
What Makes Software Energy-Efficient?
Make It Faster

Hiroyuki Matsuo, Shinsuke Matsumoto and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan

Email: {h-matsuo, shinsuke, kusumoto}@ist.osaka-u.ac.jp

Abstract—In order to reduce software energy consumption, a
lot of studies have been carried out focusing on the difference
of implementation, such as API and algorithm. However, we
hypothesize that there is a strong correlation between total energy
consumption of a program and duration of its execution. If this
hypothesis is correct, reducing energy consumption is equal to
decreasing duration. Experimental results reveal that there is
a strong positive correlation between them, and its correlation
coefficient is higher than 0.9. We also find that memory usage
is weakly correlated with total energy consumption. As a result,
we conclude that if developers want to reduce software energy
consumption, they should firstly decrease duration of execution,
and secondly reduce memory usage.

Index Terms—energy consumption, software, program, sorting
algorithm, Java Collections class.

I. INTRODUCTION

There have been several studies for optimizing or saving

energy consumption of software at an implementation level.

Our fundamental question here is follows. Do any dominant
factors exist that affect program energy consumption rather
than duration of program execution? In general, every hard-

ware device consumes energy steadily during its operation. We

assume that if a program accomplishes in a shorter period of

time, its energy consumption will be certainly reduced. The us-

age of computational hardware resources (e.g., memory, hard

drive and Wi-Fi) differs depending on implementation of a

program. However, we believe that a difference of the resource

usage cannot be a dominant factor of energy consumption;

duration affects energy consumption significantly.

If the above hypothesis is correct, an emerging challenge

for program energy consumption can be simply solved by

applying techniques or tools which have already been achieved

in a field of program performance optimization. Furthermore,

measuring energy consumption requires preparing for a special

environment such as GreenMiner [1]. On the other hand, if

our hypothesis is true, the duration of execution, which is

extremely easy to measure, can be introduced as a substitute

for the special environment. This will be a useful fact for many

software developers.

In this paper, we empirically study a relationship between

total energy consumption of software and its duration. The

experimental objects are small programs which have the same

functional features but are implemented in different ways (e.g.,

bubble sort and quick sort). The concrete hypotheses are as

follows:

H1 There is a significant strong correlation between total

energy consumption and duration.

H2 There is a slight correlation between total energy con-

sumption and memory usage.

The hypothesis H1 is equivalent to the previous question. In

the hypothesis H2, we try to confirm that energy consumption

cannot be completely predicted only by duration; usage of

hardware resources may affect on it. In this paper, we measure

a memory usage as one of the computational resources.

II. RELATED WORKS

Many studies have been carried out on the topic of energy

consumption of software at a source code level. Bunse et

al. studied differences in energy consumption between major

sorting algorithms [2]. Their conclusion is that insertion sort

is the most energy-efficient. Hasan et al. conducted an experi-

mental study on energy consumption of usual API operations

for popular Java Collections classes [3]. They concluded that

TIntArrayList is the most energy-efficient list implementation.

From a perspective of a duration of program execution and

its energy consumption, their conclusions seem to be contrary

to each other. While, Bunse’s study mentioned that there are no

direct correlations between duration and total energy consump-

tion, Hasan’s study pointed out that increase in duration (i.e.,

low performance) may be a degradation factor for energy con-

sumption. We consider that this contradiction may be derived

from a difference of their experimental environments. Bunse

et al. measured only a CPU’s energy consumption, however,

Hasan et al. measured whole hardware devices embedded in an

Android device. For a practical purpose, we need to conduct

a replication study under the same conditions.

In addition, Hasan’s study gives only a discussion of a re-

lation between duration and energy consumption. Their focus

is only on a comparative study of Java Collections classes, so

empirical and quantitative results of the relation have not been

reported. They also concluded more investigation is required.

Based on the above discussion, we decide to conduct an

additional study based on their two experiments under the

following conditions:

• Measure a total energy consumption which is consumed

by not only a CPU but the whole device.

• Measure a duration of program execution as well as a

total energy consumption.

III. EXPERIMENT

A. Experiment design

We adopt two types of experimental subjects according

to the related works [2] and [3]. The first type is sorting

2017 IEEE 41st Annual Computer Software and Applications Conference

0730-3157/17 $31.00 © 2017 IEEE

DOI 10.1109/COMPSAC.2017.264

274

(a) Sorting algorithms (b) Java Collections classes

Fig. 1. Relation between energy consumption and duration

(a) Sorting algorithms (b) Java Collections classes

Fig. 2. Relation between energy consumption and memory usage

algorithm. This type includes seven major algorithms: heap,

merge, quick, bubble, insertion, selection and shaker. The

second type is Java Collections classes which implement list

interface. This type also includes five Java classes: ArrayList,

LinkedList, TIntArrayList, TIntLinkedList and TreeList. On

both of each type, these subjects have the same functional

features but have the different implementations.

The following two experiments are conducted for each

experimental subjects. In the first experiment, total energy

consumption and duration are measured to confirm the hy-

pothesis H1. We set a number of trials as 50. For sorting

algorithms, 5,000 random integers are set and sorted on each

trial. For Java Collections classes, we insert 5,000 integers

at the middle of the list. The second experiment measures

total energy consumption and memory usage to confirm the

hypothesis H2. The number of trials and program operations

are the same as the first experiment. Please note that the

results will contain more noise in the latter experiment because

it requires an additional program execution for measuring a

memory usage on a test-bed device.

Measurement infrastructure was built with reference to

GreenMiner [1]. A Raspberry Pi device acts as a test-bed,

and another Raspberry Pi device operates and measures the

test-bed.

B. Results

The experimental results are shown in Figure 1 and Figure

2. Figure 1 shows a scatter diagram of energy consumption

and duration. Figure 2 represents a scatter diagram of energy

consumption and memory usage. In each diagram, the vertical

axis indicates execution time [ms] and the horizontal axis

indicates total energy consumption [J] or memory usage [KB],

respectively. Each point shows the measured data on each trial.

For example, one point in Figure 1(a) indicates a measurement

result about quick sort of 20th trial. The red dash line means

a regression line of each sample, and a calculated correlation

coefficient r is also shown at the bottom right.

As a result, Figure 1 indicates that there is a significant

correlation between total energy consumption and duration.

A correlation coefficient r is greater than 0.9 on both ex-

perimental objects, so there is a strong positive correlation

between them. We conclude that hypothesis H1 is supported.

This result indicates that duration of program execution can be

a reliable metric to estimate its energy consumption without

any preparations for special devices. In fact, one of Hasan’s

conclusions, the most energy-efficient list implementation is

TIntArrayList, can be derived from only y-axis (duration) of

Figure 1(b).

From Figure 2, memory usage has some variation compared

to duration. A correlation coefficient r is about 0.7, so there

is a positive correlation between them. We conclude that

hypothesis H2 is supported.

IV. DISCUSSION AND CONCLUSION

This paper studies a relationship between software energy

consumption and duration of execution time. Our experimental

results reveal that there is a strong correlation between them,

so we conclude that software developers should make their

software faster if they would like to reduce total energy

consumption. We also found that there is a positive correlation

between software energy consumption and memory usage,

however, it is much weaker compared to one about duration.

These results are obtained on a Raspberry Pi, as we have

mentioned. However, we think this trend can be also found on

both larger computers and smaller ones. In the former case,

such as on the computers with many GPUs or frequent network

communications, there should be a marked tendency because

such computers consume more energy in a unit of time. In

the latter case, the smaller computers need less energy so we

should find a weak trend on them.

As a future work, we will study a relationship between soft-

ware energy consumption and other computational resources.

We are also going to conduct practical experiments to confirm

whether this study results are applied to general software

libraries and applications.

ACKNOWLEDGMENT

This research was partially supported by JSPS Grant-in-Aid

for Scientific Research (JP25220003, JP26730155).

REFERENCES

[1] A. Hindle et al., “Greenminer: A hardware based mining software
repositories software energy consumption framework,” in Proc. Working
Conf. Mining Softw. Repositories (MSR), 2014, pp. 12–21.

[2] C. Bunse et al., “Choosing the ”best” sorting algorithm for optimal
energy consumption,” in Proc. Int’l Conf. Softw. and Data Technologies
(ICSOFT), vol. 2, 2009, pp. 199–206.

[3] S. Hasan et al., “Energy profiles of java collections classes,” in Proc. Int’l
Conf. Softw. Eng. (ICSE), 2016, pp. 225–236.

275

