
Bring Your Own Coding Style
Naoto Ogura∗, Shinsuke Matsumoto∗, Hideaki Hata† and Shinji Kusumoto∗
∗Graduate School of Information Science and Technology, Osaka University, Japan

{n-ogura, shinsuke, kusumoto}@ist.osaka-u.ac.jp
†Graduate School of Information Science, Nara Institute of Science and Technology, Japan

hata@is.naist.jp

Abstract—Coding style is a representation of source code,
which does not affect the behavior of program execution. The
choice of coding style is purely a matter of developer preference.
Inconsistency of coding style not only decreased readability but
also can cause frustration during programming. In this paper,
we propose a novel tool, called STYLECOORDINATOR, to solve
both of the following problems, which would appear to contradict
each other: ensuring a consistent coding style for all source codes
managed in a repository and ensuring the ability of developers
to use their own coding styles in a local environment. In order to
validate the execution performance, we apply the proposed tool
to an actual software repository.

Index Terms—coding style, style feature, style inconsistency,
software repository, Git

I. INTRODUCTION

Coding style is a textual representation of source code,
which does not affect the behavior of program execution.
Examples of coding style include the type of indentation (i.e.,
tabs or spaces), the existence of a whitespace character around
arithmetic operators, and naming conventions of variables
and methods. Although coding style has no effect on the
program behavior itself, it does have a significant influence
on readability and maintainability for developers [1][2]. In a
practical programming environment, a wide variety of styles
must be defined in various locations of source code. In Eclipse,
over 300 detailed items of coding style configuration, such as
whether a space is inserted before an open parenthesis in an
if statement, are provided.

The choice of coding style is purely a matter of developer
preference [3], which has generally evolved from his/her
programming experience. For example, the following choices
are known to vary depending on the developer: whether a
whitespace is inserted after if/for keywords and method
names, whether an open brace “{” is inserted onto a new line
or the same line. The general coding style changes according
to the evolution of the programming environment. The style
limitation of 80 characters per line originally comes from the
physical limit of IBM’s punch card [4]. However, the limit
is being relaxed as monitor resolution improves. Currently,
Google’s Java coding convention1 sets the limit to 100.

Unifying on a common coding style for all source codes is
a significant activity in a co-development environment [5][6].
Inconsistency of coding style not only decreases readability,
but also hinders developer concentration. A developer may

1https://google.github.io/styleguide/javaguide.html

feel frustration by being forced to use a style that he/she
does not usually use. From the perspective of understanding
software evolution, a history of style modifications usually
becomes “noise” in a software repository. When a developer
contributes both bug fix and style fix in a single commit, the
resulting problem is referred to as the problem of “tangled
code changes” [7].

Despite the fact that a style is defined as a coding convention
for each project, it is impossible to force all of developers
to follow the convention for the entire source code. An IDE
and style formatter2 can be used to unify coding style in a
local environment. However, ensuring a consistent style within
a project (i.e., remote environment) is still difficult because
default style configurations are different for individual tools.

In this paper, we tackle the following challenges, which
would appear to contradict each other:

• Ensuring a consistent coding style for all source codes
managed in a repository.

• Developers can use their own coding styles (and own
tools) in a local environment.

In order to achieve the above challenges, we propose
a novel tool, called STYLECOORDINATOR, which provides
bidirectional coding style conversion between individual and
project-defined styles. The tool provides a style-conversion
feature and is executed by a standard Git client. The tool
formats to a project-defined style when a developer commits
source codes to a repository. This behavior solves the first
challenge. The second challenge is solved by formatting to
an individual style when a developer pulls from a repository.
In addition, the tool supports automatic extraction of style
preference from written source codes. This feature helps to
reduce the cost of tool installation.

The main contributions of this paper are:
• We formulated specific cases of coding style as style

features.
• We improved an existing extraction method of style

features.
• We developed a tool for overcoming coding style frustra-

tion in a co-development software project.
The tool is still an early prototype in the sense that it only

covers one of five categories of coding styles. However, we
believe that our concept may be one of a peaceful solution to
holy wars [8] about coding preferences.

2http://checkstyle.sourceforge.net/

II. CODING STYLE

A. Classification of Coding Styles
We define a representation of a source code as a coding

style, which has no impact on program behavior. The coding
style can be broadly classified as follows, The items are sorted
in ascending order of influence on program compilation.

• Separation of tokens
(e.g., space before open parenthesis in an if statement)

• Indentation
(e.g., space or tab, number of indentation spaces)

• Name convention
(e.g., camel case or snake case or kebab case)

• Declaration order
(e.g., alphabetical order or public method first)

• Sugar syntax
(e.g., if-else statement or ternary operator)

Most of the common IDEs provide customization of each
category of coding style. In this paper, we focus only on
the first category, separation of tokens, because this category
includes a greater number of detailed items as compared to
other categories. Eclipse defines 161 items for the category. All
of the detailed items may be difficult to completely describe as
coding conventions. We consider automated style conversion
for the category to be practical for use in actual development.

B. Style Features
In this paper, we define a style feature as a set of information

related to coding style. The style feature is composed of the
following three attributes.

• Type (e.g., space-before-open-paren-in-if-statement)
• Location (e.g., line 30)
• Value (e.g., presence)
The above example means that a whitespace before open

parenthesis in if statement in present in line 30. For the
style category considered (separation of tokens), the value
can only be presence or absence. The style feature exists in
various locations of source code. Automatic inference of style
configuration can be enabled by collecting style features from
the developer’s own written source codes.

C. Style Inconsistency
Spinellis et al. [9] proposed a degree of style inconsistency

(SI) to show how a source code includes inconsistencies of
coding styles. Let a and b be values of a style feature (i.e.,
presence and absence), and let i be an ID of a style feature.
Moreover, let ai be the number of occurrences of a for style
feature i. The degree of style inconsistency of style feature i,
denoted by SIi, is defined as

SIi =
min(ai, bi)

ai + bi
Let n be the total number of types of style feature (1 ≤

i ≤ n). Then, the overall degree of style inconsistency for all
source codes, denoted by SIall, is defined as

SIall =

∑n
i min(ai, bi)∑n

i ai + bi

6.
checkout

2. referred

4. modify &
commit

1.
stage &
commit

developer X

style

project.xml

rev. n

rev. n+1

Git repository

proposed tool
formatted style

source code file
style definition file

int fact(int n) {
if (n==1) return 1;
return n*fact(n-1);
}

int fact(int n) {
if (n<=1) return 1;
return n*fact(n-1);
}

int fact(int n) {
if (n == 1) return 1;
return n * fact(n - 1);
}

int fact(int n){
if (n <= 1) return 1;
return n * fact(n - 1);
}

<=

3.
extract

my.xml

style
5. referred

modified

Fig. 1: Overview of the STYLECOORDINATOR

SIi takes a value from 0 to 0.5. A larger value indicates
that a higher degree of style inconsistency exists. For exam-
ple, when a style type space-before-open-brace-in-if-statement
occurs in ten instances, and only two of the ten instances
include a space, and SIi takes a value of 0.2 (2/10). Here,
SIi becomes maximum (0.5) when the number of occurrences
of presence and absence are exactly the same.

III. STYLECOORDINATOR

A. Overview

We propose a tool, STYLECOORDINATOR, that solves
the following seemingly contradictory challenges: ensuring a
consistent coding style for all source codes managed in a
repository and ensuring that developers can use their own
coding styles in a local environment.

Figure 1 shows an overview of the processing flow of the
tool. The tool is working on Git as software configuration
management (SCM). Using a standard Git feature, called
Git attribute, the tool executed on both stage and checkout
operations in a local environment. Here, we introduce three
use cases of using the tool.

• Stage and commit: Developer X uses our tool for the
first time. When X stages and commits his/her written
source code (step 1), the tool refers a style configuration
file, which is provided as a common convention of the
project (step 2). The source code is formatted based on
the configuration and is stored to a repository. In this
case, X’s unusual coding style is formatted to the popular
coding style. Thus, the first challenge, unifying the coding
style in a repository, is solved.

• Extract a style configuration file: The tool helps to make
a style configuration file by extracting style features from
their written source code (step 3). This extraction is
based on the concept of SI. In other words, a major

coding style within the developer’s code is assumed to
be his/her preferred style. The concrete method of the
style extraction is described in the next Section.

• Checkout: Another developer modifies and commits the
source code (step 4). When X checkouts from a reposi-
tory, the tool refers the extracted configuration file (step
5) and transforms the source code to his/her own style
(step 6). Thus, the second challenge is solved.

B. Style Feature Extraction

1) Problem of Existing Technique: In a co-development
environment, the key to dealing with individual coding styles
is detailed and accurate style feature extraction. Spinellis
published a metrics measurement tool, called cqmetrics3, in
a study on SI’s [9]. The tool supports style feature extraction
as one of many functions of metrics measurement. However,
the tool cannot follow syntactic information, because the ex-
traction is based only on token analysis. Therefore, extractable
types of style feature are coarse and incomplete.

Here, we illustrate the problem using a specific example.
The black triangle (N) represents a style feature that cannot
be accurately extracted by cqmetrics.

ifN
a1

(N
c
n > 0N

c
) returnN

b2
;

forN
a1

(N
c
int i = 0N

b1
; i < nN

b1
; iN

c
++N

c
) {

doSomethingN
a2

(N
c
iN
c
)N
b2
;

The tool does not distinguish between control flow key-
words (e.g., if, for, and while). As such, both a1’s
illustrated in the example are regarded have the same coding
style as space-before-open-paren-in-control-statement. On the
other hand, a space before an open parenthesis in method
invocation (a2) cannot be extracted. Every type of space before
a semicolon (b1 and b2) is undistinguished because the tool
also ignores the context of the program statement. In addition,
there are many cases (c) in which a style feature is neglected.

2) Proposed Style Extraction Technique: In order to im-
prove the existing extraction method, we propose a method by
which to extract fine-grained style features based on syntax
analysis. Figure 2 illustrates an overview of the processing
flow. The input of the method is a set of Java source codes,
and the output is a set of style features.

Step1: Search space characters that are candidates of a style
feature. The tool filters some spaces that cannot
be syntactically omitted (e.g., publicNvoid, and
intNi).

Step2: Generate an abstract syntax tree by conducting token
analysis and syntax analysis.

Step3: Extract all style features from the candidates by
checking the syntax tree.

Based on the above discussion, we implemented an im-
proved extraction tool of style feature4. The tool is a sub-

3https://github.com/dspinellis/cqmetrics
4http://sdl.ist.osaka-u.ac.jp/∼n-ogura/2016 format-feature-extractor

Step3:
Resolve style type from syntax tree &
make a list of style features

Step1:
Search style candidates

public void run(int n) {
if (n > 0) {

...

public void run(int n) {
if (n > 0) {
...

Step2:
Token analysis &
syntax analysis

type: space-before-open-paren-
in-if-statement

location: 76
value: absence

corresponds
to

style features

syntax tree

source code

Fig. 2: Processing flow of the proposed style extraction

<profile kind="CodeFormtterProfile">
<setting

type="insert-space-before-open-paren-
in-if-statement"

value="insert"/>
<setting

type="insert-space-before-open-paren-
in-for-statement"

value="insert"/>
<setting

type="insert-space-before-open-paren-
in-method-invocation"

value="do not insert"/>
...

</profile>

Fig. 3: Example of a style configuration file

component of STYLECOORDINATOR. Although the tool cur-
rently supports Java, the basic concept of extraction can be
applied to many programming languages.

C. Style Configuration

A file for style configuration is shown in Figure 3. The file
is written in XML. Each individual setting tag corresponds
to a style feature. A space is inserted or omitted based on the
value attribute for various locations corresponding to a style
type specified in the type attribute. This file is compatible
with a style configuration file used on Eclipse. Therefore,
the configuration file of STYLECOORDINATOR can be easily
customized using Eclipse’s style configuration GUI.

D. Implementation and Usage

STYLECOORDINATOR is written in Java and published on
our website5. The tool provides style transformation and style
extraction. In order to cooperate with Git, we use a Git stan-
dard feature, called gitattributes, which enables customization

5http://sdl.ist.osaka-u.ac.jp/∼n-ogura/2018 style-coordinator

of the pre-processor of the stage and checkout operations. In
general, the feature is used to enforce the correct line endings
policy.

Here, we describe the tool usage on a specific repository.
First, a custom filter scformat must be defined in a gitat-
tributes file. Pre-processing for all java files is enabled by this
definition.

$ echo '*.java filter=scformat' >> \
.git/info/gitattributes

Next, we need to define a preferred style file in a local
environment. The definition is provided by automatic style
extraction or Eclipse GUI. In this introduction, the preferred
style is designated my.xml and the project-defined style is
designated project.xml, which should be managed in a Git
repository because the file is shared in a project.

Finally, we define the actual pre-processing behavior for
the defined filter. The proposed tool is specified to execute at
stage and checkout operations (i.e., filter.format.smudge and
filter.format.clean).

$ git config filter.scformat.smudge \
stylecoordinator my.xml

$ git config filter.scformat.clean \
stylecoordinator project.xml

IV. EVALUATION

A. Style Inconsistency in Actual Projects

1) Purpose and Method: The purpose of the study is
to survey style inconsistency during the evolution of Java
projects, whereas Spinellis’s study focused on the evolution
of the C language.

We calculate changes of SIall from a Java repository. The
proposed tool is used for the SI calculation. The calculation
is conducted for all source codes within the master and
trunk branches. The subject projects are JUnit4 and log4j. An
overview of the projects is shown in Table I. The development
histories for over 15 years are stored in GitHub.

2) Result and Discussion: Figure 4 shows the changes of
SIall and lines of code (LOC). From Figure 4(a), JUnit4 has
increasing LOC. Although SIall was higher at the beginning
of the project, the value has been decreasing over time. In
particular, SIall decreased drastically in 2012 by applying a
style formatter for all source codes. A new coding convention
was discussed at the time6. Even though the convention was
introduced, SIall has been increasing slightly with increasing
LOC.

From Figure 4(b), log4j has a similar tendency as JUnit4
between 2000 and 2007 when the project was in early de-
velopment. After that, SI varies around 0.03. In 2007, 2010
and 2012, SI and LOC were drastically changed because
the project performed branch merging, feature addition, and
feature deletion.

6https://github.com/junit-team/junit4/issues/426

201520102005

LOC

SI

0

.020

.010

0

SI LOC

1e+4

2e+4

3e+4

4e+4

(a) JUnit4
201520102005

LOC

SI

.040

.020

0

1e+6
SI LOC

5e+5

0

(b) log4j

Fig. 4: Change of SIall and LOC for each project

In summary, style inconsistency tends to occur in early
development and to be affected by changing LOC. With the
software evolution, the inconsistency cannot be solved even
if a style formatter is applied. Some developers may get
frustrated by the inconsistency. We conclude that a tool to
support a consistent coding style may be helpful in a co-
development environment.

B. Performance Evaluation

1) Purpose and Method: Using the proposed tool, the
execution performance of Git operation is expected to decrease
because of token and syntax analysis. In this experiment, we
confirm whether the performance decrease is practical.

All stage and commit operations that were executed in
actual software are reproduced. We measured and compared
the execution times for every operation with and without the
proposed tool. The subject project is JUnit4, which includes
2,115 revisions during years 2000 through 2015.

2) Result: Figure 5(a) shows the performances with and
without the proposed tool. The distribution of the execution
time is shown as a box plot. The y-axis shows the execution
time in log scale.

Most original commits were accomplished within a single
second. In contrast, using the proposed tool, the execution time
was increased approximately 17-fold. However, we found that
75% of commits were accomplished within 2.5 seconds. In the
worst case, the execution time increased from 1.1 seconds to
178.4 seconds, which was the longest time with and without
the proposed tool. In this case, 305 files were committed at
the same time in order to apply a new coding style in 2012.
The drastic style change is also shown in Figure 4(a).

Figure 5(b) illustrates the relationship between the rate of
performance reduction and the total number of java files. The
x-axis indicates the rate of performance reduction obtained
using our tool, and the y-axis indicates the number of files.
Note that a few cases, in which the number of java files
exceeds 100, are omitted. We can confirm that the performance
is decreased as the number of java files increases.

TABLE I: Summary of subject projects

project name years # revisions # developers LOC
JUnit4 15 2,115 159 39,722
log4j 15 3,275 21 59,780

sec

100

10

1

0.1

w/o tool w/ tool

(a) Comparison of execution time of
commit operation

#files

0

performance reduction rate

20

40

60

80

100

0 50 100 150

(b) Relationship between the perfor-
mance reduction rate of the commit
operation and the number of java files

Fig. 5: Results of the performance evaluation experiment

3) Discussion: In summary, the most commits were accom-
plished within 5 seconds when the proposed tool was used as
a pre-processor. In a practical situation, the percentage of the
commit time during development is extremely small because
the commit is executed after a certain task is completed. We
believe that the performance decrease by the proposed tool
may be acceptable.

We also found that the execution performance decreases by
committing multiple files simultaneously. The reason for this is
that the construction of the syntax tree requires more time as
the number of total program statements increases. In recent
software development, it is recommended that all commits
should be kept smaller [10]. This practice is known to be
key to continuous integration. Therefore, we believe that the
influence of the performance reduction may be smaller with
the spread of agile practices.

V. RELATED WORK

A number of software projects have published coding guide-
lines7,8,9 that include some specific rules of coding style. Of
course, there are many differences between these styles. This
means that coding style is not only a preference of the project
but is also a non-trivial problem that cannot be neglected in a
co-development environment.

Some researchers have conducted a survey of coding styles
in practical environments. Spinellis et al. [9] have studied long-
term changes in style inconsistency in Unix for 43 years. They
concluded that the project successfully achieved a consensus
of coding style because the inconsistency decreased year by
year. Bacchelli and Bird [11] reported that code improvements,
such as checking that source code follows code convention,
are important motivation for code review. Li et al. [12]
studied students’ opinions on coding styles in programming
courses. From these studies, it is difficult to follow the coding
convention for all developers.

7https://www.freebsd.org/doc/en US.ISO8859-1/books/fdp-primer/
8https://www.gnu.org/prep/standards/
9https://google.github.io/styleguide/javaguide.html

Various style formatters have been published10 and many
popular IDEs also include these formatters by default. More-
over, in the academic field, a number of style formatters have
been proposed [3][13][14][15]. These tools have some features
in common with the proposed tool. However, the tools can
only work in a stand-alone or local environment. The proposed
tool can ensure consistent style in both local and remote
environments by execution with Git operation.

VI. CONCLUSION

In this paper, we proposed a tool for use in development
environments to easily maintain style consistency. The tool
includes an improved algorithm of style extraction. We con-
ducted an experiment to evaluate performance of the tool.
From the evaluation, the performance decrease by the tool
may be acceptable.

In the future, we intend to extend to cover other categories
of coding styles such as indentation and name convention. To
deal with these categories, we need to consider further style
extraction and inconsistency criteria. In order to confirm the
usefulness of the tool, we are going to conduct qualitative
evaluation with industrial practitioners.

ACKNOWLEDGMENT

This study was supported by JSPS/MEXT KAKENHI Grant
Numbers JP25220003 and JP26730155.

REFERENCES

[1] P. W. Oman and C. R. Cook. A taxonomy for programming style. In
Proc. Annual Conf. Cooperation, pages 244–250, 1990.

[2] A. Bosu, M. Greiler, and C. Bird. Characteristics of useful code
reviews: An empirical study at microsoft. In Proc. Working Conf. Mining
Software Repositories, pages 146–156, 2015.

[3] T. Parr and J. Vinju. Towards a universal code formatter through machine
learning. In Proc. Int’l Conf. Software Language Engineering, pages
137–151, 2016.

[4] IBM Archives: 1928, January 2018.
[5] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning natural

coding conventions. In Proc. Int’l Symp. Foundations of Software
Engineering, pages 281–293, 2014.

[6] C. Boogerd and L. Moonen. Assessing the value of coding standards:
An empirical study. In Proc. Int’l Conf. Software Maintenance, pages
277–286, 2008.

[7] K. Herzig and A. Zeller. The impact of tangled code changes. In Proc.
Working Conf. Mining Software Repositories, pages 121–130, 2013.

[8] D. Cohen. On holy wars and a plea for peace. Computer, 14(10):48–54,
1981.

[9] D. Spinellis, P. Louridas, and M. Kechagia. The evolution of c
programming practices: A study of the unix operating system 1973–
2015. In Proc. Int’l Conf. Software Engineering, pages 748–759, 2016.

[10] M. Meyer. Continuous integration and its tools. IEEE Software,
31(3):14–16, 2014.

[11] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of
modern code review. In Proc. Int’l Conf. Software Engineering, pages
712–721, 2013.

[12] X. Li and C. Prasad. Effectively teaching coding standards in program-
ming. In Proc. Conf. Information Technology Education, pages 239–244,
2005.

[13] D. C. Oppen. Prettyprinting. ACM Trans. Programming Languages and
Systems, 2(4):465–483, 1980.

[14] L. F. Rubin. Syntax-directed pretty printing - a first step towards a
syntax-directed editor. IEEE Trans. Software Engineering, 9(2), 1983.

[15] R. D. Cameron. An abstract pretty printer. IEEE Software, 5(6):61–67,
1988.

10https://codebeautify.org/javaviewer

