
Correlation Analysis
between Code Clone Metrics and Project Data

on the Same Specification Projects
Yoshiki Higo∗, Shinsuke Matsumoto∗, Shinji Kusumoto∗, Takashi Fujinami†, and Takashi Hoshino†

∗Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
†Nippon Telegraph and Telephone Corporation, 2-13-34 Konan, Minato-ku, Tokyo 108-0075, Japan

Abstract—The presence of code clones is pointed out as a factor
that makes software maintenance more difficult. On the other
hand, some research studies reported that only a small part of
code clones requires simultaneous changes and their negative
influences on software maintenance are limited. Besides, some
other studies reported that code clones often have positive effects
on software development. Currently, the authors are researching
exploring the effect of clones on software development and
maintenance. In this paper, the authors report their exploratory
results on the relationship between clone metrics and project
data such as the number of test cases and the number of found
bugs. The targets of this exploration are nine web-based software
systems. Interestingly, all of them were developed based on the
same specification. In other words, they are functionally the same
software systems. By targeting such projects, we can explore
how implementation differences affect software development. As
a result, unit/integration/system testing become more difficult in
case that many clones exist in a project.

I. INTRODUCTION

The presence of code clones (simply, clones) has been
considered as one of the factors that makes software mainte-
nance more difficult. Simultaneous changes on clones are the
main reason why clones are harmful on software maintenance.
If multiple clones to be changed simultaneously are not
changed simultaneously, unintentional inconsistencies happen
on source code. Such unintentional inconsistencies may cause
faults later.

To support software development and maintenance against
clones, a variety of studies related to clone detection has been
conducted [1], [2]. There are also many empirical studies
that investigated harmfulness of clones from the viewpoint of
simultaneous changes [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12]. These studies revealed that not all clones are harmful on
maintenance but a part of them is surely harmful.

Our research interest is revealing how clones have influences
on software development/maintenance and whether clones are
technical debt or not. These kinds of research question are
very difficult to answer because we need to evolve a software
system in two ways: one evolution is a system where code
clones are as they are; the other is a system where code clones
are removed as much as possible. Then, we can compare the
two systems. However, this point is very important because
if developers know clone influences, they can decide whether
they should conduct refactorings or not on a given system.

If clones are not harmful, conducting refactorings is wasting
time and human resources.

Currently, the authors are conducting a research project on
clone influences on software development and maintenance.
In this paper, the authors report experimental results of our
correlation analysis between clone metrics and various project
data on nine software systems. All the nine systems were
developed by different IT vendors. A notable feature of them
is that all the systems were developed based on the same
specification. By analyzing such systems, we can explore
influences of implementation (the amount of duplicated code)
on software development and maintenance.

The reminder of this paper is organized as follows: Section
II introduces a definition of clones and some related works;
Section III explains the design of our experiments and Section
IV shows the results; then Section V describes threats to
validity on the experiment; finally, Section VI concludes this
paper.

II. CODE CLONE

In this section, the definitions of clones are explained and
previous works are introduced.

A. Definition

A pair of similar code fragments (clone pair) is classified
into either of the following categories based on the degree of
their similarity.

TYPE-1: clone pairs whose two code fragments are exactly
identical to each other. They can include only differ-
ences of white spaces, tabs, and comments.

TYPE-2: clone pairs whose two code fragments are syn-
tactically identical to each other. They can include
token-level differences such as different variable
names.

TYPE-3: clone pairs whose two code fragments are syntac-
tically similar to each other to a certain extent. They
can include statement-level differences in addition to
token-level ones.

Various clone detection techniques have been proposed [1],
[2]. Each of the techniques has a unique definition of clones.
For example, in token-based detection techniques similar se-
quences of program tokens are detected as clones [13]. In

978-1-5386-6430-8/18/$31.00 c© 2018 IEEE IWSC 2018, Campobasso, Italy37

AST1-based techniques, similar subtrees in ASTs generated
from source code are detected as clones [14]. Consequently,
different clones are detected by different detection techniques
from the same source code. The clone detection technique used
in this research is described in Section III-B.

B. Related Work

Inoue et al. proposed a technique to find latent faults by
focusing on variable correspondences between two code frag-
ments of clone pairs [7]. Their idea is that, after copying and
pasting a code fragment, variables in the pasted code fragment
usually correspond to ones in the original code fragment. If
variables in the original and pasted code fragments do not
correspond to each other, latent faults may exist in the pasted
code fragment due to forgetting to replace some variables.
They developed a tool to detect clones where variables do
not correspond. The tool was applied to two mobile systems
and 68 clone pairs were found. The developers of the systems
manually investigated each of the clones and found that 26
out of the clone pairs included latent faults.

Monden et al. investigated relationships between clones and
revision numbers of source files on a legacy COBOL system
[12]. As a result, they found that source files tend to be
modified more frequently in either of the following situations:

• source files where 80% or more code are duplicated, or
• source files where 200 LOC or larger clones exist.

There are some cases that coding with copying and pasting
operations is a reasonable way of implementation [15]. One of
such cases is adding a new function to an in-service software
system. Firstly, a developer copies and pastes a code fragment
of an existing function and pastes it to another place of the
software. Then he/she modified the pasted code fragment to
make out a similar new function. For a while, the system is
operated with the situation. When, the behavior of the new
function gets stable, the pasted code fragment is merged with
the original code fragment. Adding new functions with this
procedure can prevent faults from occurring in the running
system. Kapser et al. investigated two open source systems and
found that 71% of clones have good influences on software
maintenance.

Yamanaka et al. developed a clone management system,
which notifies developers whether clones have been changed in
the latest commit [16]. The system checks differences between
the latest version and the second latest version in the source
code repository. If clones in the second latest version have
been changed, the information related to the changes was
sent to developers via email. They applied the system to a
software project in a company. In the application, there were
some commits where developer changed clones of which the
developers did not know the presence. The developers were
able to recognize the changes on clones by the notifications
and the developers were able to take some actions such as
refactoring for the clones.

1Abstract Syntax Tree

Chatterji et al. conducted an experiment to investigate
whether developers were able to locate code fragments causing
given bugs with clone information [17]. The research partici-
pants were 43 graduate students. In cases where the students
used clone information after they had found a code fragment
causing a given bug, they were able to locate other code
fragments causing the same bug by using clone information.
On the other hand, before locating any code fragments causing
a given bug, using clone information did not help the students
to locate the buggy code fragments.

Zhan et al. conducted an investigation for 21 developers
of an industrial system that had been maintained for more
than ten years [18]. As a result, they found a variety of
reasons why the developers had generated clones. Some of the
reasons were technical ones such that (1) developers wanted
to avoid inducing new bugs by changing existing code and
(2) merging clones as a single module was not easy. There
were also organizational reasons such that the developers did
not afford to merge clones due to the development schedule.
They found there were also personal reasons such that some
of the developers had wanted to improve their coding skills
by reusing other skillful developers’ code.

Göde and Koschke investigated changes in clones on three
open source systems written in C or Java [4]. They found that
88% clones had not been changed at all after they had been
generated. In their investigation, 15% changes in clones caused
unintentional inconsistencies in source code.

Hotta et al. compared change frequencies of duplicated code
with non-duplicated code [6]. The targets were 15 open source
systems written in C/C++ or Java. As a result, they found that
non-duplicated code had been changed more frequently than
duplicated code.

Tsunoda et al. showed that using multiple kinds of clone
detection results for models of fault-prone module prediction
can achieve higher accuracy than a single kind of clone detec-
tion results [19]. They used four detection tools: CCFinderX,
PMD’s Copy/Paste Detector, Simian, and Nicad. Each tool
was executed with two different settings, so that they obtained
eight detection results in total. They calculated duplicated ratio
of source code based on each of the detection results and
added the ratio values to the prediction models. Then, they
compared accuracy of 10 models: one model including all the
eight values, one model including none of the values, and
eight models including a single value. As a result, the model
including all the eight values achieved the highest accuracy.
Some of the models including a single value were worse than
the model including none of the values.

Saini et al. investigated whether cloned methods tend to
have different metrics values from non-cloned methods [20].
The target metrics are 27 in total. Some of them are well-
known and traditional metrics such as McCabe’s cyclomatic
complexity [21] and Halstead’s software science [22], others
are simple ones such as the number of parameters, and the
number of loops. The results were that the size of cloned meth-
ods was smaller than non-cloned methods by 29%. However,
there was no difference in the other metrics.

38

III. EXPERIMENTAL DESIGN

In this section, the designs for the experiment are explained.

A. Target Systems
Figure 1 shows an overview of the target system. It is a

web-based inventory control system. The J2EE technology is
used in the system to realize online transaction processing. The
system has 11 frames, two kinds of ledger sheets, 32 kinds of
processing, and two interfaces. Its function points are 113 FP2.
JSP is used in the client-side programs and Java is used in the
server-side programs, respectively.

A company made its specification and nine different vendors
implemented the systems independently. Hereafter, we call
the vendors VA, VB, · · · , VI , respectively. Every vendor made
a service contract with the company separately. These nine
systems are based on the same specification but all of them
have different implementations. The nine systems were not for
real usage but for the experiment in the company to collect
various data on software developments.

Every vendor conducted testing for the system. Then, the
final version of the code, which passed the testing, was sent
to the company. The targets of this experiment are Java
source files, which are the client-side of the system. The size
of the client-side ranged between 20,000 and 44,000 lines
of code. The company also conducted testing to check the
quality of each client-side system. Hereafter, we call the testing
conducted by vendors vendor testing and also we call the
testing conducted by the company acceptance testing. Both
vendor testing and acceptance testing consist of the following
three kinds of testings.

UT (Unit Testing): verifying each modules.
IT (Integration Testing): verifying interfaces between

modules, data interactions with databases.
ST (System Testing): verifying whether the target system

operates appropriately when it takes dummy inputs
like real ones.

B. Clone Detection
Currently, there are various clone detection techniques. In

this research, the authors adopt a token-based technique to
detect clones from the target projects. Token-based clone
detection techniques have the following features.

• Detections are quick. Token-based techniques take only
10 minutes or so to detect clones from million lines of
code [13], [23].

• Detection results tend to become huge. In other words,
token-based techniques are good at detecting clones with-
out overlooking while they tend to find a large amount
of trivial clones [24], [25].

• Basic token-based detection algorithms are designed to
detect TYPE-1 and TYPE-2 clones.

The authors are also conducting research on improvements
of token-based clone detection. Our latest clone detection
tool is CloneGear3. CloneGear is a multi-linguistic token-

2Function Point
3https://github.com/YoshikiHigo/CloneGear

data	

aggregated	

data	

master	
 data	

online	
 registra.on	
 processing	

online	
 upda.ng	
 processing	

online	
 inquiry	
 processing	

online	
 aggrega.ng	
 processing	

online	
 batch	
 aggrega.ng	
 processing	

match	
 master	
 registra.on	
 processing	

JSP	

ledger	

sheet	

master	

data	

CSV	

client	
 DB server	
Web/AP server	

(a) Architecture

client	
 DB server	
Web/AP server	

JSP	
 DAO	

service	

layer	

event	

 layer	

AP framework	

AP server	

OS	

Browser	

OS	

DBMS	

(b) Layers

Fig. 1. An overview of the target systems

based detection tool. Currently, it can handle C/C++, Java,
JavaScript, JSP, Python, and PHP code. CloneGear has the
following features.

• CloneGear does not detect clones from code of repeated
instructions. For example, in C/C++ or Java, trivial du-
plicated code such as consecutive if-else statements or
consecutive switch-case entries are not detected as clones.

• Even if there are different instructions in two similar code
fragments, the two similar code fragments are detected as
Type-3 clones.

The first feature has been realized by utilizing our technique
folding repeated instructions in advance of clone detection
[26]. The second feature has been realized by utilizing Smith-
Waterman algorithm [27], which is a well-used algorithm to
detect similar base arrangements in DNA or RNA. We have
applied the algorithm to clone detection [28]. In our previous
research, we have already confirmed that both features are
beneficial for clone detection [26], [28]. In this research, we
use CloneGear to detect clones from the target projects.

In this research, the authors measure the following clone
metrics, all of which are normalized ones because the target
projects are different source code sizes. All the metrics are
measured for every project.

DOC (Density Of Clones): the number of clones per 1,000
lines. This metric is calculated by dividing the num-
ber of clones detected from a given project by its
kilo lines of code.

ROC (Ratio Of Clones): the ratio of clones against the
whole source code. This metric is calculated by
dividing the number of tokens included in any clones
by the number of whole tokens in a given project. If

39

A	

B	

C	

C	

10	

10	

10	

30	

30	

20	

20	

10	

File1: 80LOC 	
 File2: 60LOC 	
 File3: 40LOC 	

DOC = (3+2+2)/(0.08+0.06+0.04) = 38.89 	

ROC = ((30+20+20-10)+(10+30)+(10+10))/(80+60+40) = 66.7% 	

DORF = 2/(0.08+0.06+0.04) = 11.11 	

C	

Fig. 2. Example of metrics measurement

there is no clone in a given project, ROC becomes
the minimum value 0%. If the whole source code is
duplicated, ROC becomes the maximum value 100%.

DORF (Density Of Related Files): the number of file
pairs sharing clones per 1,000 lines. This metric
is calculated by dividing the number of file pairs
sharing clones in a given project by its kilo lines
of code.

DOC is a normalized version of the number of clones. The
number of clones is a well-used metric in clone analysis stud-
ies. ROC is also a well-used metric. This metric is sometimes
called clone coverage. DORF is a new metric that the authors
contrived in this research. This metric is the authors’ intuition
that clones shared with different files are more harmful than
ones within a single file.

Figure 2 shows a measurement example of the three metrics.
In this figure, there are three source files. Three clone groups
A, B, and C have been detected. Each code fragment in A, B, or
C includes 20, 30, or 10 lines of code. Herein, for simplicity,
we assume every code line consists of only a program token.
In this situation, the three metrics are calculated as shown in
the bottom of the figure.

For each project, the authors detected clones three times.
In each time, the authors used different thresholds 50, 100, or
150. The thresholds mean the minimum token number of code

fragments to be detected as clones. Clone detection results are
better if they include the smaller number of false positives
and they miss the smaller number of undetected clones to
be detected. However, the number of false positives and the
number of missing clones have a trade-off relationship. If we
configure clone detection tools not to detect false positives, we
will miss many clones to be detected. On the other hand, if we
configure tools not to miss clones to be detected, clone detec-
tion results will include many false positives. Consequently,
in this research, the authors used three different values as
thresholds of minimum clones to be detected.

50 tokens: this value is often used in token-based clone
detections. With this value, detection tools tend not
to miss clones to be detected but it includes many
false positives [13], [29].

100 tokens: this value is intended to reduce false positives.
However, more true clones tend to be missed.

150 tokens: this value is intended not to detect false posi-
tive as much as possible.

Table I shows values of the clone metrics for the three
thresholds on each project just for reference. All the clone
metrics become smaller values as a larger threshold is used.

TABLE I
MEASUREMENT RESULTS OF CLONE METRICS

Vendor Threshold: 50 Threshold: 100 Threshold: 150
DOC ROC DORF DOC ROC DORF DOC ROC DORF

VA 11.66 12.3% 3.69 2.57 7.5% 0.59 1.07 4.4% 0.27
VB 61.17 43.1% 5.24 35.93 38.7% 2.64 22.06 33.8% 1.75
VC 24.85 22.4% 6.64 7.85 18.3% 1.77 3.76 13.7% 0.89
VD 20.92 26.2% 10.56 6.30 19.1% 3.46 2.10 10.1% 0.95
VE 30.18 22.1% 10.01 10.99 18.1% 3.03 4.99 13.1% 1.78
VF 14.60 20.6% 2.81 5.93 17.3% 1.00 3.45 14.6% 0.60
VG 17.38 19.6% 9.58 5.76 15.0% 3.50 1.46 6.7% 1.49
VH 33.52 34.1% 7.95 13.62 29.4% 3.79 5.45 19.5% 2.23
VI 32.86 32.1% 3.86 15.71 29.5% 2.78 5.20 17.9% 2.42

40

C. Project Data

In this section, the authors introduce project data used in this
research. When we started this research, the nine vendors had
finished developing the target systems. We were not able to ask
the vendors to collect/measure project data that we wanted. We
used available project data, which the company had asked the
vendors to collect/measure to check quality and progress of the
developments. Due to contractual reasons with the company,
the authors cannot provide actual values of the project data.

STEPS was used to consider size of the target projects.
STEPS: a value to represent size of source code. It is

similar to LOC but blank lines and comment lines
are not considered to measure it.

DP, DM, and PPW were used to consider the aspect of
development cost for the target projects.

DP (Development Period): a period that a vendor took
to develop the target project. The period that the
company took to conduct acceptance testing is not
included in DP.

DM (Development Man-hour): man-hour that a vendor
took to develop the target project.

PPW (Progress Per Week): average code size that a ven-
dor implemented per week.

The authors used the number of vendor test cases. However,
the authors did not use the number of acceptance test cases
because the same acceptance testing was conducted for all
the projects. In other words, the number of test cases in the
acceptance testing for all the projects is exactly the same.

#VUT, #VIT, #VST: the number of vendor unit, integra-
tion, or system test cases.

The authors also used the density of vendor testing. This
data was calculated by dividing the number of test cases by
the code size of that time.

DOVUT, DOVIT, DOVST: density of vendor unit, integra-
tion, or system testing.

Data related to bugs were also targets of our experiment.
The authors used the number of bugs found in vendor and
acceptance testing.

#BIVUT, #BIVIT, #BIVST: the number of bugs found in
vendor unit, integration, or system testing.

#BIAUT, #BIAIT, #BIAST: the number of bugs found in
acceptance unit, integration, or system testing.

The authors also used the bug density in vendor testing. The
bug density was calculated by dividing the number of found
bugs by the code size of that time. The authors did not use
the bug density in acceptance testing because such data was
not recorded in the projects.

BDOVUT, BDOVIT, BDOVST: bug density of vendor
unit, integration, or system testing.

D. Calculating Correlation Coefficient

The authors calculated correlation coefficient between clone
metrics shown in Table I and project data shown in Section
III-C. In other words, the authors investigated a similarity

between the two orders of the projects: one is a descending
order of a given clone metric; the other is a descending order
of given project data. The similarity was calculated by using
Spearman’s ρ. The authors obtained clone detection results
for three threshold values. Consequently, the authors derived
three values of the correlation coefficient for each pair of clone
metrics and project data.

IV. RESULTS

Figure 3 shows the correlation coefficient between the clone
metrics and the project data. There is a line segment for
every clone metric on all the project data. The line segments
represent the range of correlation coefficient between given
project data and a given clone metric. The authors detected
clones with three thresholds, so that there are three values
of the correlation coefficient for each clone metric. “×” on
the line segments mean they are median values. The number
following the metric names means the number of correlations
where p-value is 0.017 or less. For example, “DOC 3” in
the figure means that each of all three variations of DOC
metric was significant with p-value 0.017. The reason why
we used 0.017 as p-value is that (1 − 0.017)3 = 0.95. The
formula means at least 98.3% probability is required for the
significance of each correlation coefficient to ensure that all
of the three correlation coefficient are significant at 95%
probability.

The following pairs of the clone metrics and the project data
have at least 1 significant correlation coefficient.

1) Positive correlation on PPW×ROC
2) Negative correlation on #VUT×DORF
3) Positive correlation on #BIVIT×DORF
4) Positive correlation on #BIAUT×DORF
5) Positive correlation #BIAIT×DOC
6) Positive correlation #BIAIT×ROC
7) Positive correlation #BIAIT×DORF
8) Negative correlation on BDOVUT×DORF
9) Positive correlation BDOVIT×DORF
1) seemingly shows that high ROC projects developed

more lines of code than low ROW ones per week. In other
words, projects including more clones can be developed more
efficiently. If we assume that clones were generated by copy-
and-paste coding, this result is quite natural because copy-
and-paste coding is much faster than writing line-by-line code.
However, there is no significant correlation coefficient between
DM and any of the clone metrics. Consequently, we cannot
conclude that copy-and-paste coding contributes to reducing
development cost.

3) and 9) show that more bugs tend to be detected in
integration testing if more files share clones. However, 2) and
8) shows less bugs tend to be detected in unit testing on
projects where many files share clones These results imply
that bugs tend to be detected late in such projects.

4) 5) 6) and 7) mean that acceptance unit/integration testing
detected more clones on the projects having higher clone
metrics values. The bugs detected in acceptance testing means
that they had not been detected in vendor testing. These results

41

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

DO
C

RO
C

DO
RF

DO
C

RO
C

DO
RF

DO
C

RO
C

DO
RF

DO
C

RO
C_
1

DO
RF

DO
C

RO
C

DO
RF
_1

DO
C

RO
C

DO
RF

DO
C

RO
C

DO
RF

DO
C

RO
C

DO
RF

DO
C

RO
C

DO
RF

DO
C

RO
C

DO
RF

STEPS DP DM PPW #VUT #VIT #VST DOVUT DOVIT DOVST

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

DO
C

RO
C

DO
RF

DO
C

RO
C

DO
RF
_1

DO
C

RO
C

DO
RF

DO
C

RO
C

DO
RF
_2

DO
C_
3

RO
C_
3

DO
RF
_1

DO
C

RO
C

DO
RF

DO
C

RO
C

DO
RF
_1

DO
C

RO
C

DO
RF
_2

DO
C

RO
C

DO
RF

#BIVUT #BIVIT #BIVST #BIAUT #BIAIT #BIAST BDOVUT BDOVIT BDOVST

Fig. 3. Correlation coefficient between clone metrics and project data. The number following the metrics names means the number of significant correlations
(p-value is 0.017 or less).

imply that the presence of clones makes it more difficult to
conduct testing for vendors.

As a result of above discussion, we conclude that the
presence of clones makes testing more difficult and there are
few benefit of clones for software development.

V. THREATS TO VALIDITY

In this experiment, the authors used 0.017 as p-value. This is
because there are three correlation coefficient for each pair of
the project data and the clone metrics and the authors wanted
to ensure that all of three correlation coefficient are significant
at 95% probability. The authors utilized 19 project data and
three clone metrics, so that there were 57 correlations in this
experiment. Thus, conducting multiple comparisons such as
FDR4 is another way for investigation.

4False Discovery Rate

In this experiment, the targets are only a single set of
projects. If the authors conduct the same investigation to other
sets of projects, the authors may obtain different kinds of
correlations between project data and clone metrics. However,
our target is very special data, which include nine isofunctional
software systems. The authors think using this data match with
our research context, which reveals influences of clones on
software development.

We were not able to obtain detailed data for the bugs in the
nine projects. We were not able to conduct detailed analyses
for each of the bugs. Thus, it is unclear how many of the bugs
are related to code clones.

The project data used in the experiment were captured by
vendors themselves. There may be some vendors that did not
precisely capture the project data. There is also a possibility
that some project data were captured precisely while the others
were not in the same vendors.

42

VI. CONCLUSION

In this paper, the authors reported experimental results on
the relationship between code clones and project data. The
target systems are nine web-based systems developed based
on the same specification. As a result, the authors found the
followings.

• If many files share clones a project, it becomes more
difficult to detect bugs in unit testing. In such projects,
more clones are detected in integration testing.

• If many clones exist in a project, vendor testing become
more difficult. In such project, more bugs were detected
in acceptance testing.

REFERENCES

[1] D. Rattan, R. Bhatia, and M. Singh, “Software Clone Detection: A
Systematic Review,” Information and Software Technology, vol. 55,
no. 7, pp. 1165–1199, 2013.

[2] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[3] L. Barbour, F. Khomh, and Y. Zou, “An Empirical Study of Faults in
Late Propagation Clone Genealogies,” Journal of Software: Evolution
and Process, vol. 25, no. 11, pp. 1139–1165, 2007.

[4] N. Göde and R. Koschke, “Frequency and risks of changes to clones,”
in Proceedings of the 33rd International Conference on Software Engi-
neering, 2011, pp. 311–320.

[5] Y. Higo and S. Kusumoto, “How Often Do Unintended Inconsistencies
Happen? —Deriving Modification Patterns and Detecting Overlooked
Code Fragments—,” in Proceedings of the 28th International Conference
on Software Maintenance, 2012, pp. 222–231.

[6] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is Duplicate Code More
Frequently Modified Than Non-duplicate Code in Software Evolution?:
An Empirical Study on Open Source Software,” in Proceedings of
the Joint ERCIM Workshop on Software Evolution and International
Workshop on Principles of Software Evolution, 2010, pp. 73–82.

[7] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim,
W. Park, and E. Lee, “Experience of Finding Inconsistently-changed
Bugs in Code Clones of Mobile Software,” in Proceedings of the 6th
International Workshop on Software Clones, 2012, pp. 94–95.

[8] J. Krinke, “Is Cloned Code Older Than Non-cloned Code?” in Proceed-
ings of the 5th International Workshop on Software Clones, 2011, pp.
28–33.

[9] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software Code,” IEEE Transactions on
Software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[10] A. Lozano and M. Wermelinger, “Assessing the Effect of Clones on
Changeability,” in Proceedings of the 24th International Conference on
Software Engineering, 2008, pp. 227–236.

[11] M. Mondal, C. K. Roy, and K. A. Schneider, “Does Cloned Code
Increase Maintenance Effort?” in Proceedings of the 11th International
Workshop on Software Clones, 2017, pp. 38–44.

[12] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i. Matsumoto,
“Software Quality Analysis by Code Clones in Industrial Legacy Soft-
ware,” in Proceedings of the 8th International Symposium on Software
Metrics, 2002, pp. 87–94.

[13] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic
Token-based Code Clone Detection System for Large Scale Source
Code,” IEEE Transactions on Software Engineering, vol. 28, no. 7, pp.
654–670, 2002.

[14] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
Detection Using Abstract Syntax Trees,” in Proceedings of the Interna-
tional Conference on Software Maintenance, 1998, pp. 368–377.

[15] C. J. Kapser and M. W. Godfrey, “”Cloning Considered Harmful” Con-
sidered Harmful: Patterns of Cloning in Software,” Empirical Software
Engineering, vol. 13, no. 6, pp. 645–692, 2008.

[16] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T. Sano, “Applying
Clone Change Notification System into an Industrial Development Pro-
cess,” in Proceedings of the 21th International Conference on Program
Comprehension, 2013, pp. 199–206.

[17] D. Chatterji, J. C. Carver, B. Massengil, J. Oslin, and N. A. Kraft, “Mea-
suring the Efficacy of Code Clone Information in a Bug Localization
Task: An Empirical Study,” in Proceedings of the 2011 International
Symposium on Empirical Software Engineering and Measurement, 2011,
pp. 20–29.

[18] W. Zhao, Z. Xing, X. Peng, and G. Zhang, “Cloning Practices: Why
Developers Clone and What Can Be Changed,” in Proceedings of the
28th International Conference on Software Maintenance, 2012, pp. 285–
294.

[19] M. Tsunoda, Y. Kamei, and A. Sawada, “Assessing the Differences of
Clone Detection Methods Used in the Fault-prone Module Prediction,”
in Proceedings of the 10th Internal Workshop on Software Clones, 2016,
pp. 15–16.

[20] V. Saini, H. Sajnani, and C. Lopes, “Comparing quality metrics for
cloned and non cloned java methods: A large scale empirical study,”
in Proceedings of the 32nd International Conference on Software
Maintenance and Evolution, 2016, pp. 256–266.

[21] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308–320, Jul. 1976.

[22] M. H. Halstead, Elements of Software Science (Operating and Program-
ming Systems Series). Elsevier Science Inc., 1977.

[23] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes, “Sourcer-
erCC: Scaling Code Clone Detection to Big-code,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
1157–1168.

[24] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and Evaluation of Clone Detection Tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[25] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Method and Im-
plementation for Investigating Code Clones in a Software System,”
Information and Software Technology, vol. 49, no. 9-10, pp. 985–998,
2007.

[26] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Folding
Repeated Instructions for Improving Token-Based Code Clone Detec-
tion,” in Proceedings of the 12th International Working Conference on
Source Code Analysis and Manipulation, 2012, pp. 64–73.

[27] T. F. Smith and M. S. Waterman, “Identification of Common Molecular
Subsequences,” Journal of Molecular Biology, vol. 147, no. 1, pp. 195–
197, 1981.

[28] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Gapped
Code Clone Detection with Lightweight Source Code Analysis,” in
Proceedings of the 21st International Conference on Program Compre-
hension, 2013, pp. 93–102.

[29] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in Proceedings of the 16th International Conference on Program Com-
prehension, 2008, pp. 172–181.

43

