
Finding Extract Method Refactoring Opportunities
by Analyzing Development History

Ayaka Imazato, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University,

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

Email:{i-ayaka, higo, k-hotta, kusumoto}@ist.osaka-u.ac.jp

Abstract—Refactoring is an important technique to improve
maintainability of software, and developers often use this tech-
nique during a development process. Before now, researchers
have proposed some techniques finding refactoring opportunities
for developers. Finding refactoring opportunities means identi-
fying locations to be refactored. However, there are no specific
criteria for developers to determine where they should refactor
because the criteria differ from project to project and from
developer to developer. In this study, we propose a technique to
find refactoring opportunities in source code by using machine
learning techniques. Machine learning techniques enable to
flexibly find refactoring opportunities by the characteristics of
target projects and developers. Our proposed technique learns
information on the features of refactorings conducted in the past.
Then, based on this information, it suggests some refactorings
on given the source code to developers. We investigated three
research questions with five open source projects. As a result,
we confirmed that the proposed technique was able to find
refactorings with high accuracy.

Index Terms—Refactoring, Extract Method, MSR

I. INTRODUCTION

Identifying refactoring opportunities manually is a laborious

task because the amount of source code is usually huge. Be-

sides, developers might overlook the locations to be refactored

in manual identification process. Hence, it is necessary to

automatically find refactoring opportunities for developers to

refactor the source code efficiently. Some research proposed

techniques to find refactoring opportunities for developers

[1], [2], [3], [4]. On the other hand, there are no specific

criteria to determine the locations to be refactored because the

refactoring opportunities might differ from project to project

and from developer to developer. For example, a refactoring

pattern that is frequently conducted in a certain project is

not necessarily to be regarded as much as important in other

projects. Hence, if we find locations to be refactored based

on certain criteria, it is possible that the found locations are

beneficial for some users, but not beneficial for other users.

That is, it is important to find refactoring opportunities by the

characteristics of projects and users to provide information that

is beneficial for all users [5].

In this study, we propose a technique to automatically

find Extract Method refactoring opportunities because Extract
Method is one of the refactorings that are often conducted

[6]. The proposed technique analyzes development histories

of software to obtain information about features of meth-

ods which existed in the past, and whether Extract Method

refactoring was applied to them or not. Then, based on this

information, the proposed technique constructs a model to

identify methods in latest source code to which Extract Method
should be applied by using machine learning techniques.

II. EXTRACT METHOD REFACTORING

Extract Method is an operation that extracts a part of an

existing method as a new different method. Its operations are

as follows: first, a developer extracts a part of a target method

as a new different method. Then, she/he alters the new method

created by the extraction as necessary to maintain external

behavior of the software. Finally, she/he replaces the extracted

part with a statement to call the new method.

Extract Method is one of the refactoring patterns that

are frequently conducted [6]. Furthermore, dividing a multi-

functional method by Extract Method helps not only to im-

prove maintainability but also to promote reuse of a method

when developers need to implement similar functions in the

future. Thus, rearrangement of source code by Extract Method
is very effective for software development.

III. PROPOSED TECHNIQUE

Figure 1 shows an overview of the proposed technique. The

proposed technique consists of the following two phases.

Phase A (Learning): this phase takes the development history
of a target software system as its input. It identifies
refactoring conducted in the past and provides a learning
model by learning the refactorings. For a given method,
the model tells whether it should be refactored or not.

Phase B (Predicting): this phase takes two information as its
input: one is the learning model built in Phase A, and
the other is source code on which developers want to
conduct prediction. This phase collects all the methods in
the given source code, applies the given model to them,
and provides a list of methods that should be refactored.

The former phase consists of the following four steps.

STEP A-1: we identify all the methods to which Extract Method
refactoring was applied in the past. Hereafter, we call
those methods refactored methods.

STEP A-2: we gather methods to which Extract Method refac-
toring was not applied from the same development his-
tory. This paper calls these methods non-refactored meth-
ods. Methods detected in STEP A-1 and STEP A-2 are
used as training data.

STEP A-3: we identify all the program elements in each method
included in the training data. The proposed technique

2017 IEEE 41st Annual Computer Software and Applications Conference

0730-3157/17 $31.00 © 2017 IEEE

DOI 10.1109/COMPSAC.2017.129

190

development
histories

refactored
methods

t

non-refactored
methods

training data

StepA-1: Detecting
refactored methods

StepA-2: Detecting non-
refactored methods

StepA-4: Learning information
of each training data

StepA-3: Obtaining syntactic
information of each training data

<1,0,…,0,…,3,…>

<0,3,…,2,…,0,…>

<0,0,…,1,…,1,…>

Method

Method

Method

… …

syntactic
information

learning model
source code

StepB-1: Detecting all the
methods in a source code

<1,0,…,5,…,0,…>

<0,2,…,0,…,1,…>

Method

Method

… …

StepB-2: Getting methods
to be refactored

Methods to be
refactored

Constructing a learning model

Predicting methods to be refactored

Fig. 1. An Overview of the Proposed Technique

counts the number of appearances for each type of ele-
ments in the method. Collected data from each method is
converted to a vector. We use the vector as the syntactic
information of the method.

STEP A-4: for each method in the training data, we learn
its syntactic information and whether Extract Method
has been applied to it or not. The proposed technique
provides a learning model by learning all the methods
in the training data. The learning model predicts whether
Extract Method should be applied to a given method with
the syntactic information of it.

The latter phase requires the following two steps.

STEP B-1: we detect all the methods in the given source code
when we give the source code that we want to get
methods to be refactored in the source code. Then, we
obtain their syntactic information.

STEP B-2: we adopt the given learning model constructed to
all the methods obtained in STEP B-1, which provides
the list of methods that should be refactored.

The rest of this section explains each step of Phase A.

STEP A-1: Detecting Refactored Methods

This step gets assistance of Kenja1, which is a tool to

detect Extracted Method refactorings conducted in the past.

It takes the development history of a target project managed

with version control system Git as its input, and it detects

Extracted Method refactorings that were conducted during the

development process. It reports the following information for

each of the Extract Method refactorings.

revision: the revision in which the refactoring was conducted.
targetMethod: the method where the refactoring was conducted.
extractedMethod: the method generated by the refactoring.

1https://github.com/niyaton/kenja

similarity: the degree of similarity between the part extracted
from targetMethod and extractedMethod, which is cal-
culated as follows.

similarity(s1,s2) =
|SH(s1)∩SH(s2)|
|SH(s1)∪SH(s2)| (1)

where, SH(s) refers to the set of all the word pairs in a
given document s whose two words of every word pair
appear continuously in the document2 [7]. If a method m
include four tokens a, b, c, and d, s(m) includes ab, bc,
and cd.

Kenja detects refactorings by analyzing the changes on

source code between each of two consecutive revisions. The

details of the procedure are described below.

1) Detecting methods that were newly generated by the change
as candidates for extractedMethod.

2) Detecting methods which were touched by the change as
candidates for targetMethod.

3) Checking whether extractedMethod is called in code frag-
ments that were added to targetMethod. The remaining
procedure is performed only if extractMethod is called.

4) Calculating the similarity between extractedMethod and
code fragments deleted from targetMethod with formula (1).

5) Checking whether the similarity value exceeds a given
threshold.

We used 0.3, which is the default value of Kenja.

STEP A-2: Detecting Non-Refactored Methods

In this step, we obtain non-refactored methods. The pro-

posed technique randomly selects a refactored method out of

the methods detected in STEP A-1. Then, it randomly selects a

method to which Extract Method was not applied in the same

file at the same revision as the refactored method. Moreover,

we check whether Extract Method has never been applied

to the selected method during the past development history.

2Kenja regards each token as a word.

191

Algorithm 1 Detecting non-refactored methods
Input: re f actoredList, num
Output: nonRe f actoredList

1: nonRe f actoredList← /0
2: while num �= getSize(nonRe f actoredList) do
3: method← getRandomElement(re f acteredList)
4: revision← getRevision(method)
5: f ile← getFileName(method)
6: candidate← getRandomMethod(revision, f ile)
7: if !isInList(nonRe f actoredList,canadidate) then
8: if !isInList(re f actoredList,candidate) then
9: add(nonRe f actoredList,candidate)

10: end if
11: end if
12: end while
13: return nonRe f actoredList

We do not regard the method as a non-refactored method if

Extract Method was applied to the method of certain revision

even once. We repeat the above operations until collecting the

number of methods required to construct a learning model.

Furthermore, when collecting methods in this way, there is a

possibility that the same method could be selected more than

once as a non-refactored method. To prevent such multiple

selections, the proposed technique does not add an obtained

non-refactored method to the training data if the method

already exists in the training data.

Moreover, the non-refactored methods should not be meth-
ods that were not refactored but methods such that developers
judged they do not require to be refactored. The rationale

behind this is that a method which was not refactored actually

might have required refactoring but have not been refactored

due to some reasons, including overlooking or time pressure.

Including such a method in the training data will decrease

the accuracy of prediction. On the other hand, methods in the

same file as refactored method at the same revision are more

likely to be considered whether to be refactored than methods

in other files. Hence, we obtain methods only in the same

file and at the same revision as the method to which Extract
Method was applied in order to collect only methods that were

not refactored intentionally.
Algorithm 1 shows the algorithm to detect non-refactored

methods. The input variables are as follows.

refactoredList: a list of refactored methods (methods detected in
STEP A-1)

num: the number of non-refactored methods that we need as
training data

The output variable is as follow.

nonRefactoredList: a list of non-refactored methods
Besides, functions in Algorithm 1 are as follows.

getSize: returns the number of elements included in a given list
getRandomElement: returns an element that is randomly se-

lected from the given list
getRevision: returns a revision where the given refactored

method was refactored
getFileName: returns the name of the file including the given

method

getRandomMethod: returns a randomly selected method in-
cluded in the given file at the given revision

isInList: returns whether the given method list (the first param-
eter) includes the given method (the second parameter).
Identifications of methods are based on their signatures
and names of their owner files.

add: adds the given method (the second parameter) to the given
list (the first parameter)

STEP A-3: Obtaining Syntactic Information of Training Data

After collecting the training data, we obtain the syntactic

information of each collected method. We represent a syntactic

information of a method as a vector. Each element in this

vector indicates the number of appearance of each program

element. Hereafter, we call this vector representing the syn-

tactic information of a method state vector. The number of

appearances of each program element is one element of a state

vector. Program elements are, for example, statements (e.g. if
statement, switch case), identifiers, number literals, or symbols

(e.g. ’.’, ’==’).

Note that we obtain a state vector in the same way as the

existing research [8]. That is, we obtain syntactic information

based on AST (Abstract Syntax Tree) generated by JDT3. Our

proposed technique deals the type of each node of AST as a

program element. State vectors that we use in this study are

84-dimensional because JDT defines 84 types of nodes.

Figure 2 illustrates an example of a state vector. Figure

2(a) shows the source code of a method, and Figure 2(b)

shows its state vector. In this method, nine kinds of program

elements appear in total. Hence, in the state vector of this

method, the values of nine elements that appear in the source

code are the numbers of their appearances, and the values

of the rest 75 elements are 0. For example, the element

indicating return statement in the state vector is 2 because

return statement appears twice in the source code. Besides,

the element indicating while statement is 0 because while
statement never appears in the method.

The existing techniques identify Extract Method refactor-

ing opportunities based on abstract information (e.g. LCOM,

control flow and block structure) of source code [9], [10],

[11]. However, the accuracy of the prediction by them are

not so high, or they detect all the locations that are able to

be refactored, which include locations that do not need to be

refactored. We believe that using more concrete information of

source code syntax should improve the accuracy of identifying

refactoring opportunities. Hence, we adopt syntactic informa-

tion that represents the structure of source code in detail.

Furthermore, the proposed technique performs filtering for

non-refactored methods based on similarities of state vectors

between refactored methods. That is, it omits a non-refactored
method from the training data if the method is similar to any

of refactored methods in terms of state vector. The rationale

behind this is that it would be an obstacle of precise pre-

diction that the training data include non-refactored methods
which are similar to refactored methods. Again, non-refactored

3http://www.eclipse.org/jdt/

192

1 public int hoge(){
2 if(n == 0)
3 return a;
4 return b;
5 }

(a) Source Code

BLOCK

IF_STATEMENT

INFIX_EXPRESSION

METHOD_DECLARATION

PRIMITIVE_TYPE

RETURN_STATEMENT

SIMPLE_NAME

MODIFIER

NUMBER_LITERAL

(b) State Vector

Fig. 2. An Example of a State Vector

method should be methods that do not require to be refactored,

not just methods that were not refactored. It should be more

likely that methods might have required being refactored but

not refactored by some reasons, if their similar methods were

actually refactored. This is the reason that propels us to

perform such a filtering.

The proposed technique uses cosine similarity of state

vectors for filtering, which is calculated as follows for the

given two vectors �p and �q.

cos(�p,�q) =
�p ·�q
|�p||�q| (2)

For each non-refactored method gathered in STEP A-2, we

calculate cosine similarity between it and all the refactored
methods. The non-refactored method is excluded if there

is a refactored method whose similarity between the non-
refactored method exceeds the given threshold. We set 0.95

as the threshold value in this study.

The filtering will leave a hole in the training data. Hence,

the proposed technique repeats STEP A-2 and STEP A-3 until

the required amount of non-refactored methods are collected.

STEP A-4: Constructing a Learning Model

At this point, we have completed obtaining syntactic in-

formation of each method in the training data. Finally, the

proposed technique learns the syntactic information of each

method supervised by the information whether Extract Method
has been applied to it, which results in constructing a learn-

ing model. The proposed technique predicts whether Extract
Method should be applied to a given method or not when the

constructed learning model is given the syntactic information

of the given method. CurrentlyIn our implementation, we use

a data mining tool, Weka4, to construct a learning model with

its default setting.

IV. EXPERIMENT

We implemented the proposed technique as a tool, and

conducted an experiment on five projects shown in Table I.

For each target project, we obtained all the refactored methods
with the procedures described in the previous section. We

also obtained the same number of non-refactored methods
as refactored-methods. We used those methods as a dataset

in this experiment. As described in the previous section, the

procedure to construct a dataset is fully automated.

In this experiment, we investigated the following two re-

search questions in order to evaluate our proposed technique.

4http://www.cs.waikato.ac.nz/ml/weka/

RQ1: is it possible to identify methods to which Extract Method
should be applied with machine learning techniques?

RQ2: does the length of development histories affect the accu-
racy of the proposed technique?

We describe our answers for these research questions in the

remainder of this section.

RQ1: is it possible to identify methods to which Extract
Method should be applied with machine learning techniques?

This experiment adopts the cross-validation. The cross val-

idation divides the dataset into k blocks, and evaluates the

accuracy of prediction by using these blocks. Note that the

number of methods in each block is almost the same. In the

cross-validation, we use k−1 blocks as the training data, and

the remaining one block as the test data. More concretely, we

construct a learning model by learning k− 1 blocks. Then,

we adopt the learning model to the remaining one block and

measure the accuracy. This process is repeated k times, with

each of the k blocks used exactly once as the test data. The

average of k results is calculated to represent the complete

accuracy of predictions. We set k = 10 in this experiment.
We used two indicators below as measures for evaluation.

Precision: the proportion of refactored methods out of methods
predicted as refactored methods by the learning model

Recall: the proportion of methods that are correctly predicted
as refactored methods by the learning model in all the
refactored methods

Not only Precision but also Recall is measured in this exper-

iment because Recall is also important for techniques finding

refactoring opportunities. If a technique finds refactoring op-

portunities with high Precision and low Recall, most of the

suggested refactorings by it are reasonable refactoring targets

whereas it misses many refactoring opportunities. Finding

refactoring opportunities with high Precision and high Recall
is required to be practical.

We use five algorithms (J48, Random Forest, Bayesian

Network (BayesNet), Support Vector Machine (SVM), Logis-

tic Regression (Logistic)) to construct learning models, and

evaluate each learning model with the cross-validation.

TABLE I
TARGET PROJECTS

Project # of Revisions
LOC # of Dataset

(Latest) Refactored Non-refactored

Ant 12,783 260,624 766 766
ArgoUML 17,788 370,750 735 735

jEdit 7,473 187,166 533 533
jFreeChart 916 327,865 90 90

Mylyn 8,414 166,149 490 490

193

TABLE II
THE PREDICTION RESULTS

algorithm
Ant ArgoUML jEdit jFreeChart Mylyn

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
J48 0.90 0.91 0.95 0.96 0.96 0.95 0.93 0.97 0.91 0.89
RandomForest 0.89 0.95 0.94 0.98 0.96 0.98 0.89 0.98 0.89 0.94
SVM 0.95 0.71 0.95 0.81 0.99 0.88 0.91 0.57 0.95 0.76
BayesNet 0.90 0.79 0.96 0.89 0.97 0.97 0.86 0.97 0.93 0.86
Logistic 0.91 0.86 0.96 0.95 0.97 0.93 0.91 0.95 0.93 0.90

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

Ant ArgoUML jEdit jFreeChart Mylyn

(a) Precision

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

Ant ArgoUML jEdit jFreeChart Mylyn

(b) Recall

Fig. 3. Results on Different Length of Learned Periods (with RandomForest)

Table II shows the prediction results with the five algo-

rithms. As shown in this table, the proposed technique was

able to identify refactored methods with accuracy, 86–97%

Precision and 71–98% Recall. SVM has high Precision values

for all the projects whereas it reports lower Recall values than

other algorithms. The table also tells that the algorithms based

on decision tree (J48 and RandomForest) record over 89% for

both of Precision and Recall. The results indicate that the

proposed technique has an affinity with algorithms based on

decision tree.

Besides, very high Recall means that the proposed tech-

nique is able to identify almost all the refactored methods.

Hence, our tool is useful to identify the candidates of Extract
Method refactoring opportunities in the source code. Then,

users can select efficiently the methods that they want to

refactor among the candidates.

Consequently, our answer to RQ1 is that it is possible to

identify refactoring opportunities by using machine learning

techniques. Especially, the proposed technique works well with

algorithms based on decision tree.

RQ2: does the length of development histories affect the
accuracy of the proposed technique?

Our answer to RQ1 revealed that we can predict where

we should refactor through learning refactorings in the past.

However, the proposed technique will be affected by the length

of the development history of the target projects. Intuitively,

it seems likely that the accuracy of prediction gets better as

the development history gets longer. This is because there

exist many refactoring to be learned. On the other hand, the

proposed technique can be adopted in young projects if it can

perform good prediction from a short history.

We aim to investigate the relationship between the length

of the development histories and the accuracy of the proposed

technique in this experiment. Here, we divide the development

period of each target project into 10 equivalent sub-periods.

We then apply the proposed technique for each of the second

or later sub-periods. Suppose we are targeting a sub-period

t, then we build a prediction model by learning all the sub-

periods before t. t is then used to evaluate the model built

from its anterior sub-periods.

Figure 3 illustrates the results of this experiment. The X-

axes show the targeted sub-periods in chronological order,

which means that the sub-period i is earlier than i+ 1. This

figure shows only the results with RandomForest because sim-

ilar results were provided with other algorithms. It also should

be noted that the results for jFreeChart is not continuous.

This is because there is no refactored methods in some of

the sub-periods of jFreeChart. As we can see from this figure,

the accuracy of prediction seems not to be affected how long

periods are used for learning. These results indicate that the

proposed technique does not require long development history.

In other words, the proposed technique can be used not only

in mature projects but also young ones.

The answer to RQ2 is that learning longer histories produces

do not always better results, which means that the proposed

technique works even in young projects if their development

histories include refactored methods.

V. DISCUSSION

A. Characteristic of Refactoring Opportunity

We investigated the characteristics of refactoring opportu-

nities for each target project. As a result, we obtained two

knowledge.

First, long methods are likely to be refactored for all the

target projects. We infer developers shorten long methods by

Extract Method in order to improve the understandability.

Second, program elements that are considered important to

identify refactoring opportunities are not necessarily common

to different projects. We investigated what kinds of program

elements are regarded as important in learning models con-

structed with RandomForest by examining the structure of the

models. TABLE III shows a ranking of the program elements

that are regarded as important for each project. As shown

194

TABLE III
RANKING FREQUENCIES OF PROGRAM ELEMENTS (WITH RANDOMFOREST)

Project Top-1 Top-2 Top-3

Ant METHOD INVOCATION VARIABLE DECLARATION STATEMENT CATCH CLAUSE
ArgoUML METHOD INVOCATION NUMBER LITERAL RETURN STATEMENT
jEdit SIMPLE NAME METHOD INVOCATION IF STATEMENT
jFreeChart METHOD INVOCATION THIS EXPRESSION SIMPLE TYPE
Mylyn METHOD INVOCATION SWITCH CASE SYNCHRONIZED STATEMENT

from this table, we revealed that METHOD INVOCATION

elements are important to identify refactoring opportunities in

learning models for all the target projects. More concretely,

methods that include many METHOD INVOCATION ele-

ments are likely to be refactored. On the other hand, there are

some cases that program elements considered much important

for one project are not regarded as important for other projects.

For example, the number of IF STATEMENT elements has a

significant impact on identifying refactoring opportunities for

jEdit while it does not affect the identifications for ArgoUML.

Consequently, it is reasonable to identify refactoring op-

portunities by projects by using machine learning techniques

because refactoring opportunities differ from project to project.

B. Finding Refactoring Opportunities with Machine Learning
Techniques

The authors mention two advantages of finding refactoring

opportunities by using machine learning techniques. First, it

is possible to find refactoring opportunities by characteristic

of projects. Techniques based on pre-set criteria or pre-set

conditions are difficult to identify refactoring opportunities that

depend on the projects because refactoring opportunities differ

from project to project. However, it is possible to identify

refactoring opportunities that are useful for projects without

pre-set criteria by learning refactorings that were conducted

in the past.

Second, it prevents developers from overlooking refactoring

opportunities. Developers might overlook refactoring oppor-

tunities in manual identification process because the amount

of source code is usually huge. For example, developers

frequently extract duplicate code (code fragments similar to

each other) in different methods and integrate it as a method

during software development. However, it may happen that

they overlook a part of the instance of code duplications

if they identify it manually. There is a research report that

developers occasionally overlook a part of duplicate code to

be refactored when they integrate it by Extract Method [12].

However, by learning refactorings conducted in the past with

machine learning techniques, the locations that developers

overlooked can be detected. Consequently, finding refactoring

opportunities by using machine learning techniques are useful

because they can detect locations similar to the locations that

were refactored in the past.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a technique to automatically find Extract
Method refactoring opportunities by using machine learning

techniques. The proposed technique finds refactoring oppor-

tunities flexibly in accordance with projects’ and developers’

features because it is possible to identify refactoring opportu-

nities based on information of refactorings that were conducted

actually in the past. The proposed technique learns refactorings

that were conducted in the past by analyzing development

histories of target software, and it constructs models to identify

locations to be refactored in source code.

To evaluate the proposed technique, we conducted an exper-

iment on five open source projects. As a result, we confirmed

that the proposed technique was able to identify Extract
Method refactoring opportunities. Especially, the technique

worked well with the algorithms based on decision tree.

Our future works are as follows:

• conducting experiment on various projects,

• changing parameters of Weka,

• using different data mining tools,

• using all the Extract Method refactorings that were con-

ducted in the past, which include refactorings that are not

able to be detected by Kenja, and

• investigating whether the proposed technique can find

refactoring opportunities by characteristics of developers.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI JP25220003

REFERENCES

[1] E. Van Emden and L. Moonen, “Java Quality Assurance by Detecting
Code Smells,” in Proceedings of WCRE, 2002.

[2] K. Hotta, Y. Higo, and S. Kusumoto, “Identifying, Tailoring, and Sug-
gesting Form Template Method Refactoring Opportunities with Program
Dependence Graph,” in Proceedings of CSMR, 2012.

[3] J. Ratzinger, T. Sigmund, and H. C. Gall, “On the Relation of Refac-
torings and Software Defect Prediction,” in Proceedings of MSR, 2008.

[4] M. Munro, “Product Metrics for Automatic Identification of ”Bad Smell”
Design Problems in Java Source-Code,” in Proceedings of METRICS,
2005.

[5] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mäntylä, “Code
Smell Detection: Towards a Machine Learning-Based Approach,” in
Proceedings of ICSM, 2013.

[6] E. Murphy-Hill, C. Parnin, and A. Black, “How We Refactor, and How
We Know It,” IEEE TSE, vol. 38, no. 1, 2012.

[7] A. Broder, “On the resemblance and containment of documents,” in
Proceedings of SEQUENCES, 1997.

[8] H. Murakami, K. Hotta, Y. Higo, and S. Kusumoto, “Predicting Next
Changes at the Fine-Grained Level,” in Proceedings of APSEC, 2014.

[9] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based refactor-
ing,” in Proceedings of CSMR, 2001.

[10] N. Tsantalis and A. Chatzigeorgiou, “Identification of Extract Method
Refactoring Opportunities,” in Proceedings of CSMR, 2009.

[11] D. Silva, R. Terra, and M. T. Valente, “Recommending Automated
Extract Method Refactorings,” in Proceedings of ICPC, 2014.

[12] Y. Higo, K. Hotta, and S. Kusumoto, “Enhancement of CRD-based
Clone Tracking,” in Proceedings of EVOL/IWPSE, 2013.

195

