
New Strategies for Selecting Reuse Candidates
on Automated Program Repair

Akito Tanikado, Haruki Yokoyama, Masahiro Yamamoto, Soichi Sumi, Yoshiki Higo and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan

Email: {a-tanikd, y-haruki, m-yamamt, s-sumi, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract—Automated program repair (in short, APR) is a
truly desired technique because it can reduce debugging costs
drastically. A well-known technique in APR is a reuse-based
approach, which inserts existing program statements in a given
program to suspicious code for an exposed bug. Some reports
show the reuse-based approach was able to fix many bugs in open
source software. However, the existing approach often takes very
long time to fix bugs. Its main factor is that so many variant
programs are generated by insertions and so many test cases
are executed for the variant programs before a fixed program
is generated. In order to shorten fixing time with the reuse-
based approach, a fixed program must be generated much more
efficiently. In this paper, we propose two strategies to generate
a fixed program more efficiently. We also implement the two
strategies and confirm that there are real bugs which the two
strategies contribute to shortening fixing time.

I. INTRODUCTION

Debugging is an inevitable task in software development,

and it takes large costs. Recently, APR attracts much attention

due to its latent capability to reduce debugging costs drasti-

cally. APR takes a buggy program and some test cases, and it

outputs a fixed program, which passes all the given test cases.

GenProg [1], a well-known approach in APR techniques,

performs insertions and deletions to generate variant programs.

In insertions, selected program statements existing in a given

program are added to the suspicious code. Variant programs

are evaluated with the given test cases. If a variant program

passes all the test cases, it is outputted as a fixed program.

Otherwise, next-generation variants are generated in the same

way. Those operations are repeated until a given time limit.

In GenProg, program statements for insertions are ran-

domly selected. Thus, if a given program is not small, so many

program statements exist in the program, and inserting pro-

gram statements contributing to fixing the bug is unacceptable

odds. Consequently, strategies to select contributive program

statements are required.

In this paper, we propose two strategies, similarity-order

and freshness-order. We have implemented the two strategies

and evaluated them with real bugs in open source software. As

a result, we found that there are bugs that the two strategies

were able to fix in a shorter time than the original GenProg.

II. APROACH

A. Similarity-order

In similarity-order, program statements included in code

fragments with high similarity to the suspicious code are

Given program Given program

Given program

Fig. 1. Overview of similarity-order

Fig. 2. Overview of freshness-order

preferentially selected. With this strategy, the bugs caused by

overlooking code clones can be efficiently repaired.

Fig. 1 describes an overview of similarity-order. First, we

consider a constant-sized region for each program statement

in a given program. Then, we compute a similarity between

each region and the suspicious code region. Finally, we select

program statements in order of the similarity.

B. Freshness-order

As shown in Fig. 2, in freshness-order, program statements

updated more recently are more preferentially selected. With

this strategy, the bugs caused by failing to reflect changes

involved with additions of new features can be efficiently fixed.

In freshness-order, development history of a buggy program,

retrieved from version control system, is also given as input.

For each program statement in a buggy program, last update

time is taken from development history. We define the fresh-
ness of a program statement as how recently it is updated.

Then, we select program statements in order of the freshness.

III. EXPERIMENT

To evaluate the usefulness of similarity-order and freshness-

order, we implemented an APR tool with these strategies

2017 IEEE 41st Annual Computer Software and Applications Conference

0730-3157/17 $31.00 © 2017 IEEE

DOI 10.1109/COMPSAC.2017.175

266

by incorporating these strategies into Astor [2], an existing

APR tool. We also evaluated these strategies by comparing

results of using similarity-order and freshness-order with ones

of original Astor (random), respectively. Evaluation items are

as follows:

• number of repaired bugs, and

• repair time.

Experimental objects are 106 bugs1 occurred in develop-

ing Apache Commons Math. These bugs are retrieved from

Defects4J [3], a dataset of bugs.

A. Experimental Results

1) Number of Repaired Bugs: Random, similarity-order,

and freshness-order fixed 27, 22, and 23 bugs, respectively.

These results show neither similarity-order nor freshness-order

fixed more bugs than random.

However, there are some bugs, which were not fixed by

random but were by similarity-order and/or freshness-order

(e.g. math56 and math64 in TABLE I). This means the number

of repaired bugs can be increased by using similarity-order

and/or freshness-order.

2) Repair Time: We conducted Wilcoxon signed-rank test

for 18 bugs which had been fixed with all three strategies,

to determine significant differences of repair time between

similarity-order and random, freshness-order and random. The

p-values for pairs of similarity-order and random, freshness-

order and random were approximately 8.2× 10−1 and 3.3×
10−1, respectively. This means there are no significant dif-

ferences between similarity-order and random, nor freshness-

order and random. Therefore, random is not faster than

similarity-order nor freshness-order, and vice versa.

IV. DISCUSSION

We found there were bugs the similarity-order and/or the

freshness-order were able to fix more efficiently than the

original Astor. On the other hand, the two strategies were

not effective for other bugs. We conducted statistical tests

and found there were no significant differences between the

similarity-order/freshness-order and the original Astor. TA-

BLE I shows actual time to fix bugs with the three strategies.

We can see that

• there are some bugs a strategy was able to fix much more

than the others, and that

• there are some bugs only a strategy was able to fix.

Thus, the three strategies have a complementary relationship.

If we can select an appropriate strategy for a given bug, fixing

time can be shortened drastically. However, at present, we

have no standard to select an appropriate strategy and so it

is impossible to know it before fixing bugs. A promising

way to utilize our proposed strategies should be a round-

robin execution, which performs either of the three strategies

by rotation. Round-robin execution should be able to reduce

fixing time averagely.

1The details of these bugs can be seen here:
https://github.com/rjust/defects4j

TABLE I
REPAIR TIME (SEC) OF 30 BUGS REPAIRED BY AT LEAST ONE STRATEGY.

“–” MEANS THE STRATEGY DID NOT REPAIR THE BUG.

Bug ID Random Freshness-order Similarity-order
math2 198 11,183 8,110
math5 271 625 178
math7 5,798 – –
math8 214 259 265

math12 3,330 8,521 1,075
math20 214 477 –
math22 406 115 112
math24 13,300 – –
math28 164 175 199
math31 10,674 – –
math40 8,009 922 1,089
math44 3,145 11,469 10,131
math49 473 1,657 277
math50 92 62 59
math53 31 4,903 24
math56 – 854 408
math60 5,588 10,744 512
math64 – 4,223 –
math70 175 82 60
math71 8,997 – 1,925
math73 24 283 111
math74 13,619 – –
math77 – 11,256 –
math78 246 775 82
math80 157 841 –
math81 1,273 2,298 1,089
math82 496 653 514
math84 5,649 173 10,951
math85 26 – 42
math95 1,315 – 144

V. CONCLUSION

In this paper, we proposed two strategies, similarity-order

and freshness-order, to shorten fixing time of APR. We have

implemented the two strategies and evaluated them with real

bugs. As a result, we found that the two strategies and the

random-based selection, which is an existing strategy, have a

complementary relationship. From this finding, we conclude

that round-robin execution of the proposed strategies and the

existing one can reduce fixing time averagely.

In the future, we are going to try to find characteristics of

bugs to know an appropriate strategy before fixing bugs for

more shortening fixing time. We are also going to implement

a round-robin execution tool.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-

ber 25220003.

REFERENCES

[1] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proceedings of International Conference on Software Engineer-
ing (ICSE), 2012, pp. 3–13.

[2] M. Martinez and M. Monperrus, “Astor: a program repair library for java,”
in Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), 2016, pp. 441–444.

[3] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Proceed-
ings of the International Symposium on Software Testing and Analysis
(ISSTA), 2014, pp. 437–440.

267

