made a golden set of hand-made and auto-generated
source files and they evaluated their technique. In many cases,
their technique was able to identify auto-generated code with over
93% precision/recall. However, in some cases, prevision/recall was
less than 90%. These results show that new techniques are neces-
sary to identify auto-generated code more accurately.

Masayuki Doi, Yoshiki Higo, Ryo Arima, Kento Shimonaka, and Shinji Kusumoto

[2) i

Auto-generated files Model of auto-generated files

B

Hand-made files Model of hand-made files

(2) STEP-1

— 0.86824---

Model of auto- Foommmmm—m- '
generated files _{ Output |

.._.Jr I_._
] Input f====

Model of hand-made files
(b) STEP-2

Figure 2: Overview of the proposed technique

2.2 Key idea

After checking hundreds of compiler-compiler code, we came up
an idea. The sequences of tokens in auto-generated code may have
different characteristics from ones in hand-made code. That may
be why human can identify auto-generated code at a glance. Con-
sequently, we decided to use n-gram language model [1], which
was developed for research on natural language processing. Re-
cently, n-gram language model has been used in research of soft-
ware engineering, too [5, 8].

N-gram language model is defined with the following formulae.

|[W+1
[] Povilwo.awic) ()
i=1
c(Wi—n+1 ... Wj)
c(Wi—nt1 ... Wi-1)

P(W)

()

P(wilwp ... wi-1)

W is a sequence of target text data. w; is the i-th word in
W. c¢(wy ... wy) means number of occurrences of subsequence
Wx ... wy. In this research, the text data is a sequence of tokens
extracted from a source file.

3 PROPOSED TECHNIQUE

Herein, we explain the proposed technique. Figure 2 shows an
overview of the proposed technique. The proposed technique re-
quires a set of known hand-made and auto-generated code in ad-
dition to unknown source file. The proposed technique decides
whether the unknown file is auto-generated code or not.

The proposed technique consists of two steps.

STEP-1: the proposed technique parses all the given known
hand-made and auto-generated files. The parsing results for
each file is a sequence of tokens. Then every n-grams in
the sequence are used to construct n-gram language models.

On the Naturalness of Auto-generated Code
—Can We ldentify Auto-Generated Code Automatically?—

Unknown file

public void hoge(){
int a=0;

lLexicaI analysis
[pwstie] (o] (e) [D) A) G I
lN—gram extraction
L1 ‘ public | ‘ void H hoge |
E
L3
L4 o

¥

lNaturaIness calculation
p(L1) x p(L2) x p(L3) ...

Figure 3: Calculation naturalness from unknown file

Two n-gram language models are constructed from n-grams
in hand-made files and auto-generated files, respectively.
STEP-2: the given unknown file is input to the two models.
Each of the both models outputs a scalar value (Figure 3).
The values are naturalness as hand-made code and auto-
generated code. If the value of naturalness as hand-made
code is higher than the one as auto-generated code, the un-
known file is regarded as hand-made file. If not, it is re-

garded as auto-generated code.

At present, we are using KenLM [3] for constructing N-gram
language model and measuring naturalness values. If an n-gram
in the test data is not included in the learning data, its naturalness
becomes 0. This is a common issue in n-gram language models.
To avoid this issue, KenLM uses modified Kneser-Ney smoothing,
which is better than other smoothing techniques [4].

4 EVALUATION

Herein, we report out experimental results about the accuracy of
the proposed technique.

We used Shimonaka’s golden set [9] as our targets. The golden
set consists of 5,000 Java source files: 1,000 hand-made, 1,000

ICPC ’18, May 27-28, 2018, Gothenburg, Sweden

ANTLR, 1,000 JavaCC, 1,000 JFlex, and 1,000 SableCC files. All the
files except hand-made files are auto-generated code. All of them
were extracted from open source projects and each of them was
checked manually to avoid wrong categorization.

We conducted two experiments with the dataset.

EXP-1: measuring precision and recall with leave-one-out
method. This evaluation is for comparing our technique to
Shimonaka’s one because they evaluated their technique
with leave-one-out method. We were not able to run their
technique but we were able to utilize their results for com-
parison.

EXP-2: measuring precision and recall with bootstrapping
method. This evaluation is for measuring precision and re-
call of our technique more rigorously.

4.1 EXP-1

As an example, we explain the procedure in the case where we use
the 1,000 ANTLR files and the 1,000 hand-made files. Firstly, we
divided the 1,000 ANTLR files and the 1,000 hand-made files into
10 groups randomly. Then, we selected a group for testing data
while an ANTLR model and a hand-made model were constructed
from the ANTLR files and the hand-made files in the remaining 9
groups. We input each file in the selected group to both the models
to calculate naturalness values. Based on the magnitude relation of
the two values, we can see whether our technique works well or
not. After inputting all the files in the selected group, we calcu-
lated precision and recall. This processing was repeated 10 times
because we selected a different group as input files. Finally, we
measured average values of precision and recall. This procedure is
completely the same as Shimonaka’s experiment [9].

Table 1 shows results of our technique and Shimonaka’s one. In
Shimonaka’s technique, four kinds of machine-learning algorithm
are used. “MIX” in the rightmost column in the table means models
were constructed from 1,000 files that had been randomly selected
from the 4,000 auto-generated files. We can see that Shimonaka’s
technique with decision tree has good precision and recall. In many
cases, both precision and recall were over 93%. However, surpris-
ingly, our technique score at least 98.7% precision and recall for all
the cases even including MIX case. These results clearly show that

Table 1: Precision and recall of our technique and Shimonaka’s one derived from leave-one-out method

Auto-generated code ANTLR JavaCC JFlex SableCC MIX
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall
Our technique 100.0% | 100.0% 99.6% | 99.3% 99.8% | 99.7% 100.0% | 99.9% 98.7% | 99.7%
Decision Tree 98.6% 98.6% 93.9% | 93.9% 99.7% | 99.7% 97.3% | 97.2% 96.3% | 96.3%
Shimonaka’s Naive Bayes 97.9% 97.9% 83.4% | 76.3% 99.1% | 99.1% 85.3% | 81.3% 78.5% | 72.6%
technique [9] | Random Forest 99.0% | 99.0% 94.5% | 94.5% 99.8% | 99.8% 97.5% | 97.4% 97.1% | 97.1%
SVM 98.3% 98.3% 84.1% | 83.1% 99.5% | 99.5% 87.2% | 83.5% 81.4% | 75.3%
Table 2: Precision and recall of our technique derived from bootstrapping method
Auto-generated code ANTLR JavaCC JFlex SableCC MIX
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall
Our technique 99.99% | 99.98% 99.86% | 99.75% 99.97% | 99.86% 100.0% | 99.92% 99.42% | 99.84%

ICPC 18, May 27-28, 2018, Gothenburg, Sweden

Object visit(AndImpl node, Object data)
throws Exception;

Object visit(BindVariableValueImpl node, Object data)
throws Exception;

Object visit(ChildNodeImpl node, Object data)
throws Exception;

Object visit(ColumnImpl node, Object data)
throws Exception;

(a) Similar-signature methods

case '¥b’: sb.append("¥¥b"); break;
case '¥f’: sb.append("¥¥f"); break;
case '¥n’: sb.append("¥¥n"); break;
case '¥r’: sb.append("¥¥r"); break;

(b) Many case entries
Figure 4: Two examples that our technique misjudged

our technique can identify auto-generated files more accurately
than Shimonaka’s technique.

4.2 EXP-2

In the bootstrapping method [2], N datasets are created from the
original dataset. Each created dataset includes the same number
of files as the original dataset but it can include the same files re-
dundantly. Accurate estimation is performed with N datasets. Re-
cently, bootstrapping method started to be used instead of leave-
one-out method because leave-one-out tends to score higher accu-
racy than real. In this evaluation, we used 2,000 as N because it is
said that 50 ~ 2,000 are appropriate values as N.

Table 2 shows accuracy of our technique. Our technique scored
over 99% precision and 99% recall for all the cases.

5 DISCUSSION

From the results of EXP-1 and EXP-2, we confirmed that our tech-
nique can identify auto-generated code with very high accuracy.
However, there were some source files that had been wrongly
judged by our technique. We see all of the misjudged files and
found that they had the following characteristics.

o There are many method declarations whose signatures are
similar to one another.
o There are many case entries.

Figure 4 shows two examples of the misjudged files. Those char-
acteristics are common to auto-generated files, which is why our
technique wrongly judged them. Shimonaka’s technique tended to
misjudge small files [9] while our technique worked well regard-
less of size of target files.

In both EXP-1 and EXP-2, precision and recall of our technique
on MIX dataset tend to be less than ANTLR, JavaCC, JFlex, and
SableCC datasets. This is because unique characteristics in each
kind of auto-generated files become less prominent by mixing
them.

Masayuki Doi, Yoshiki Higo, Ryo Arima, Kento Shimonaka, and Shinji Kusumoto

6 CONCLUSION

In this paper, we proposed to use n-gram language model to
identify auto-generated code automatically. The proposed tech-
nique can identify auto-generated code regardless of whether
auto-generated code retains code comment such as “generated by”
or not. In the proposed technique, two models are constructed
from known hand-made code and known auto-generated code,
respectively. Then, a target unknown file is given to the mod-
els. Each model measure its naturalness as hand-made code and
auto-generated code, respectively. If the naturalness value as auto-
generated code is higher than the one as hand-made code, it is re-
garded as auto-generated code.

We have evaluated the proposed technique with four kinds
of auto-generated code that had been generated by compiler-
compilers. In the evaluation, we compared the proposed technique
with the existing one [9] and we confirmed that the accuracy of the
proposed technique was higher than the existing one. More con-
cretely, precision of the proposed technique was 98.7% or more and
recall was 99.3% or more.

However, this research is still in the early stage. We have found
that some hand-made files were wrongly judged as auto-generated
files. We are going to enhance the proposed technique for such
files. Besides, currently we have evaluated the proposed technique
on only auto-generate code of compiler-compilers written by Java.
In software systems, there are a variety of auto generated code.
We are going to apply the proposed technique to other kinds of
auto-generated code such as GUI builders code, translators and
code written by other program language than Java. We also have
a plan to develop an available tool of the proposed technique for
researchers and practitioners.

ACKNOWLEDGMENTS

This work was supported by MEXT/JSPS KAKENHI 25220003 and
17H01725.

REFERENCES

[1] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and
Jenifer C. Lai. 1992. Class-based N-gram Models of Natural Language. Computa-
tional Linguistics 18, 4 (1992), 467-479.

[2] Bradley Efron. 1992. Bootstrap methods: another look at the jackknife. In Break-
throughs in statistics. Springer, 569-593.

[3] Kenneth Heafield. 2011. KenLM: Faster and Smaller Language Model Queries. In
Proceedings of the Sixth Workshop on Statistical Machine Translation. 187-197.

[4] Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H Clark, and Philipp Koehn. 2013.
Scalable Modified Kneser-Ney Language Model Estimation. In Proceedings of the
51st Annual Meeting of the Association for Computational Linguistics. 690-696.

[5] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering. 837-847.

[6] Alexander C MacLean, Landon J Pratt, Jonathan L Krein, and Charles D Knutson.
2010. Trends That Affect Temporal Analysis Using SourceForge Data. In Proceed-
ings of the 5th International Workshop on Public Data about Software Development.
6-11.

[7] Takafumi Ohta, Hiroaki Murakami, Hiroshi Igaki, Yoshiki Higo, and Shinji
Kusumoto. 2015. Source Code Reuse Evaluation by Using Real/Potential Copy
and Paste. In Proceedings of the 9th International Workshop on Software Clones.
33-39.

[8] BaishakhiRay, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bac-
chelli, and Premkumar Devanbu. 2016. On the “Naturalness” of Buggy Code. In
Proceedings of the 38th International Conference on Software Engineering. 428—439.

[9] Kento Shimonaka, Soichi Sumi, Yoshiki Higo, and Shinji Kusumoto. 2016. Identi-
fying Auto-Generated Code by Using Machine Learning Techniques. In Proceed-
ings of the 7th International Workshop on Empirical Software Engineering in Prac-
tice. 18-23.

