
A Study on Inappropriately Partitioned Commits
— How Much and What Kinds of IP Commits in Java Projects? —

Ryo Arima
Osaka University
Suita, Osaka, Japan

r-arima@ist.osaka-u.ac.jp

Yoshiki Higo
Osaka University
Suita, Osaka, Japan

higo@ist.osaka-u.ac.jp

Shinji Kusumoto
Osaka University
Suita, Osaka, Japan

kusumoto@ist.osaka-u.ac.jp

ABSTRACT
When we use code repositories, each commit should include code
changes for only a single task and code changes for a single task
should not be scattered over multiple commits. There are many stud-
ies on the former violation–often referred to as tangled commits–
but the latter violation has been out of scope for MSR research. In
this paper, we firstly investigate how much and what kinds of inap-
propriately partitioned commits in Java projects. Then, we propose
a simple technique to detect such commits automatically. We also
report evaluation results of the proposed technique.

CCS CONCEPTS
• Software and its engineering→ Software version control;

KEYWORDS
Inappropriately partitioned commits, tangled commits, logical cou-
pling
ACM Reference Format:
Ryo Arima, Yoshiki Higo, and Shinji Kusumoto. 2018. A Study on Inappro-
priately Partitioned Commits — How Much and What Kinds of IP Commits
in Java Projects? —. In MSR ’18: MSR ’18: 15th International Conference on
Mining Software Repositories , May 28–29, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3196398.3196406

1 INTRODUCTION
When we use version control systems, we should pay attention
to which changes are committed to the code repository together.
The official document of Git says that changes included in every
commit should be independent of each other [3]. This means that
a semantically cohesive set of code changes such as a bug-fix or
a functional addition should be a single commit. In this research,
we call such a semantically cohesive set of code changes task. A
commit including only a single task is called task level commit [1].
Previous research studies revealed that commits including multiple
tasks, which are so-called tangled commits, have negative impacts
on the performance of repository analyses [5]. There are also some
research studies that proposed techniques to split tangled commits
into different appropriate commits [5, 6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196406

/**
* Returns the values for the BeanMap.
*
* @return values for the BeanMap. Modifications to this collection
* do not alter the underlying BeanMap.
*/

public Collection values() {
ArrayList answer = new ArrayList(readMethods.size());
for (Iterator iter = valueIterator(); iter.hasNext();) {
answer.add(iter.next());

}
- return answer;
+ return Collections.unmodifiableList(answer);

}

(a) 25th March, 2002 at 06:53 commit.

/**
* Returns the values for the BeanMap.
*

- * @return values for the BeanMap. Modifications to this collection
- * do not alter the underlying BeanMap.
+ * @return values for the BeanMap. The returned collection is not
+ * modifiable.

*/
public Collection values() {

ArrayList answer = new ArrayList(readMethods.size());
for (Iterator iter = valueIterator(); iter.hasNext();) {

answer.add(iter.next());
}
return Collections.unmodifiableList(answer);

}

(b) 25th March, 2002 at 07:00 commit.

Figure 1: Example of IP commits

However, at present, there is no research on a set of commits
where a task is segmentalized. In this research, we call such small
commits inappropriately partitioned commits (in short, IP commits).
Figure 1 shows IP commits in open source software, Apache Com-
mons Collections.1 In the earlier commit, the return value of the
method became unmodifiable. In the latter commit, the Javadoc
comment attached to the method was changed. The presence of
such IP commits can cause the following issues.

Degrading Performance of Repository Analysis
Evolutionary coupling [2, 4] is a kind of logical connection
between two modules in source code. It means the two mod-
ules tend to be changed together. Evolutionary couplings
are utilized in many kinds of research such as suggesting
refactorings[4] and preventing change overlooking[7]. The
presence of IP commits makes more difficult to detect evolu-
tionary couplings from commit history.

Degrading Understandability of Past Commits
Commits include other information such as developer’s
name and commit message in addition to changed code.
Such information is very useful to know the intent of the
developer–why he/she made the changes. However, if the

1https://github.com/apache/commons-collections

https://doi.org/10.1145/3196398.3196406
https://doi.org/10.1145/3196398.3196406
https://github.com/apache/commons-collections

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Ryo Arima, Yoshiki Higo, and Shinji Kusumoto

* Insert an element into queue.
*
* @param element the element to be inserted

+ *
+ * @exception ClassCastException if the specified <code>element</code>'s
+ * type prevents it from being compared to other items in the queue to
+ * determine its relative priority.

*/
- void insert(Comparable element);
+ void insert(Object element);

(a) 19th March, 2002 at 13:34 commit.

/**
* Insert an element into queue.
*
* @param element the element to be inserted
*/

- public synchronized void insert(final Comparable element)
+ public synchronized void insert(final Object element)

{
m_priorityQueue.insert(element);

}

(b) 19th March, 2002 at 22:19 commit.

Figure 2: Type-2 IP commits

changes for a task are scattered over multiple commits, it
becomes more difficult to collect the information and under-
stand the intent.

The main contributions of this paper are summarized as follows:
• investigating how many and what kinds of IP commits are
included in code repositories, and

• developing a new technique to detect IP commits automati-
cally.

2 INVESTIGATION FOR IP COMMITS
As a first step of this research, we manually investigated how many
and what kinds of IP commits existed in development histories.
In this investigation, we manually checked whether every pair of
given two commits are IP commits or not. Please note that, at the
time of this investigation, we had not had any clear definition of IP
commits such as described in Section 3 yet. In the investigation, we
carefully checked whether given two commits have any semantical
cohesiveness or not.

The targets of this investigation are two open source software.
Apache Commons Collections: this software is a library

providing various data structures. Our targets are 1,485 com-
mit pairs before Ver.1 was released.

Retrofit: this software is a library providing HTTP connec-
tions.2 Our targets are 229 commit pairs before Ver. 0.5 was
released.

As a result, we regarded 49 and 32 commit pairs as IP commits for
Collections and Retrofit, respectively. In the 81 IP commits, 54 and
24 of them have remakeable features, respectively. Each of the 54 IP
commits consisted of two commits made by the identical developer.
In addition, each of the 18 IP commits consisted of two commits
made within a day. In this explanation, c1 and c2 are two different
commits in the repository. c1 is older than c2. Such commit pairs
can be classified as follows:
2https://github.com/square/retrofit

Table 1: Detected IP commits
Software Type-1 Type-2 Type-3
Apache 13 (0.9%) 8 (0.5%) 28 (1.9%)
Retrofit 4 (1.7%) 5 (2.1%) 23 (9.2%)

+ public void testListAdd() {
+ List list = makeList();
+ if(tryToAdd(list,"1")) {
+ assert(list.contains("1"));
+ if(tryToAdd(list,"2")) {
+ assert(list.contains("1"));
+ assert(list.contains("2"));
+ if(tryToAdd(list,"3")) {

(a) 26th April, 2001 at commit.

+ public void testListSetByIndexBoundsChecking2() {
+ List list = makeList();
+ tryToAdd(list,"element");
+ tryToAdd(list,"element2");
+
+ try {
+ list.set(Integer.MIN_VALUE,"a");
+ fail("List.set should throw IndexOutOfBoundsException[Integer.MIN_V

(b) 5th May, 2001, at 01:34 commit.

Figure 3: Type-3 IP commits

Type-1: Changes in the c2 corrects changes in the c1.
Type-2: Changes in the c2 depends on changes in the c1.
Type-3: Changes in the c2 collaborates with changes in the c1.
In the remainder of this section, we describe each of the above

types in detail.
Type-1: Corrective IP Commits

Correcting misspellings, adding extra changes for over-
looked code fragments or reverting previous changes were
found in the investigation. The IP commit in Figure 1 is a
Type-1 commit pair. The developers also found that c1 and c2
had changed code in the same method in the great majority
of cases. The developers were not able to find any reason
why c2 is a different commit from c1. By merging commits of
Type-1 commit pairs as a single commit, understandability
of commit histories will get improved.

Type-2: Dependent IP Commits
In Type-2 commit pairs, the changes in c2 depend on the
changes in c1. Figure 2 shows a pair of Type-2 commits. In the
earlier commit, the parameter type of method insert was
changed to Object from Comparable. In the latter commit,
the overriding method was changed for accepting wider
types. In most cases of Type-2 commit pairs, two methods
having a calling or an inheritance relationship are changed
in c1 and c2. If two commits of a Type-2 pair is merged as a
single commit, the performance of repository analyses such
as finding evolutionary couplings is improved.

Type-3: Collaborative IP Commits
Two commits in a Type-3 pair is a set of changes to the same
functionality. Figure 3 shows a Type-3 pair of commits. In
the earlier commit, a test case was added to test a function,
and in the latter commit, another test case was added to the
same function. In most of the cases, two commits of a Type-3
pair changed the code in the same class. Knowledge about
c1 and c2 are commits for the same task is helpful when
developers examine the change history of the functionality.

3 DETECTING IP COMMIT AUTOMATICALLY
Herein, we propose a technique to detect IP commits automatically.
The proposed technique takes two commits as input and then it
decides whether the two commits are IP commits or not. The pro-
posed technique (1) constructs a graph from given two commits

https://github.com/square/retrofit

A Study on Inappropriately Partitioned Commits
— How Much and What Kinds of IP Commits in Java Projects? — MSR ’18, May 28–29, 2018, Gothenburg, Sweden

class A{
void a(){

+
+ d();

}
void b(){
a();

}
void c(){
}

}

class B{
void d(){

+
}

}

(a) The source code at commit c1.

class A{
void a(){

-
d();

}
void b(){
a();

}
void c(){
}

}

class B{
void d(){

}
+ void e(){
+ }

}

(b) The source code at commit c2.

Figure 4: Source code for the example

and then (2) calculates likelihood of a value for deciding whether
the two commits are IP commits or not. In the remainder of this
section, we describe (1) and (2) in detail.

3.1 Constructing a Graph
Currently, our technique handles Java source code. By analyzing
the source code, we extract three kinds of relationships:

• methods and their owner classes,
• calling relationship between methods, and
• overriding relationship between methods.

Then, a followingweighted directed graphG = (V ,E) is constructed
from results of the extracted relationships.

• Each vertex is represented bymc , which means methodm
at commit c .

• Each edge is an ordered pair of vertices (a,b). There are four
types of edges, Esame , Ecall inд , Ecalled and Edef .

The four types of edges are as follows.
• Each edge in Esame means that its both ends are the same
methods in different commits. The weight of this type edges
are one.

• Each edge in Ecall inд means that the method represented
with a calls the method represented by b. The weight of this
type edges are definedwcall inд .

• Each edge in Ecalled means that the method represented
with a is called by the method represented by b. The weight
of this type edges are definedwcalled . We need both Ecall inд
and Ecalled because we use different weighted values for
the two types of edges.

• Each edge in Edef means that two methods of its both ends
are defined in the same class. The weight of this type edges
are definedwdef .

3.2 Calculating Likelihood
A numerical value is calculated in this process. The numerical value
represents how far methods changed at the two commits are on the
graph. First, a value from each method changed at commit x to the
nearest method in the methods changed at commit y is calculated.
This value never become less than one because the shortest path
between different-commit vertices includes at least an edge of type
Esame . sx is an average of the reciprocals of the obtained values. sx
is between zero and one. The values are calculated on the Dijkstra’s
algorithm.

Similarly, the distance value from each method changed at com-
mit y to the nearest method in the methods changed at commit
cx is calculated. sy is an average of the reciprocals of the obtained
distance values. Please note that a value of the path from method

bx cx

ax

by cy

ay

ey

𝐸𝑐𝑎𝑙𝑙𝑖𝑛𝑔

𝐸𝑐𝑎𝑙𝑙𝑒𝑑

𝐸𝑑𝑒𝑓

𝐸𝑠𝑎𝑚𝑒

dx dy

Figure 5: The graph constructed from source code

m1 to methodm2 can be different from a value of the path from
methodm2 fromm1 because we use different weighted values for
Ecall inд and Ecalled .

Finally, a score is the higher of sy and the average of sx and sy .
We do not use sx and sy symmetrically because we found that a part
of the methods changed at an older commit cx was also modified
at a newer commit cy in many IP commits.

Let Vx be a set of methods changed at commit x , Vy be a set
of methods changed at commit y and path(a,b) be the path value
from vertex a to vertex b in the constructed graph, then formal
definitions are as follows:

sx =
1

|Vx |
∑

v1∈Vx

1
argmin
v2∈Vy

path(v1,v2)
(1)

sy =
1

|Vy |
∑

v2∈Vy

1
argmin
v1∈Vx

path(v2,v1)
(2)

score = max(1
2
(sx + sy), sy) (3)

3.3 Example
Herein, we show an example of score calculation. The following
parameters are used in this example.

threshold = 0.7 (4)

(wcall inд ,wcalled ,wdef) =
(3
14
,

3
14
,
3
7

)
(5)

Those weight values satisfy the following formulas.

threshold =
(
2wcall inд + 1

)−1 (6)

=
(
2wcalled + 1

)−1 (7)

=
(
wdef + 1

)−1 (8)

Figure 4 shows the source code at two commits x and y. The
lines starting with “+” and “-” indicate appended and deleted lines
at the commit, respectively. Figure 5 shows the graph constructed
from the source code.

Distance values between the changed methods on the graph are
calculated as follows.

• The nearest method from ax of methods changed at commit
y is ay , and the path value from ax to ay is 1.

• The nearest method from dx of methods changed at commit
y is ay , and the path value from dx to ay is 17/14 = 1.21.

• The nearest method from ay of methods changed at commit
x is ax , and the path value from ay to ax is 1.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Ryo Arima, Yoshiki Higo, and Shinji Kusumoto

• The nearest method from ey of methods changed at commit
cy is dx , and the path value from ey to dx is 10/7 = 1.43.

Therefore, sx = 1
2 (1 + 14/17) = 0.91, sy = 1

2 (1 + 7/10) = 0.85.
Finally, a score is calculated: score = max((sx + sy)/2, sy) = 0.88.
Because the score is higher than the threshold, the input pair of
commits is regarded as a pair of IP commits.

4 EVALUATION
To evaluate our proposed technique, we conducted following two
experiments.

Experiment 1: we applied our proposed technique to the
golden set obtained by the investigation of the two reposito-
ries in Section 2. As evaluation measures of this experiment,
precision, recall and F-measure were calculated from the
output of the proposed technique. Precision is defined as
a proportion of real IP commits in the pairs of IP commits
detected by our proposed technique. Recall is defined as a
proportion of IP commits detected by our proposed tech-
nique in real IP commits in the dataset. F-measure is defined
as a harmonic mean of precision and recall.

Experiment 2: we applied our proposed technique to a larger
dataset than the golden set. The dataset consisted of 18,619
pairs of commits in Apache Commons Collections and Retro-
fit repositories. Then, we checked manually whether each
commit pair is real IP commit or not and calculated precision.

4.1 Results
Table 2(a) shows the results of Experiment 1. F-measure of Apache
was 0.714 and F-measure of Retrofit was 0.745. In cases where our
proposed technique classified detected IP commits by mistake, there
were pairs of commits that methods changed at many commits were
changed at both commits. For example, entry points (files including
main methods) were changed at many commits. In cases where our
proposed technique was not able to detect IP commits, the commits
included multiple tasks and only a part of the tasks was included
in both the commits.

Table 2(b) shows the results of Experiment 2. Precision of Apache
was 0.822 and precision of Retrofit was 0.884. Our proposed tech-
nique is effective even for the larger dataset.

Examples of detected IP commits are shown in the following.
• A pair of commits on 23rd November at 08:09, and 08:23 in
the Retrofit repository was detected as IP commits. In this
pair of commits, source code of methods changed at the 08:09
commit were cleaned up at the 08:23 commit. Merging these
commits, commit history became simpler.

Table 2: Precision, Recall, and F-measure
(a) Experiment 1

Software Precision Recall F-measure
Apache 0.714 0.714 0.714
Retrofit 1.000 0.594 0.745

(b) Experiment 2
Software Detected Correct Precision
Apache 416 342 0.822
Retforit 95 84 0.884

• In the six commits from 3rd March to 6 in the Apache Com-
mons Collections repository, 13 pairs of commits obtained
by these six commits were classified as IP commits. Because
all these commits included the changes on ComparatorChain
class as shown in Table 3, these IP commits were Type-3. As
indicated by this example, Type-3 IP commits are effective
to search commits related to a function.

5 THREAT TO VALIDITY
Our research has the following threats to validity.

Target commits: in the investigation, the authors used com-
mits of an early date in the development. If we used later
commits, we might have obtained different results.

Manual working: in the experiment, the authors manually
constructed oracle data to measure recall and precision. Of
course, we did that very carefully, but we cannot deny that
some our subjective views affect the results of the manual
working.

6 CONCLUSION
In this research, firstly we manually checked two source code repos-
itories of open source software. As a result of checking 1,174 commit
pairs, we found that 81 pairs of inappropriately partitioned com-
mits. We also classified such pairs into three categories. Then, we
proposed a technique to find such commit pairs automatically by
using the heuristics that we had derived from the manual checking.
In our evaluation, F-measure of the proposed technique on two
open source software was 0.714 and 0745, respectively.

The main contributions of this paper are as follows.
• We confirmed that IP commits, which are inappropriately
scattered changes in multiple commits, surely exist in source
code repositories.

• We proposed a new technique to detect IP commit automati-
cally and we evaluated it with two open source software.

The followings are directions our future research.
• We are going to conduct more experiments on a variety of
software.

• We are going to improve the proposed technique by using
metadata of commits such as developers, timestamps and
messages.

• We are going to develop an Eclipse plugin that is an imple-
mentation of the proposed technique.

ACKNOWLEDGMENTS
This work was supported by MEXT/JSPS KAKENHI 25220003 and
17H01725.

Table 3: Changes at the detected IP commits
Date Change description
at 08:29 on 2nd March adding ComparatorChain class.
at 08:40 on 2nd March adding two methods.
at 08:48 on 2nd March changing to a defensive list copy.
at 04:18 on 5th March adding comments and methods.
at 07:25 on 20th March adding methods and test cases.
at 09:25 on 20th March changing a comparator method.

A Study on Inappropriately Partitioned Commits
— How Much and What Kinds of IP Commits in Java Projects? — MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] Stephen P. Berczuk and Brad Appleton. 2002. Software Configuration Management

Patterns: Effective Teamwork, Practical Integration. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[2] James M. Bieman, Anneliese A. Andrews, and Helen J. Yang. 2003. Understanding
Change-proneness in OO Software through Visualization. In Proceedings of 11th
International Workshop on Program Comprehension. 44–53.

[3] Scott Chacon and Ben Straub. 2014. Pro Git (2nd ed.). Apress, Berkely, CA, USA.
[4] Harald Gall, Karin Hajek, and Mehdi Jazayeri. 1998. Detection of Logical Coupling

Based on Product Release History. In Proceedings of the International Conference
on Software Maintenance. 190–198.

[5] Kim Herzig and Andreas Zeller. 2013. The Impact of Tangled Code Changes.
In Proceedings of the 10th Working Conference on Mining Software Repositories.
121–130.

[6] Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. 2014. Hey!
Are You Committing Tangled Changes?. In Proceedings of the 22nd International
Conference on Program Comprehension. 262–265.

[7] Thomas Zimmermann, Peter Weissgerber, Stephan Diehl, and Andreas Zeller.
2005. Mining Version Histories to Guide Software Changes. IEEE Transactions on
Software Engineering 31, 6 (2005), 429–445.

