
Towards Automated Generation of Java Methods:
A Way of Automated Reuse-Based Programming

Kento Shimonaka, Yoshiki Higo, Junnosuke Matsumoto, Keigo Naito, and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University,

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract—Automatic programming has been researched for
a long time. A variety of methodologies have been proposed.
However, they have limited applicability, or they can generate
only a few lines of code. In this research, the authors are
trying to generate source code of Java methods based on their
specifications. In this paper, we propose a reuse-based code
generation technique with method signature and test cases. First,
our technique searches existing Java methods whose signature
are the same as the one input by a user. Then, our technique
reworks each of them by using test cases input by the user.
Methods passing all the test cases are given to the user. At this
moment, the authors have implemented a naive prototype and
conducted experiments with four open source software. In total,
our technique succeeded to generate 18 Java methods. In this
paper, we also introduce some actual examples of generated Java
methods and some ideas to enhance our technique.

I. INTRODUCTION

Automatic programming is a mechanism to generate com-
puter programs with developer’s instructions that are more ab-
stract than program source code [1]. Automatic programming
has been researched for a long time and various methodolo-
gies for automatic programming have been proposed before
now. For example, Solar-Lezama proposed sketching [2]. In
this technique, developers write partial programs in which
some expressions are not written. Then, sketching induces the
lacking expressions with SAT solver and given test cases.
Gvero et al. developed a code supplement tool, AnyCode
[3]. Developers input what kinds of functions they want to
use into AnyCode with natural language. Then, AnyCode
analyses users’ input and suggests some functions. Gulwani
et al. developed a tool, FlashFill [4]1, which automates string
manipulation. FlashFill induces developer’s intentions from
input/output examples and performs automated string manip-
ulations for the remaining input strings.

The following are the difficulties of automatic programming,
which prevent automatic programming techniques from being
used in practice:

• difficult to receive developers’ intention from input [5],
• difficult to extract candidate programs [5], and
• difficult to generate non-trivial programs [6].
Currently, the authors are trying to generate Java methods

from their specifications. In this paper, we propose a reuse-
based automatic programming technique with the following
two kinds of information:

1https://goo.gl/PNLmfc

• signature information (a list of parameter types, return
type, and method name), and

• input/output information (pairs of input values and ex-
pected output values).

In general, both the two kinds of information are created in
software development process. Signatures are decided in the
design phase and input/output information are generated in the
unit testing phase. Our technique requires only information
that is created in usual software development. Developers do
not have to create additional information to use our technique.
Our technique has a high affinity for test-driven development.

Our technique is a reuse-based code generation methodol-
ogy. First, our technique searches existing Java methods that
have the same signatures as developer’s input one. Then, our
technique reworks found methods to pass all the input test
cases. It follows that our technique generates Type-3 cloned
methods.

The authors have implemented a prototype based on our
technique and conducted experiments on four open source
software. In the experiments, the authors firstly removed a
method having test cases from the target project. Then, we
tried to generate the removed method from the remaining
methods in the projects. As a result, we succeed to generate 31
methods. We manually checked all the generated source code
and confirmed that 18 out of the 31 methods had the correct
behavior. Surprisingly, there were some generated methods
whose source code was simpler than their original (hand-
made) source code.

The remainder of this paper is organized as follows. In
Section II, we introduce our motivating example. In Section
III, we propose our technique to support the context of the
motivating example. In Section IV, we introduce an automated
program repair tool, GenProg, which being is used in our
technique. Our prototype is introduced in Section V. In Section
VI, the experimental results on 4 OSS are shown and then we
discuss the results in Section VII. Lastly, we conclude this
paper in Section IX.

II. RESEARCH MOTIVATION

An open source project Apache Commons Text (in short,
commons-text) includes two methods, startsWith and endsWith.

• startsWith method checks whether the contents of this
object starts with the specified string or not.

• endsWith method checks whether the contents of this
object ends with the specified string or not.

978-1-5386-6430-8/18/$31.00 c© 2018 IEEE IWSC 2018, Campobasso, Italy30

public boolean startsWith(final String str){
if (str == null) {
return false;

}
final int len = str.length();
if (len == 0) {
return true;

}
if (len > (size)) {
return false;

}
for (int i = 0; i < len; i++) {
if ((buffer[i]) != (str.charAt(i))) {
return false;

}
}
return true;

}

(a) original startsWithmethod

public boolean endsWith(final String str){
if (str == null){
return false;

}
final int len = str.length();
if (len == 0) {
return true;

}
if (len > (size)){
return false;

}
int pos = size - len;
for (int i = 0; i < len; i++ , pos++){
if ((buffer[pos]) != (str.charAt(i))){
return false;

}
}
return true;

}

(b) original endsWithmethod

public boolean startsWith(final String str){
if (str == null){
return false;

}
final int len = str.length();
if (len == 0) {
return true;

}
if (len > (size)){
return false;

}
int pos = 0;
for (int i = 0; i < len; i++ , pos++){
if ((buffer[pos]) != (str.charAt(i))){
return false;

}
}
return true;

}

(c) generated startsWith method from endsWithmethod

Fig. 1: Motivating Example

Figures 1(a) and 1(b) show the source code of startsWith
and endsWith, respectively. The two methods have not only
similar functionality but also similar source code.

Herein, we assume that startsWith has not been implemented
yet in this project. A developer wants to implement a method
that checks whether the contents of the object starts with the
specified string or not. If the developer knows that endsWith
method exists in the project, she/he can do copy-and-paste
and add some modifications to the pasted code for making
startsWith method. However, if the developer does not know
that endsWith method exists in this project, he cannot reuse
endsWith methods. Even if he knows the existence, she/he has
to search the source code in the project.

In this paper, we proposes a new technique to generate a
new Java method from its specification. In the above situation
where a developer wants startsWith method, she/he can use
the proposed technique by giving the following signature
information to the technique.

Method Name: startsWith
Parameter Types: String
Return Type: boolean
The developer also has to give some input/output examples.

The followings are a couple of examples.
Case1: contents: abcd, string: ab, return-value: true
Case2: contents: abcd, string: abcd, return-value: true
Case3: contents: abcd, string: cd, return-value: false

Figure 1(c) is a generated startsWith method by the proposed
technique. This method was generated based on endsWith
method and the underlined program statement means it was
changed in the generation process. This example shows that
it is possible to automatically generate new methods from
existing ones by adding some changes.

III. PROPOSED TECHNIQUE

Figure 2 shows an overview of our technique to generate
Java methods. As shown in this figure, our technique consists
of the following two phases:

• database construction, and

• method generation.

In the database construction phase, a user specifies Java
source files that are used for the method generation phase.
Then, our technique analyzes the specified files to extract
method information and registers the information into SQL
database.

The method generation phase includes the following three
steps.

Step1: searching methods
Step2: prioritizing methods
Step3: processing methods

In the method generation phase, a user input signature
information and some input/output examples. Then, in Step1,
our technique searches methods that have both the same
parameter types and the same return type as the ones input by
the user. In Step2, our technique prioritizes the found methods
based on their method name similarity to the one input by
the user. In Step3, our technique processes each of the found
methods to satisfy all the input/output examples.

IV. GENPROG

Herein, we describe GenProg, which is currently used in our
implementation. GenProg is an automated program repair tool
[7]. Roughly speaking, there are two main functionalities in
automated program repair tools: fault localization and program
modification. GenProg uses spectrum-based fault localization
techniques [8]. In the spectrum-based techniques, every line
of code is ranked based on suspeciousness value, which is
calculated by executed paths of given test cases. As program
modification, GenProg performs either of insertion, deletion,
or replacement operation, randomly.

• An insertion operation means that GenProg randomly
selects a program statement in the target project and then
the selected program statement is inserted before or after
the localized code fragment.

• A deletion operation means that the localized code frag-
ment is deleted.

31

Method
database

Signature	
information

Input/Output
examples

MethodMethodMethod

Method

Java source files
Method extractor

Method searcher

Method sorter Method processor

Method

Method

Method

...pr
io

rit
y

lo
w

hi
gh

Database
construction

Method
generation

User’s	input

User’s	input

User’s	input

Output	to	user

Fig. 2: Overview of Proposed Technique

• A replacement operation means GenProg does both the
insertion and deletion operations.

The program modification process of GenProg is based on
genetic algorithm. Several dozen of variant programs are
generated by using the above operations and all the test
cases are executed for all the variant programs. Then, some
better variant programs are selected. Herein, “better” means
passing more test cases. Then, variant programs of the next
generation are generated from the selected variant programs.
This process is repeated until a variant program passes all the
test cases or given time limit is exceeded. Le Goues et al.
applied GenProg to eight open source software [9] and they
reported that GenProg had succeeded to fix 55 out of 105
actual bugs. On the other hand, GenProg inserts only program
statements existing in the target projects, so that it cannot fix
bugs that require other program statements than existing ones
[10]. Another issue of GenProg (and other automated program
repair tools) is taking a long time to fix bugs.

The first implementation of GenProg was realized with
OCaml. But, currently, another implementation with Java is
available2. The new GenProg is called jGenProg. jGenProg
is included in a tool set, ASTOR [11]. Other automated
program repair techniques, Kali[12] and MutRepair[13] are
also included in ASTOR. In our implementaion, jGenProg is
used.

V. IMPLEMENTATION

Herein, we describe our prototype implementation based on
the proposed technique. The target of our prototype is Java
software. Our prototype takes JUnit test cases as input/output
examples. Our prototype consists of the following four com-
ponents, which also are shown in Figure 2:

2https://goo.gl/9HzZbE

• method extractor,
• method searcher,
• method sorter, and
• method processor.
In the remainder of this section, we explain each of the

components in detail.

A. Method Extractor

Method extractor parses given source files and extracts the
following information:

• parameter types,
• return type,
• method name,
• file path,
• class name,
• project name,
• line number of method declaration, and
• source code.
Extracted information is stored into SQL database. Cur-

rently, we use SQLite database system3.

B. Method Seacher

Method searcher searches the database by given signature
information. All the methods whose parameter types and return
type are the same as the given signature are listed. The list is
passed to Method sorter.

C. Method Sorter

We have adopted method name similarity as the indicator
of prioritizing method. Methods having more similar names
are given higher priorities. This is because some studies
reported that method having similar names tend to have

3https://www.sqlite.org/

32

StepC

StepB

• Method	name:	𝑇#
• Parameter	types:	𝑇$%,	𝑇$&
• Return	type:	𝑇'

Signature information

public 𝑇' 𝑇#(𝑇$% p, 𝑇$& p){

}

Methods	having	the	same	signature

StepA

public 𝑇' 𝑇#(𝑇$% p, 𝑇$& p){

}

public 𝑇' methodC(𝑇$% p, 𝑇$& p){

}

public 𝑇' methodB(𝑇$% p, 𝑇$& p){

}

public 𝑇' methodA(𝑇$% p, 𝑇$& p){

}

Creating	a	new	empty	method	with	
signature	information.

Inserting	the	body	of	a	method	having	
the	same	signature	to	the	empty	method.

Changing	the	body	of	the	new	method	
so	as	to	pass	all	the	given	input/output	
examples.	If	succeeded,	 our	prototype	
output	its	source	code.	If	failed,	go	back	
to	StepB with	another	method. public 𝑇' 𝑇#(𝑇$% p, 𝑇$& p){

}

xxx
xxx

xxx

Output	to	user

success

failed

Fig. 3: Overview of method processor

similar functionalities [14], [15]. This component calculates
the Levenshtein distance between input method name and each
of the listed method name. The listed methods having smaller
Levenshtein values have higher priority,

D. Method Processor

Figure 3 shows an overview of Method processor. The
inputs of this component are as follows:

• signature information, and
• a method in the sorted list (in short, target method).

The procedure of Method processor is as follows.

StepA: creating a new empty method with the signature
information.

StepB: inserting the body of a method having the same
signature to the empty method.

StepC: changing the body of the new method so as to pass
all the given input/output examples. If succeeded, our
prototype outputs its source code. If failed, go back
to StepB with another method.

Current our implementation is naive. If a compile error
occurs at the end of StepB, the method is discarded. Then,
Method processor take a new method from the list. This
processing is mainly because GenProg requires compilable
code as its input.

VI. EXPERIMENT

In this section, we report our experimental results on four
open source software. The purpose of this experiment is
investigating whether the proposed technique can generate
plausible methods for actual software.

A. Procedure

The targets of this experiment are as follows:

• apache-commons-text,
• apache-commons-lang,
• apache-commons-io, and
• apache-commons-collections.

The reasons why we chose the above software are (1) they are
being developed with Java, and (2) there are JUnit test cases
in the projects.

The followings are the procedure of our experiment for each
target method: we removed the source code of the selected
method declaration from the software; we tried to generate the
method with our technique; if we could generate, we compared
the generated source code with its original one.

Before conducting the above procedure, we created a set of
target methods for each software. Methods satisfying all the
following conditions were included in the set.

• The method includes two or more program statements.

33

public static String removeStart(final String str, final String remove) {
if (isEmpty(str) || isEmpty(remove)) {
return str;

}
if (str.startsWith(remove)){
return str.substring(remove.length());

}
return str;

}

public static String removeStart(final String str, final String remove) {
if ((isEmpty(str)) || (isEmpty(remove))) {
return str;

}
if (startsWithIgnoreCase(str, remove)) {
return str.substring(remove.length());

}
return str;

}

(a) original removeStartmethod (developer’s code)

(b) generated removeStartmethod (machine-made code)

Fig. 4: A generated method (overfitting)

• There are JUnit test cases for the method and both the
statement coverage and the condition decision coverage
are 100%.

• There is at least another method having the same signa-
ture as the method in the software.

The reason for the first condition is to avoid methods that
are too simple to generate with our technique. Getters and
setters are filtered out with this condition.

The reason for the second condition is that our technique
requires test cases to generate target methods. It is unrealistic
for the authors to create appropriate test cases for the methods
in the target projects because the authors are not the developers
of the projects. Thus, in this experiment, we targeted method
having enough test cases. We used EclEmma to calculate
statement coverage and condition decision coverage for each
method in the target projects.

The reason for the third condition is that our technique can
work only when there are methods having the same signature
as the method that a user wants to generate.

In this experiment, we set 30 minutes as the time-out period
of GenProg.

B. Results

Table I shows the results. “# of generated methods” means
the number of generated methods by the proposed technique.
The proposed technique generates at most a method for a
given target method. All generated methods passes all the
test cases attached to the projects. “# of plausible methods”
means the number of plausible methods. The authors manually
checked whether each of the generated methods was plausible
or not. The authors confirmed that three out of the four

TABLE I: Experimental Results

Project name Generated methods Plausible methods
commons-text 7 5
commons-lang 18 10
commons-io 0 0

commons-collections 6 3

public static boolean isBlank(final CharSequence cs) {
int strLen;
if (cs == null || (strLen = cs.length()) == 0) {
return true;

}
for (int i = 0; i < strLen; i++) {
if (!isWhitespace(cs.charAt(i))) {
return false;

}
}
return true;

}

public static boolean isBlank(final CharSequence cs) {
if (isEmpty(cs))
return true;

final int sz = cs.length();
for (int i = 0; i < sz; i++) {
if (!isWhitespace(cs.charAt(i))))
return false;

}
return true;

}

(a) original isBlankmethod (developer’s code)

(b) generated isBlankmethod (machine-made code)

Fig. 5: A generated method (plausible)

projects include methods that can be generated by the proposed
technique.

Figure 4 shows an overfitting method generated by the pro-
posed technique. Herein, overfitting means a generated method
passes all given test cases but it behavior does not match
with developer’s intention. removeStartMethod generated by
the proposed technique (4(b)) is very similar to its original
method (4(a)). However, due to the underlined instruction in
4(b), its behavior does not completely match with developer’s
intention. In the original code, startsWith method is invoked
instead of startsWithIgnoreCase. However, the fact remains
that the proposed technique was able to generate Figure 4(b)’s
source code with input/output examples. The authors consider
that this generated source code is helpful for developers to
implement removeStart method. If a developer adds more
input/output examples to consider case-sensitive, the proposed
technique can generate a method that is identical to the original
method.

Figure 5 shows a case where the proposed technique was
able to generate a plausible method. We can see that the
machine-made code is shorter/simpler than its developer’s
code. The underlined instruction in the machine-made code
is different from the developer’s code. In the developer’s
code, null-checking and zero-length checking are performed
directly. The developer might not know of isEmpty method.
On the other hand, the proposed technique generated code
by using isEmpty method. The content of isEmpty method is
null-checking and zero-length checking, so that the generated
method is semantically the same as its developer’s code. This
case shows that the proposed technique has a capability of
generating better code than developers.

VII. DISCUSSION

We investigated which ranks of methods had been bases of
generated methods. In other words, we investigated whether
our method sorting strategy (described in Subsection V-C)
worked well or not. Figure 6 shows that the ratio of A

34

●

●

●●

text lang collections

0
20

40
60

80
10
0

Projects

R
at
io

Fig. 6: Ratio of processed methods against methods having
the same parameter types and return type as user’s input ones

●

text lang collections

0
10
0

20
0

30
0

40
0

Projects

Se
co
nd
s

Fig. 7: Execution Time

against B: A means the number of processed methods before
generating a method passing all the test cases; B means the
number of methods having the same parameter types and
return type as user’s input ones. For all the three projects where
the proposed technique succeeded to generated some methods,
median values are 27%, 24%, and 42%. This means that our
sorting strategy works well. Using method name similarity to
prioritize methods to process is useful to shorten generation
time.

Next, we discuss generation time. There are theoretically
two reasons why the proposed technique fails to generated
methods. The first reason is that the execution time of our
prototype reached 30 minutes, which is time-out period. The

second reason is that there is no answer in the search space
of our technique.

Figure 7 shows execution time of the prototype where
the prototype was able to generate overfitting or plausible
methods. For all the cases, methods were generated within
much shorter time than 30 minutes. These results mean that
using longer time-out period is not useful. If we use other
algorithms than GenProg, we may succeed to generate more
methods.

As described in Subsection V-D, changing the body of a
given method can start only if the given method is compilable.
This is because GenProg requires compilable code as its
input. The authors consider it is a major drawback to method
changing because uncompilable methods are unavailable even
if they almost satisfy the given input/output examples. Cur-
rently, we are trying to change implementation to start with
uncompilable methods.

The experiment was conducted under the assumption that
the existence of good test suite. However, it may not be
realistic. At the beginning, the developer may have only vague
understanding of the method. Furthermore, it is not relatively
easy to generate test cases for methods taking only simple data
types (e.g., int or String)., but it can be hard for object-type
inputs. Thus, the experiment threats to construction validity.
Other kinds of experiments such as using partial test cases or
user interaction are necessary for fair evaluations.

At the end of the discussion, the authors have to say that
the proposed technique generates Type-3 clones in the target
software. If a buggy method is reused by our technique, a
new method is generated based on the buggy code. However, if
plenty of input/output examples are given, the bugs in the code
are automatically removed in the phase of method processing
of the proposed technique.

VIII. RELATED WORK

Reiss has proposed a reuse-based Java method generation
techniques [16]. The technique takes method’s specification as
its input and output a method that satisfying the specification.
Firstly, the technique searches existing methods that include
given keywords or match with given signature restrictions.
Then, the technique transform the found methods to pass all
the given test cases. The transformations can be divided into
some groups.

• The first group is signature transformation. The return
type, parameter types, and method name of a found
method are changed to meet the given signature. Reorder-
ing parameters, adding/changing/deleting exceptions, and
converting to static methods are also performed.

• The second group is generative transformation. This
transformation is to find a code fragment that satisfies
the given specification. This transformation (extraction)
is realized with backward slicing techniques.

• The third transformation is compilation transformation.
Program code where compilation errors occur is removed.

• The fourth group is testing transform. This transformation
looks at the test results and checks if there is a simple

35

transformation that will convert the actual results into the
desired ones. Inverting boolean returns, changing the case
of string results, and adding a constant value to integer
results are performed.

The biggest difference between our technique and Reiss’s
one is the way to transform methods. Reiss’s method changes
signatures, extracts a code segment, removes uncompilable
program statements, and add some small changes to pass
test cases. On the other hand, our technique reuses program
statements in the same or other methods in the same projects.
Our technique make larger methods by the transformation
than their base methods while Reiss’s technique make smaller
methods than their base methods.

Stolee proposed to use a SMT solver to find a match
against existing programs instead of executing test cases [17].
A remarkable feature of this technique is a capability of
composing multiple methods if no single database meet a given
specification. However, this technique does not change code
inside existing methods to meet the given specification.

Lazzarini Lemos et al. developed an Eclipse plugin, Code-
Genie [18]. This tool searches existing code based on test
cases, which are given by developers. This tool performs
program slicing to eliminate code fragments that are not
related to given test cases. However, this technique do not have
the capability to change existing code to satisfy the given test
cases.

IX. CONCLUSION

In this paper, we proposed a technique to generate Java
methods from given parameter types, return type, and in-
put/output examples. We have implemented a prototype based
on the prototype technique and applied to four open source
software. As a result, the prototype generated 31 methods and
18 out of them are plausible.

We have many future works. First of all, we need to
conduct a deeper analysis of the experimental results. We
need to reveal why the proposed technique did not generate
any method for apache-commons-lang. We are going to do
more experiment with this prototype. For example, we are
going to investigate whether our technique can generate Java
methods that were added in revision r+1 with the project
source code of revision r. Experiments with partial test cases
or user interaction are also necessary.

We understand that the applicability of our technique is
limited because it requires the same signature methods for
generating methods. We are going to extend our technique to
transform signatures like Reiss’s technique [16].

We are also going to use other algorithms to generate Java
methods. Currently, our prototype includes GenProg, but in the
near future, we add NOPOL [19], which is another automated
program repair algorithm with SMT solver. Moreover, we may
produce new algorithms that fit more closely to our research
context.

ACKNOWLEDGMENT

This work was supported by MEXT/JSPS KAKENHI
25220003 and 17H01725.

REFERENCES

[1] R. A. Mur, “Automatic inductive programming,” in The 23rd interna-
tional conference on Machine learning, Tutorial, 2006.

[2] A. Solar-Lezama, “Program Sketching,” International Journal on Soft-
ware Tools for Technology Transfer, vol. 15, no. 5-6, pp. 475–495, 2013.

[3] T. Gvero and V. Kuncak, “Synthesizing Java Expressions from Free-
form Queries,” in Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2015, pp. 416–432.

[4] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet Data Manipulation
Using Examples,” Communications of the ACM, vol. 55, no. 8, pp. 97–
105, 2012.

[5] S. Gulwani, “Dimensions in Program Synthesis,” in Proceedings of
the 12th International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming, 2010, pp. 13–24.

[6] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow,
“DeepCoder: Learning to Write Programs,” in 5th International Confer-
ence on Learning Representations, 2017.

[7] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
Generic Method for Automatic Software Repair,” IEEE Transactions
on Software Engineering, vol. 38, no. 1, pp. 54–72, 2012.

[8] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. j. J. C. van Gemund, “A
Practical Evaluation of Spectrum-based Fault Localization,” Journal of
Systems and Software, vol. 82, no. 11, pp. 1780–1792, 2009.

[9] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for
$8 each,” in Software Engineering (ICSE), 2012 34th International
Conference on IEEE, 2012, pp. 3–13.

[10] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The
Plastic Surgery Hypothesis,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2014,
pp. 306–317.

[11] M. Martinez and M. Monperrus, “ASTOR: A Program Repair Library for
Java,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, 2016, pp. 441–444.

[12] Z. Qi, F. Long, S. Achour, and M. Rinard, “An Analysis of Patch
Plausibility and Correctness for Generate-and-validate Patch Generation
Systems,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 24–36.

[13] V. Debroy and W. E. Wong, “Using Mutation to Automatically Suggest
Fixes for Faulty Programs,” in Proceedings of the 2010 Third Interna-
tional Conference on Software Testing, Verification and Validation, 2010,
pp. 65–74.

[14] A. Corazza, S. D. Martino, V. Maggio, and G. Scanniello, “Investigat-
ing the Use of Lexical Information for Software System Clustering,”
in Proceedings of the 2011 15th European Conference on Software
Maintenance and Reengineering, 2011, pp. 35–44.

[15] Y. Higo and S. Kusumoto, “How Should We Measure Functional
Sameness from Program Source Code? An Exploratory Study on Java
Methods,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2014, pp. 294–
305.

[16] S. P. Reiss, “Semantics-based Code Search,” in Proceedings of the 31st
International Conference on Software Engineering, 2009, pp. 243–253.

[17] K. T. Stolee, “Finding Suitable Programs: Semantic Search with In-
complete and Lightweight Specifications,” in Proceedings of the 34th
International Conference on Software Engineering, 2012, pp. 1571–
1574.

[18] O. A. Lazzarini Lemos, S. Bajracharya, J. Ossher, P. C. Masiero, and
C. Lopes, “A Test-driven Approach to Code Search and Its Application
to the Reuse of Auxiliary Functionality,” Information and Software
Technology, vol. 53, no. 4, pp. 294–306, 2011.

[19] J. Xuan, M. Martinez, F. DeMarco, M. i. Clement, S. L. Marcote,
T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic Repair
of Conditional Statement Bugs in Java Programs,” IEEE Transactions
on Software Engineering, vol. 43, no. 1, pp. 34–55, 2017.

36

