
JOURNAL OF SOFTWAREMAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
Published online 3 September 2008 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.394

Research

A metric-based approach to
identifying refactoring
opportunities for merging
code clones in a Java
software system

Yoshiki Higo∗,†, Shinji Kusumoto and Katsuro Inoue

Department of Computer Science, Graduate School of Information Science and
Technology, Osaka University 1-3, Machikaneyama-cho, Toyonaka,
Osaka 560-8531, Japan

SUMMARY

A code clone is a code fragment that has other code fragments identical or similar to it in the source code.
The presence of code clones is generally regarded as one factor that makes software maintenance more
difficult. For example, if a code fragment with code clones is modified, it is necessary to consider whether
each of the other code clones has to be modified as well. Removing code clones is one way of avoiding
problems that arise due to the presence of code clones. This makes the source code more maintainable
and more comprehensible. This paper proposes a set of metrics that suggest how code clones can be
refactored. As well, the tool Aries, which automatically computes these metrics, is presented. The tool
gives metrics that are indicators for certain refactoring methods rather than suggesting the refactoring
methods themselves. The tool performs only lightweight source code analysis; hence, it can be applied to
a large number of code lines. This paper also describes a case study that illustrates how this tool can be
used. Based on the results of this case study, it can be concluded that this method can efficiently merge
code clones. Copyright © 2008 John Wiley & Sons, Ltd.

Received 31 August 2007; Revised 2 July 2008; Accepted 16 July 2008

KEY WORDS: code clone; software maintenance; refactoring; metrics; object-oriented

∗Correspondence to: Yoshiki Higo, Department of Computer Science, Graduate School of Information Science and Technology,
Osaka University 1-3, Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
†E-mail: higo@ist.osaka-u.ac.jp

Contract/grant sponsor: Stage Project, the Development of Next Generation IT Infrastructure
Contract/grant sponsor: Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (A); contract/grant
number: 17200001
Contract/grant sponsor: Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (Start-up);
contract/grant number: 19800022

Copyright q 2008 John Wiley & Sons, Ltd.

436 Y. HIGO, S. KUSUMOTO AND K. INOUE

1. INTRODUCTION

As the size and complexity of software systems increase, maintenance tasks become more diffi-
cult and burdensome. Maintenance of software systems is defined as the modification of a soft-
ware product after delivery to correct faults, to improve performance or other attributes, or to
adapt the products to a modified environment [1]. Arthur stated that only one-fourth to one-
third of all life-cycle costs are attributed to software development and Yip and Lam reported
that 67% of the life-cycle costs are expended in the operation-maintenance phase of the life
cycle [2,3].
It is generally thought that the presence of code clones is one factor that makes software main-

tenance more difficult. A code clone is a code fragment that has identical or similar source code
fragments elsewhere in the code. If a code fragment with code clones is modified, it is neces-
sary to consider whether each of the code clones should also be modified. To automatically detect
code clones, several methods have been proposed and software tools have been implemented
[4–8].
Refactoring has recently received a lot of attention. Refactoring is a set of operations to improve

the maintainability, understandability, or other attributes of a software system without changing its
external behavior. A code clone is one of the typical Bad Smells in the refactoring process [9]. Code
clone detection can be perceived as the identification of code fragments to be refactored. From a
practical standpoint, it is difficult to identify the code clones that are to be merged. Some code clones
are simply unmergeable, or, if they are merged, they make the source code less understandable.
Usually, large-scale software systems have complicated intertwining logics that make it difficult to
identify the code clones that can be merged and how best to merge them.
In this paper, a new method for merging code clones is proposed. The method consists of two

phases. The first phase is the quick detection of refactoring-oriented code clones from the source
code. The second phase is the measurement of metrics indicating the manner in which refactoring-
oriented code clones should be merged. The Aries software tool implements this method. Using
Aries in the refactoring process, maintainers of the software system can readily know which
and how code clones can be merged. This paper also presents a case study conducted using
Aries. Based on the results of this case study, it was concluded that Aries performs the process
successfully.

2. CODE CLONE

No consistent or precise definition of code clones is currently available. Code clones are often
operationally defined by individual clone detection methods. The established detection techniques
can be categorized as follows:
Line-based technique: Each line of the source code is compared with other lines. If consecutive

lines of code are identical to other lines of code, they are detected as code clones.
Token-based technique: After the source code is divided into tokens, identical token sequences

that are longer than a certain length are detected as code clones.
Abstract Syntax Tree (AST)-based technique: After building an AST from the source code,

subtrees having the same structure are detected as code clones.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 437

Program Dependency Graph (PDG)-based technique: After building a PDG as a result of the
semantic analysis of the source code, isomorphic subgraphs are detected as code clones.
Metric-based technique: After measuring several metrics from a certain unit, for example the

function, method, or class, of the software system, units having identical or similar metrics values
are detected as code clones.
Rysselberghe and Demeyer discussed the features of the three code clone detection techniques,

namely line-based, token-based, and metric-based, from a refactoring perspective [10].
Evaluation of the metric-based technique: The metric-based code clones are well-suited to be

refactored because they can be the target of refactoring operations in their entirety. However, they
include many false positives. The smaller the functions, the more they tend to be detected as metric-
based code clones because their metrics values are exactly or approximately the same, despite the
fact that they cannot be refactored. Another problem is that if a part of a function is identical or
similar to another part of a different function, they are not detected, since code clone detection is
performed at the function level.
Evaluation of the line-based technique: The line-based code clones can be refactored with little

effort. However, this method cannot detect code clones that are coded using different coding styles.
Another, more important issue is that this method cannot detect code clones with different identifiers
such as variable names, function names, or type names.
Evaluation of the token-based technique: The token-based techniques is a good detection method

because it can detect code clones that have different formats, such as different indention, white
space, and tab, and different identifiers. However, some of the token-based code clones are not
suited for refactoring due to the following reasons:

• The token-based technique identifies duplicated token sequences as code clones. Hence, token-
based code clones do not necessarily correspond to raw statements or expressions in the source
code.

• There are sometimes semantic differences between token-based code clones belonging to the
same clone set because the token-based technique replaces identifiers with special tokens before
detection.

It is assumed that the detection unit of the metric-based technique and the identifier replacement of
the token-based technique are suitable for refactoring despite having the potential for the existence of
semantic differences. Thus, the proposal extracts the structural units of the programming language,
for example, the method or loop, from identifier-replaced code clones. The targets of refactoring
in the proposal are the extracted parts.
In addition, the AST-based technique is a good detection method from a refactoring perspective

because it identifies cohesive parts of the program source code as code clones, such as whole
methods or consecutive statements in the same scope. In many cases, it is probably easier to
refactor AST-based code clones than token-based code clones or line-based code clones. However,
comparing subtrees is expensive, so that it is difficult to simply apply the AST-based technique
to large-scale software systems. Usually, the bigger the software scale, the more they need to be
refactored since large-scale software includes many complicated logics that are intertwined with
one another. However, it is difficult to manually detect the code to be refactored from the large
number of lines of code. Scalability is an important property of the tools that detects the code to
be refactored.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

438 Y. HIGO, S. KUSUMOTO AND K. INOUE

Figure 1. Clone Pair and Clone Set.

Burd et al. reported that CloneDR, which is an implementation of the AST-based technique, has
good code clone detection precision‡, but it could only detect a small part of the code clone set
detected using other detection techniques. Moreover, CloneDR has high scalability despite using
the AST-based technique. Generally, the AST-based technique requires O(n2) complexity (n is
the number of subtrees) for the subtree comparisons. However, CloneDR puts subtrees into small
groups by hashing them in the first traversal phase. The quadratic comparison is performed on
each pair of subtrees in the same group. This approach can reduce the number of comparisons
drastically, so that CloneDR can detect code clones efficiently from middle-scale or large-scale
software systems. The PDG-based technique is the most expensive technique available, so much
so that it is difficult to apply the technique to middle-scale or large-scale software systems.

2.1. Clone Pair and Clone Set

This section explains two terms related to the code clones. The first term is Clone Pair, which is a
pair of identical or similar code fragments. The other is Clone Set, which is a set of code fragments
that are identical or similar to each other.
Figure 1 illustrates an example. In this figure, there are five code fragments containing code

clones. Code fragment f1 is similar to code fragment f4, and code fragments f2, f3, and f5 are
similar to each other. In this example, there are four clone pairs, (f1, f4), (f2, f3), (f2, f5), (f3, f5),
and two clone sets, { f1, f4},{ f2, f3, f5}.

‡However, it should be noted that Burd et al. did not evaluate code clone detection techniques from a refactoring perspective.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 439

3. METHOD FOR MERGING CODE CLONES

The method consists of three phases; Detection Phase, Extraction Phase, and Measurement
Phase. Sections 3.1–3.3 explain each phase. After that, Section 3.4 describes two refactoring
examples.

3.1. Detection phase

In this phase, code clones are detected using an existing detection technique. Based on the above
discussion, it was decided to use either the token-based technique or the AST-based technique as
the detection technique. The reason for the recommendation is that these techniques can detect
code clones having different identifiers. As Balint et al. showed, after copying and pasting a code
fragment, small modifications are often introduced to the copied code fragment. Thus, it is expected
that such techniques can detect identifier-replaced code fragments. In the proposal, code clones
detected using an existing detection technique are called general code clones.

3.2. Extraction phase

In this phase, the following granularity units are extracted from the general code clones:
Declaration: class, interface,
Function: method, constructor, static initializer,
Block: do, for, if, switch, synchronized, try, while.
The extracted units are called refactoring-oriented code clones. Refactoring-oriented code

clones are more suitable for refactoring than general code clones. Figure 2 illustrates an example.
In this figure, there are two code fragments A and B from a program. The code fragments with
hatching parts are general code clones, which were detected using the token-based technique. In
code fragment A, operations on class name are performed, whereas in code fragment B, operations

Figure 2. Example of merging two code fragments.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

440 Y. HIGO, S. KUSUMOTO AND K. INOUE

on property file name are performed. The try-catch blocks in A and B have a common logic that
handles a java.util.Vector data structure. There are, however, a few statements before and after the
try-catch blocks that are not necessarily related to the try-catch blocks from a semantic standpoint.
The presence of such semantically unrelated statements often obstructs refactoring. In other words,
extracting only the try-catch blocks as code clones is more preferable to extracting else–if blocks
from a refactoring viewpoint.
If the AST-based technique or the metric-based technique is used in the detection phase, general

code clones themselves are any of the above granularity units, that is, general code clones are the
same as the refactoring-oriented code clones. Therefore, the extraction phase can be omitted.

3.3. Measurement phase

After extracting the refactoring-oriented code clones, some metrics are measured for them. The
metrics represent whether or not each of the code clones can be easily merged and how to merge
them. Users determine, using the metrics, whether or not each of the refactoring-oriented code
clones should be merged.
Sections 3.3.1 and 3.3.2 describe the proposed metrics for merging code clones. In addition,

Section 3.4 shows two examples of merging code clones using these metrics.

3.3.1. Positional relationship in the class hierarchy

On source code written in Java language, the strategy for merging code clones depends on their
positional relationship in the class hierarchy. Figure 3 illustrates some examples.
Case 1: If code clones are in a single class, they can be extracted as a new method in the same

class (see Figure 3(a)).
Case 2: If code clones are in two or more classes derived from a single class, they can be pulled

up to the common base class (see Figure 3(b)).
Case 3: If code clones are scattered in different classes, a new class is required to merge them (see

Figure 3(c)). In Figure 3(c), new class TelephoneNumber was created, and the duplicated function
was delegated to the new class. Besides, a new class that will be a common parent of duplicated
classes can always be created unless the classes are already inherited from another class.
To automatically indicate an appropriate way to merge code clones, the positional relationship

of the code clones belonging to clone set S is given using the quantitative metric, the Dispersion in
the Class Hierarchy (DCH(S)).
Here, it is assumed that clone set S1 includes the code fragments f1, f2, . . . , fn . A class including

code fragment fi is represented as ci .
Case A: If classes c1, c2, . . . ,cn have one or more common base classes, cp is defined as a class

situated at the lowest position in the class hierarchy among the common base classes. DCH(S1) is
the maximum number of hops from ci (1≤ i≤n) to cp in the class hierarchy.
Case B: If the classes have no common base class, DCH(S1) is set to ∞.
The formula for the metric DCH(S1) can be represented as follows:

DCH(S1)=
{
max{D(c1, cp), D(c2, cp), . . . ,D(cn, cp)} (Case A)

∞ (Case B)
(1)

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 441

(a)

(b)

(c)

Figure 3. Examples for merging code clones: (a) Example of CASE1; (b) Example
of CASE2; and (c) Example of CASE3.

where D(ci ,cp) is the number of hops from ci (1≤ i≤n) to cp in the class hierarchy. If ci =cp,
D(ci ,cp) is set to 0.
DCH(S1) becomes large as the degree of the dispersion of S1 becomes extended. If all code

fragments of S1 are in a single class, DCH(S1) is set to 0. If all code fragments of S1 are in a class
and its direct child classes, DCH(S1) is set to 1. Additionally, this metric is measured for only the

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

442 Y. HIGO, S. KUSUMOTO AND K. INOUE

class hierarchy of the target source code because it is unrealistic for it to pull up application code
to libraries such as JDK.

3.3.2. Coupling between a code clone and it surrounding code

As described in Section 3.3.1, the basic strategy for merging code clones is migration of duplicated
code to another place. To migrate implemented code, it is desirable that the duplicated code has
low coupling with its surrounding code.
Assume that the Extract Method§ is to be performed. To apply this method, the smaller the

number of externally defined variables that are used (referenced and assigned) in the code fragment,
the easier it is to migrate the code fragment to another place. If externally defined variables are used
in the target code fragment, it is necessary to provide the variables as parameters to the extracted
method. In order to automatically measure the ease of code migration, the degree of coupling is
represented as 2 quantitative metrics, the number of referenced variables (NRV(S)), and the number
of assigned variables (NAV(S)).
Here, it is assumed that clone set S2 includes code fragments f1, f2, . . . , fm . Code fragment

fi references si number of variables defined externally, and it assignes to ti number of variables
defined externally. The formula of metrics NRV(S2) and NAV(S2) can be represented as follows:

NRV(S2)= 1

m

m∑
i=1

si , NAV(S2)= 1

m

m∑
i=1

ti (2)

Intuitively, NRV(S2) represents the average of the externally defined variables referenced in the
code fragments belonging to clone set S2. In the same way, NAV(S2) represents the average of
externally defined variables assigned in the same code fragments.
If refactoring-oriented code clones described in Section 3.1 are code clones that are structurally

identical and either completely identical or have only parameterized differences, si and ti (1≤ i≤n)
are always identical. In this case, these metrics can be presented as follows¶ :

NRV(S2)=s1=s2=·· ·=sm, NAV(S2)= t1= t2=·· ·= tm (3)

If the refactoring-oriented code clones include some gaps, which are added or deleted statements,
si/ti can be different from s j/t j (1≤ i, j ≤n, i �= j). In this case, the definitions of formula (2) for
computing NRV(S2) and NAV(S2) must be used.

3.4. Examples of merging code clones

Metric DCH(S) represents wherein the class hierarchy the common code can be factored out, and
metrics NRV(S) and NAV(S) represent the couplings between code clones and their surrounding
code. It is assumed that these metrics can represent the possibility of some refactoring patterns in

§Originally, the Extract Method is applied to a too long method or a part of a complicated function in order to improve the
readability, understandability, and maintainability of a program [9]. It also can be applied to code clones to merge them.
¶ In the implementation of the proposal, a code clone detection tool, CCFinder [6] is used. CCFinder detects only the
structurally identical code clones, so that NRV(S) and NAV(S) are calculated using these formulas.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 443

which code clones are merged in another place of the class hierarchy. For example, the following
refactoring patterns in Fowler’s book [9] can be helped using these metrics:
Extract Class/SuperClass: If a class level duplication is found, the Extract Class or Extract

SuperClass patterns may be performed. If duplicated classes extend different base classes, the
duplication can be removed by Extract Class. If not, Extract SuperClass should be the better choice
for removal. DCH(S) is an indicator of which of the two patterns should be performed.
Extract Method: If some of the parts of the methods in a single class are duplicated, the Extract

Method is a simple and practical solution for removal. DCH(S) is an indicator for identifying
duplication in a single class, and NRV(S) and NAV(S) are indicators for identifying duplication
that can easily be removed. Section 3.4.1 introduces a typical set of conditions of the metrics for
applying the Extract Method.
Pull Up Method: If there are duplicated methods in different classes that extend a common base

class, the Pull Up Method is a good method for duplication removal. It is easy to identify such
method level duplication with DCH(S). If the value is 1 or more (not ∞), the duplication has a
common base class.
Form Template Method: If the method level duplication is found in different classes that extend a

common base class, the Pull Up Method pattern should be the first candidate for removal. However,
if duplicated methods include different logics, it is difficult to apply the Pull Up Method. In such
cases, the Form Template Method may be applicable.
Figure 4 illustrates an example of the Form Template Method. Before refactoring, there are dupli-

cated methods in classes ResidentialSite and LifelineSite. The duplicated methods have different
logics in computing the tax, so that it is difficult to apply the Pull Up Method to them. In such
a case, the Form Template Method instead of the Pull Up Method is applied to the duplication.
First, the different logic parts are extracted as new methods. Then, an abstract method is defined
for the new methods in the common base class. Finally, the duplicated methods are pulled up to
the common base class.

Figure 4. Example of form template method.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

444 Y. HIGO, S. KUSUMOTO AND K. INOUE

Note that the proposed metrics simply identify ‘duplicated methods in different classes that extend
a common base class’. Users have to determine whether the Pull Up Method or the Form Template
Method is a better choice for removal.
Move Method: If there are duplicated methods in different classes that have no common base

class, it is difficult to apply refactorings using class hierarchy to them. In such cases, the Move
Method is a good solution for removal. DCH(S) is an indicator to identify such method duplication
because value ∞ means that the duplication has no common base class.
Parameterize Method: If some methods in a single class are duplicated, the duplication may be

removed by the Parameterized Method. This type of duplication can be identified with DCH(S),
since a value of 0 implies that all the duplication is in a single class.
Pull Up Constructor: This pattern is very similar to the Pull Up Method pattern. The only

difference is that the refactoring target is not a method but a constructor.
The remainder of this subsection presents two sets of conditions of the granularity units and the

corresponding metrics. The first set is for the Extract Method and the second one is for the Pull Up
Method. Note that the sets described here are just examples and other conditions can be reasonable
for using the Pull Up Method and the Extract Method.

3.4.1. Example 1: Extract Method

If a user wants to merge code clones using the Extract Method, then a typical set of conditions
could be as follows:
EC1 (Extract Method Condition 1): The target granularities are the statement units;
EC2 (Extract Method Condition 2): DCH(S) is 0;
EC3 (Extract Method Condition 3): NAV(S) is 1 or less.
Since the Extract Method is directed to a part of a method, (EC1) is considered. If all code

fragments are in a single class, it is easy to merge them, so that (EC2) is considered. The reason for
(EC3) is that, if some values are assigned to externally defined variables in the code fragment, it is
necessary to add parameters and a return-statement to the new method. It is necessary to contrive
a new data class if two or more externally defined variables are assigned values.
The primary operations for the Extract Method are as follows:
EXTRACT: A set of operations for simply extracting a code fragment as a new method: for

example, (1) cut the target code fragment, (2) paste the code fragment outside the method, and (3)
add a simple signature (a method name with no parameter) to the code fragment.
PARAMETER: A set of operations for removing the direct access to the externally defined vari-

ables and instead passing them as input parameters: for example, (1) add parameters to the signature,
and (2) replace the references to the externally defined variables with references to the parameters.

Table I. Classifying code clones satisfying (EC1) to (EC3).

EXTRACT PARAMETER RETURN OTHER

EG1 Required — — —
EG2 Required Required — —
EG3 Required — Required —
EG4 Required Required Required —
EG5 Required Do no care Do no care Required

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 445

RETURN: A set of operations for adding a return-statement to the extracted method to reflect the
result of the assignment in it to the caller place: for example, (1) define a new local-variable, (2)
replace the assignment to the externally defined variable with an assignment to the local-variable,
and (3) add a return-statement for passing the value of the local-variable.
OTHER: Operations other than the above ones for extracting code fragments as methods. It is

assumed that all code clones satisfying (EC1) to (EC1) can be removed with the above three kinds
of operations: EXTRACT, PARAMETER, and RETURN. Some code clones may require other
efforts to remove them, or it may be impossible to remove. As a matter of convenience, such code
clones, by definition, require the OTHER operations.
EXTRACT operations are required by any of the code clones in performing the Extract Method,

whereas needing the PARAMETER, RETURN, and OTHER operations depends on the internal
logics of the code clones. If a clone set satisfies all the conditions (EC1) to (EC3), it is categorized
into one of the following groups; (EG1) to (EG5). Table I represents the relationships among the
five groups and their required operations.
EG1 (Extract Method Group 1): Clone sets that can be merged by just extracting the code

fragments as a new method in the same class, that is, the code fragments use no externally defined
variables. This group requires only the EXTRACT operations.
EG2 (Extract Method Group 2): Clone sets that can be merged by extracting the code fragments

as a new method by adding parameters for the externally defined variables, that is, the code frag-
ments reference one or more externally defined variables. This group requires the EXTRACT and
PARAMETER operations.
EG3 (Extract Method Group 3): Clone sets that can be merged by extracting the code fragments

as a new method by adding a return-statement, that is, the code fragments assign to an externally
defined variable. This group requires the EXTRACT and RETURN operations.
EG4 (Extract Method Group 4): Clone sets that can be merged by extracting the code fragments

as a new method by adding parameters and a return-statement, that is, the code fragments reference
externally defined variables and assign values to one of them. This group requires the EXTRACT,
PARAMETER, and RETURN operations.
EG5 (Extract Method Group 5): Clone sets that could potentially be merged, but require too

much effort. This group, by definition, requires the OTHER operations. For this categorization, it
is irrelevant whether the clone sets in (EG5) require the PARAMETER and RETURN operations
or not. Thus, the corresponding cells in Table I are ‘do no care’.

3.4.2. Example 2: Pull Up Method

If a user wants to merge code clones by performing the Pull Up Method, the following conditions
are reasonable:
PC1 (Pull Up Method Condition 1): The target granularity is the method;
PC2 (Pull Up Method Condition 2): The value of DCH(S) is 1 or more (not ∞);
PC3 (Pull Up Method Condition 3): The value of NAV(S) is 0.
Usually, the Pull Up Method is performed on existing methods, which is the reason for (PC1).

(PC2) requires all classes including code clones (duplicated method) to extend a common base
class. (PC3) prevents replacing more than one external reference with local-variable assignments.
A single method cannot return two or more different values as return-statements.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

446 Y. HIGO, S. KUSUMOTO AND K. INOUE

The primary operations for the Pull Up Method are as follows:
MOVE: A set of operations for simply moving a code fragment to another place, for example,

(1) cut the target method from the original place and (2) paste it in the common base class.
PARAMETER: A set of operations for removing direct accesses to variables that cannot be used in

the common base class and, instead, pass them as input parameters, for example, (1) add parameters
to the signature and (2) replace the references to the unavailable variables with references to the
parameters.
OTHER: Operations other than the above ones.
As was seen in the case of the Extract Method, not all code clones satisfying (PC1) to (PC3)

can be removed using the above two operations, EXTRACT and PARAMETER. Some code clones
may require more effort to remove them, or it may be impossible to remove them. As a matter of
convenience, such code clones are defined to require the OTHER operations.
MOVE operations are required by any of the code clones in performing the Pull Up Method,

whereas the requirements of the PARAMETER and OTHER operations depend on the internal
logic of the code clones. If the condition of PC3 is ‘NAV(S) is 1 or less’, one more primary set of
operations, RETURN, should be added.
RETURN: A set of operations for adding a return-statement to the moved method to reflect the

result of the assignment in it to the caller place.
When NAV(S) is 1, there is an assignment to an externally defined variable. Such assignments

have to be changed to local-variable assignments, and a return-statement has to be added for
reflecting the assignment result to the caller place.
MOVE operations are required by any of the code clones in performing the Pull Up Method,

whereas the requirements of PARAMETER and OTHER operations depend on the internal logic
of the code clones. If a clone set satisfies all the conditions (PC1) to (PC3), it is categorized into
one of the following groups, (PG1) to (PG3). Table II shows the relationships between classified
groups and their required operations.
PG1 (Pull Up Method Group 1): Clone sets that can be merged by just moving the code fragments

to the common base class, that is, the code fragments utilize no externally defined variables. This
group requires only MOVE operations.
PG2 (Pull Up Method Group 2): Clone sets that can be merged by moving the code fragments

to the common base class by adding parameters for referencing externally defined variables, that
is, the code fragments reference one or more externally defined variables. This group requires the
MOVE and PARAMETER operations.
We can choose either to delete existing methods including the code clones or change them to

call using the new method from the inside. If the existing methods are deleted, it is necessary to
change all of the caller places because the signature is changed.
PG3 (Pull Up Method Group 3): Clone sets that require ingenuity in merging them, that is, this

group requires OTHER operations. As for the Extract Method, it is irrelevant whether clone sets

Table II. Classifying code clones satisfying (PC1) to (PC3).

MOVE PARAMETER OTHER

PG1 Required — —
PG2 Required Required —
PG3 Required Do no care Required

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 447

in (PG3) require the PARAMETER operations or not, so that the corresponding cell of Table II is
‘do no care’.

4. ARIES: AN IMPLEMENTATION OF THE PROPOSAL

This section describes Aries, which is an implementation of the proposal. Aries assists users in
merging code clones. However, the assistance is only a part of refactoring process. Mens and Tourwe
[11], which is a good survey of refactoring technologies, state that refactorings are performed in
the following steps:
Step 1: Identify where the software should be refactored,
Step 2: Determine which refactoring should be applied to the identified places,
Step 3: Guarantee that the applied refactoring preserves the behavior,
Step 4: Apply the refactoring,
Step 5: Assess the effect of the refactoring on the quality characteristics of the software, such as

complexity, understandability, or maintainability, and the process, such as productivity, cost,
Step 6: Maintain consistency between the refactored program code and other software artifacts,

such as documentation, design documents, requirements specifications, and tests.
Aries assists in Steps 1 and 2 of the above operating procedure by first determining which

refactorings could be performed and suggesting, based on the conditions determined above, which
type of refactoring to perform. The user must choose whether or not the refactoring actually occurs.

Aries consists of two components, an analysis component and a graphical user interface (GUI)
component, which are shown in Figure 5. Sections 4.1 and 4.2 describe the two components of
Aries. After that, Section 4.3 shows the process of merging code clones with Aries.

4.1. Analysis component of aries

The analysis component takes two inputs: source files and minimum token length. Source files
are the target of refactoring and the minimum token length is a threshold of code clone detection.
Refactoring-oriented code clones that are longer than the threshold are output to the code clone
data file. The processing from input to output is completely automated.

Figure 5. System overview.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

448 Y. HIGO, S. KUSUMOTO AND K. INOUE

The analysis component utilizes an existing code clone detection tool, CCFinder. The reasons
for using CCFinder are:

• CCFinder has high scalability. It can finish code clone detection within an hour even if the
source code has millions of lines of code.

• CCFinder can handle Java language, as well as other popular programming languages.
• Many researchers and practitioners favor CCFinder, which suggests that this program is easy
to use and has high reliability.

After obtaining the general code clones using CCFinder, the analysis component parses the
source code and builds the ASTs. Th e granularity units (described in Section 3.2) located in the
general code clones are identified by comparing the locations of granularity units with the general
code clones. Identified granularity units are the refactoring-oriented code clones, and the metrics
DCH(S), NAV(S), and NRV(S) are measured using information from the ASTs. After measuring
the metrics from all the refactoring-oriented code clones, the information is output to the code
clone data file in XML format.
In this implementation, the target source files are parsed twice. The first time is by using the

CCFinder, and the second time is for building the ASTs. This redundancy can be removed by
implementing a code clone detection tool that detects the refactoring-oriented code clones with
the measurement of the metrics DCH(S), NAV(S), and NRV(S). However, it is difficult and costly
to develop a practical detection tool like CCFinder or CloneDR, which is an implementation
of the AST-based technique. The current implementation can analyze middle-scale or large-scale
software systems quickly despite the fact that it parses twice. This implies that the implementation
is appropriate for practical use.

4.2. GUI component of aries

The GUI component loads a code clone data file and visually displays the code clones stored in
it. The GUI component supports interactive investigation of code clones for refactoring. Figure 6
shows snapshots of the GUI component. The Main Window (Figure 6(a)) is used to select the code
clones as the refactoring targets. The following describes the details of the Main Window:
Metric Graph: The Metric Graph visually represents the features of code clones using the six

metrics. Three of the metrics, which areDCH(S),NRV(S), andNAV(S), are proposed in Section 3.3.
The other three metrics, which are LEN(S), POP(S), and DFL(S), were previously proposed
in [12].
The Metric Graph allows users to filter out code clones that they are not interested in. Figure 7

illustrates how users filter out code clones using the Metric Graph. In the Metric Graph, each metric
has a parallel coordinate axis. Users can specify the upper and the lower limits of each metric. The
hatched region is the range bounded by the upper and the lower limits of the metrics. A polygonal
line is drawn for each clone set. In this figure, two lines for clone sets S1 and S2 are drawn. In the
left graph (Figure 7(a)), all the metric values of both the clone sets are in the hatched region, which
implies that neither of them is filtered out. In the right graph (Figure 7(b)), DCH(S2) is larger than
the upper limit of DCH; hence, S2 is filtered out. The Metric Graph enables users to filter out clone
sets based on their metric values.
NRV/NAV Selector: On the NRV/NAV Selector, users determine which types of variables are

counted for the metrics NRV(S) and NAV(S). In the current implementation, variable types can be

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 449

(a) (b)

Figure 6. Snapshots of Aries: (a) Main Window and (b) Clone Set Viewer.

(a) (b)

Figure 7. Metric Graph model: (a) before selection and (b) after selection.

selected from:

• field-member-of-its-class;
• field-member-of-parent-class;
• field-member-of-interface;
• local-variable;
• variable ‘this’;
• variable ‘super’.

For example, if users are going to perform the Extract Method within a single class, it is not
necessary to count all types except local-variable because they can be accessed anywhere in the
same class. On the other hand, if users are going to perform the Pull Up Method, other types should
be counted because the refactoring pattern involves code migration across classes.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

450 Y. HIGO, S. KUSUMOTO AND K. INOUE

Clone Unit Selector: On the Clone Unit Selector, users determine the kinds of granularity units
that are to be displayed in the Metric Graph. As described in Section 4.1, there are 12 kinds of
granularity units in Clone Unit Selector.
For example, if users are going to perform the Pull Up Method, they should select only the

method-unit, because this pattern is a set of operations on the existing methods.
Clone Set List: The Clone Set List displays all clone sets that are not filtered out by the Metric

Graph. In other words, code clones satisfying all of the conditions on granularity units and metrics
are listed in the Clone Set List. The list has a sorting function that allows clone sets to be sorted in
the ascending or descending order of any of the metrics.
Figure 6(b) is a snapshot of the Clone Set Viewer that is launched by double-clicking a clone set

on the Clone Set List. It shows more detailed information for the selected clone set. The following
are the parts of the Clone Set Viewer:
Metric Value Panel: The Metric Value Panel displays all the metric values of the clone set.
Code Fragment List: The Code Fragment List displays a list of all the code fragments included

in the clone set. Each line of the list consists of three types of information: (1) the path to the file
including the code fragment; (2) the location of the code fragment in the file, including begin line
number, begin column number, end line number, and end column number; (3) the number of tokens
included in the code fragments, which implies the length of the code fragment.
Source Code View: The Source Code View works cooperatively with the Code Fragment List.

Users obtain the actual source code of a code fragment selected in the Code Fragment List. In
Source Code View, the code fragment is emphatically displayed.
NRV/NAV List: The NRV/NAV List displays a list of all the variables counted for the metrics

NRV(S) and NAV(S) of a code fragment selected in the Code Fragment List. The informa-
tion consists of three elements, (1) name of the variable, (2) type of variable, and (3) number of
uses.

4.3. Interactive analysis of refactoring-oriented code clones

Figure 8 illustrates the process of an interactive analysis of the refactoring-oriented code clones
using Aries’s GUI component. As a result of the interactive analysis, users can identify code clones
that can be merged. The following describes what users have to do in each phase of the process.
Module names in parentheses mean that the modules are used in the given phase.
PHASE 1 (NRV/NAV Selector, Clone Unit Selector): Users determine the types of variables that

are to be used for measuring the metrics and the kinds of granularity units that are to be the targets
of the refactoring operations. The reason for an appropriate choice is described in Section 4.2.
PHASE 2 (Metric Graph): Users filter code clones by changing the lower and upper limits of the

metrics. The code clones satisfying the metrics conditions are listed in the Clone Set List.
In the current implementation, the Metric Graph has pre-defined conditions for the following

refactoring patterns:

• Extract Class/Method/SuperClass,
• Form Template Method,
• Move Method,
• Parameterize Method,
• Pull Up Constructor/Method.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 451

Figure 8. Process of merging code clones using Aries.

Each of the predefined conditions is a combination of the following:

• A set of variable types utilized for measuring metrics NRV(S) and NAV(S).
• A set of granularity units, which are the refactoring targets.
• Upper and lower limits of all of the metrics in the Metric Graph.

The predefined conditions are implemented as right-click menus in the Metric Graph. By choosing
a predefined pattern, users can get clone sets satisfying those conditions. Predefined patterns make
it easier to filter code clones.
PHASE 3 (Clone Set List): Users select a clone set. The detailed information for the selected

clone set is available in the Clone Set Viewer. This list can sort clone sets in ascending or descending
order of arbitrary metric, which may help users to select the code clones that they are interested in.
PHASE 4 (Clone Set Viewer): Users determine whether to merge the code clones or not, based

on the detailed information of the clone set selected in the previous phase. If the users decide not
to merge the code clones, they can use either CASE 1 or CASE 2:
Case 1: If they want to analyze another code clone with the same conditions, they can go back

to PHASE 3;
Case 2: If they want to analyze another code clone with different conditions, they go back to

either PHASE 1 or PHASE 2.

5. CASE STUDY

5.1. Target and configuration

Ant [13] (version 1.6.0) was chosen as the target for two reasons. First, Ant is written in Java
language. As previously mentioned, the current implementation can only handle Java language.
Second, the Ant package includes many test cases that can be used to confirm that Ant’s external
behavior has not been changed due to refactoring.

Ant 1.6.0 includes 627 source files, and its size is about 180 000 lines of code (LOC). In this
case study, 30 tokens were used as the minimum token length of code clone, that is, 30 tokens
correspond to about five lines of code.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

452 Y. HIGO, S. KUSUMOTO AND K. INOUE

Aries detected 154 clone sets consisting of the refactoring-oriented code clones within 2min.
In this case study, the detected clone sets were filtered using the conditions of the Extract Method and
the Pull Up Method described in Section 3.4. Fifty-nine of the code clones satisfied the conditions
of the Extract Method, and 18 satisfied the conditions of the Pull Up Method.
The 59 clone sets were manually assigned to groups (EG1) to (EG5) described in Section 3.4.

Similarly, the 18 clone sets were assigned to groups (PG1) to (PG3). After classification, all of the
clone sets were classified into three groups, (EG1), (EG2), and (EG4), and a group, (PG2), for a
total of 62 clone sets were merged.
After merging each clone set, regression tests were performed to confirm that the refactoring

efforts had not changed the external behavior of Ant. In the regression test process, all 220 test
cases included in the Ant package were used. These test cases were conducted with JUnit [14],
which is one of the unit testing frameworks. Since it only took 4 min to perform all the test cases,
it was very easy to perform regression tests.
The remainder of this section describes the details of both pattern applications.

5.2. Result of the Extract Method

As described above, 59 clone sets were obtained as a result of filtering with the conditions of the
Extract Method described in Section 3.4. The source code of all clone sets was examined, and each
of the clone sets was classified into one of five groups (EG1) to (EG5), which are described in
Section 3.4. Then, the individual clone set in groups (EG1), (EG2), and (EG4) was merged.
Three clone sets were classified as (EG1). Figure 9(a) shows a code fragment included in (EG1).

In this if-statement clone, no externally defined local-variable was utilized, so that it was very easy
to merge the clone set into a new method in the same class.
Thirty-four clone sets were classified as (EG2). Figure 9(b) shows a code fragment included in

(EG2). In this if-statement clone, variable javacopts was a field-member-of-its-class and variable
genicTask was a local-variable; hence, it was necessary to set genicTask as a parameter of the
extracted method to merge this clone set into the same class.
No clone set was classified as (EG3).
Fifteen clone sets were classified as (EG4). Figure 9(c) shows a code fragment included in (EG4).

In this if-statement clone, variable iSaveMenuItem was externally defined. The code fragment
included a reference and an assignment to the variable; hence, it was necessary to set iSaveMenu-
Item as a parameter of the extracted method, and to add a return-statement to reflect the result of
the assignment to the caller place.
Seven clone sets were classified as (EG5). Figure 9(d) shows a code fragment included in (EG5).

In this if-statement clone, there were two return-statements, so that an unreasonable amount of work
would be required to extract this code. In the implementation of Ant 1.6.0, the return-statements are
instructions for getting out from the existing method. If the code fragment is naively extracted as a
new method, the return-statements become instructions for getting out from the extracted method.
Simple method extraction changes the role of the return-statements. In this case study, these seven
clone sets were not merged, since merging them would be highly dependent on the skill of an
individual programmer.
Thus, in the case of the Extract Method, 52 of 59 clone sets could be refactored using only simple

operations, such as extracting a method, adding parameters, and adding a return-statement.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 453

(a)

(b)

(c)

(d)

Figure 9. Examples of the Extract Method: (a) example of the Extract Method in (EG1); (b)
example of the Extract Method in (EG2); (c) example of the Extract Method in (EG4); and (d)

example of the Extract Method in (EG5).

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

454 Y. HIGO, S. KUSUMOTO AND K. INOUE

5.3. Result of the Pull Up Method

As described above, 18 clone sets were obtained as a result of filtering with the conditions of the
Pull Up Method. The source code of all code clones was examined to classify the code clones into
three groups, (PG1) to (PG3), which are described in Section 3.4. In this case study, no clone set
was classified into (PG1).
Ten clone sets were classified as (PG2). Figure 10(a) shows a code fragment included in (PG2). In

this method clone, method getCommentFile was invoked twice, and the method was defined in the
same class. Aries pointed out the invocation as a reference of the external defined variable although
the variable ‘this’ was omitted in the source code. Variables this and FLAG COMMENTFILE,
which were field-members-of-its-class, were externally defined, so that this clone set was pulled
up to the common base class after adding two parameters.
Eight clone sets were classified as (PG3). Figure 10(b) illustrates a code fragment included in

(PG3). This method invoked method checkOptions, which was defined in the same class. Other
invoked methods were defined in the common base class. Variable commandLine, which was
an argument of checkOptions, was defined in this code fragment. Each class includes the code
fragments of this clone set defined method checkOptions, and each of the code fragments invoked
the method checkOptions defined in the same class. Different method invocations prevented this
clone set from merging with the Pull Up Method. However, it was assumed that the Form Template
Method pattern could be applied to this group. This would be done by first moving the code
fragment to the common base class and then defining an abstract method named checkOptions in
the common base class.
In the case of the Pull Up Method, 10 of 18 clone sets could be refactored using only simple

operations, moving the method to a common base class and adding parameters.

6. DISCUSSION

This section discusses this proposal from several viewpoints.

6.1. Granularity units of the refactoring-oriented code clones

The reasons that the refactoring-oriented code clones provided by Aries are the granularity units
of the programming language are as follows:

• All granularity units have their own variable scope, which means that all variables declared in
a granularity unit can be accessed only in it. This is a big advantage when a granularity unit
is moved to another place in the software system because these variables can be ignored.

• Identification of granularity units from the source code requires only a lightweight analysis,
like matching opening braces and closing ones or building ASTs. Aries builds ASTs and
identifies locations of all the granularity units. The reason for building ASTs is that Aries
collects the variable information for measuring metrics DCH(S), NRV(S), and NAV(S), in
addition to locating the granularity units. To get only the locations of all the granularity units,
matching opening and closing braces is adequate.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 455

(a)

(b)

Figure 10. Examples of the Pull Up Method: (a) example of the Pull Up Method in (PG2) and
(b) example of the Pull Up Method in (PG3).

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

456 Y. HIGO, S. KUSUMOTO AND K. INOUE

For identifying refactorable code clones more precisely, the PDG-based technique is a better
option. The technique can detect semantically identical code clones even if they are non-contiguous
in the source code. However, the PDG-based technique is more expensive, and, thus, cannot be
realistically used to code clones from middle-scale or large-scale software systems. On the other
hand, Aries can detect the refactoring-oriented code clones in a practical time frame, even though
the precision of Aries is less than that of the PDG-based technique.

6.2. Renamed identifiers in the refactoring-oriented code clones

Aries measures the metrics DCH(S), NAV(S), and NRV(S) from the refactoring-oriented code
clones. However, these metrics are not adequate conditions for representing refactoring possibility.
Refactoring-oriented code clones can be renamed code clones, that is, identifiers utilized in them
can be different from each other. In the case where only variable names are different, they can be
merged because the logic is identical. However, in the case where the variable types are different,
it is difficult to merge them because the logic is different. Users who intend to perform refactorings
with Aries have to investigate whether the provided code clones can really be merged, in addition
to the semantic perspective investigation, such as whether merging them can reduce maintenance
costs in the future.

6.3. Internal logic of the refactoring-oriented code clones

The difficulty of merging refactoring-oriented code clones depends on the internal logic of the code
clones and can be shown using an Ant case study. As shown in the case of (EG5), if the return-
statements are in the target code fragment, it is necessary to make an effort to handle the return-
statements. In the implementation of Ant 1.6.0, the return-statements are instructions for getting out
from the existing method. If the target code fragments are naively extracted, the return-statements
will be instructions for getting out from the extracted method. In the case where the target code
fragments include break-statements or continue-statements‖, special techniques are required to
extract them as a case of return-statements.

6.4. Users’ responsibility in merging code clones with Aries

Before utilizing Aries, users have to understand the three metrics DCH(S), NRV(S), and NAV(S)

that were proposed in this paper. These represent the features of code fragments that the existing
metrics do not. If users do not understand these metrics, then they will be unable to properly filter
the refactoring-oriented code clones based on their requirement.
Using Aries, users know the code clones that satisfy the conditions their conditions. Aries

shows the refactoring candidates based not on adequacy but on possibility. Thus, users have to
consider the adequacy of merging the candidates themselves. Users determine whether or not they
merge the code clones by reference to the various kinds of information provided by Aries.

‖In Java language, break-statements and continue-statements can have labels, which makes the execution sequence complicated.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 457

7. RELATED WORKS

This section describes other research efforts related to code clone refactoring∗∗. However, refac-
toring is not a silver bullet for code cloning. This paper also presented some techniques for managing
code clones since, for various reasons, some code clones cannot or should not be merged.

7.1. Techniques for merging code clones

Fowler, a pioneer in the field of refactoring, mentioned in his book that the number one in the stink
parade is duplicated code [9]. He also presented some sets of operations for merging code clones.
The operations described in Figure 3 are taken from his book. This book helped to formulate the
need for the metric DCH(S).

CloneDr, which is an implementation of the AST-based detection technique, presents not only
the locations of code clones but also the forms of merged code fragments [5]. The forms help users
to understand the operations that are required to merge code clones. However, the tool does not
care about the positional relationship between code clones in the class hierarchy. Users themselves
have to investigate where the merged code fragment can be placed, whereas the proposed method
itself renders to the users the required information. Metric DCH(S) is an indicator of the location
of the merged code fragment. If the value is 0, the merged code fragment can be placed in the same
class. If the value is 1, the merged code fragment can be placed in the direct base class.
Balazinska et al. proposed a refactoring method for the duplicated methods [15]. Their method

provides the differences between code clones, which helps users to determine whether code clones
can be merged or not. In addition, their method measures the coupling between a duplicated method
and its surrounding code.
Cottrell et al. implemented a tool that visualizes the detailed correspondences between a pair of

classes. The classes are generalized to form an intermediate, AST-like structure that distinguishes
between what is common and what is specific to each class. The specific instructions will influence
the degree of relatively between the classes. The tool works after users identify two classes that
should be merged. This tool can be combined with Aries into a single refactoring process, since
the two tools support different steps of the refactoring process.
Jarzabek proposed and implemented XVCL, which is a framework to merge duplicated parts of

a software system into so-called meta components [16,17]. The technique can handle complicated
code clones that include abstraction functions built into the programming language. Meta compo-
nents include merged code fragments and instructions for deploying the code fragments into the
raw source code. Some papers reported that XVCL plays an important role in merging code clones
[18,19].
Komondoor et al. proposed an algorithm for procedure extraction. The inputs to the algorithm

are as follows:

• The CFG (control-flow graph) of a procedure,
• A set of nodes in the CFG.

∗∗About the validity of this proposal, please refer to Section 2.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

458 Y. HIGO, S. KUSUMOTO AND K. INOUE

The goal of the algorithm is to revise the CFG with the following conditions:

• The set of nodes that are extractable from the revised CFG,
• The revised CFG is semantically equivalent to the original CFG.

In implementing this algorithm, they introduced certain heuristics for enhancing scalability.
Although the algorithm has a worst-case exponential time complexity, their experimental results
indicated that it may work well in practice. However, the algorithm can be applied only to a single
code clone. Different techniques are needed to determine how two or more code clones can be
extracted as a single procedure while preserving semantics.

7.2. Techniques for managing code clones

Kim et al. performed experiments on the repositories of open-source software systems to investigate
how code clones appear and disappear [20]. The experimental results revealed the following points,
which partly motivated the proposed simultaneous modification support method [21]:

• Some code clones are short-lived. Refactoring (merging) them does not improve their main-
tainability.

• Most long-living code clones are not suited to be refactored because there is no abstraction
function of the programming language that can handle them.

Kapser and Godfrey also suggested that, based on their experience, code clones are not always
harmful [22]. They reported several situations where code duplication is a reasonable or even
beneficial way to handle large-scale complex software systems. For example, when developing a
new driver for a certain hardware family, there may already be drivers to handle some other hardware
families. However, there are often considerable differences in the functionalities or features between
the families. It is very risky and unrealistic to merge code clones in the drivers. Nevertheless, if
a bug were found in the driver of a certain hardware family, it would be very likely that there
are the same bugs in the drivers of the hardware families having similar features to this family.
Thus, it would be necessary to find and correct each of the bugs in the drivers without overlooking
any of them. In cases like this, simultaneous modification can be a great support for software
maintenance.
Balazinska et al. reported that differences between code fragments tend to hinder applying re-

engineering actions (refactorings) to them [23]. It was shown that strictly identical or superficially
different code clones are easier to re-engineer than code clones including other types of differences.
In other words, code clones including some gaps are difficult to refactor. However, CCFinder can
detect only identical or identifier-replaced code clones, that is, it cannot detect gapped code clones.
It may be more effective to use another clone detection technique that can detect gapped code
clones in the context of simultaneous modification. Some of these techniques/tools are metric-based
detection [8] and CP-Miner [24].
Toomim et al. have proposed a simultaneous modification method on code clones included in

the same clone set [25]. In their method, there is a database of code clone information in the
backend of the editor program. When a code fragment included in a clone set is modified, other
code fragments in the clone set are also simultaneously modified. Duala-Ekoko and Robillard have

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 459

also proposed a simultaneous editing method [26]. The method identifies corresponding lines in
code fragments that are similar to each other based on the Levenshtein distance†† after the code
fragments are detected. An implementation of the method has been fully integrated in Eclipse. At
present, the method can handle only clone pairs. It cannot handle clone sets consisting of three or
more code fragments. Neither method can be utilized in real software development or maintenance
because they have a critical drawback, that is, they cannot identify the differences between code
fragments to be edited simultaneously that contain small differences between the code fragments.
Their methods work well only on identical code clones, which do not include different identifiers
or re-ordered statements.
Mann suggested that it should be effective to track ‘copy and paste’ actions [27] that would

enable the user to know fromwhere arbitrary code fragments were derived and, then, simultaneously
modify all of the code fragments derived from the same source. ‘Copy and paste’ is one source of
code clones in the source code. For example, Kim et al. reported that developers perform block- or
method-level copy-and-paste actions approximately 4 times per hour [28]. Balint et al. reported that
inconsistencies often occur between the ‘copied-and-pasted’ code [29]. Tracking ‘copy and paste’
can potentially identify many code clones. The advantage of this method is that any type of code
clone can be identified as long as the code clones are generated as a result of a ‘copy and paste’
action. Each code clone detection technique depends on its detection algorithm. In other words, it
cannot detect all types of code clones. For this reason, tracking ‘copy and paste’ might be a good
support for simultaneous modification.

8. CONCLUSION

In this paper, a new refactoring method for code clones was proposed and implemented as the
software tool, Aries. The code clone detection of Aries is fast enough to apply it to middle-scale or
large-scale software systems. A case study using Aries was performed on the open-source software
system, Ant. Quantitative metrics for code clones proposed in this paper adequately characterized
the code clones in Ant, and most of the code clones recommended by Aries could be refactored
with simple operations.
In the future, more detailed analyses for code clones will be implemented. For example, there

is a need to consider the effectiveness of refactoring. Currently, code clones are filtered based on
whether they can or cannot be merged. If code clones are filtered based on whether they should or
should not be merged, the refactoring support will become more effective.

ACKNOWLEDGEMENTS

This work has been conducted as a part of the EASE Project, Comprehensive Development of e-Society
Foundation Software Program, and Grant-in-Aid for Exploratory Research (186500006), both supported by the
Ministry of Education, Culture, Sports, Science and Technology of Japan. It has also been performed under
Grant-in-Aid for Scientific Research (A)(17200001) supported by the Japan Society for the Promotion of Science.

††The Levenshtein distance is a method for comparing strings Sa and Sb based on the number of insertions, deletions, and
substitutions required to transform Sa to Sb .

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

460 Y. HIGO, S. KUSUMOTO AND K. INOUE

REFERENCES

1. IEEE. Standard for Software Maintenance. IEEE Standard 1219, 1998.
2. Arthur L. Software Evolution: The Software Maintenance Challenge. Wiley: New York NY, 1988.
3. Yip SWL, Lam T. A software maintenance survey. Proceedings of the 1st Asia-Pacific Software Engineering Conference,

December 1994; 70–79.
4. Baker BS. Parameterized duplication in strings: Algorithms and an application to software maintenance. SIAM Journal

on Computing 1997; 26(5):1343–1362.
5. Baxter I, Yahin A, Moura L, Anna M, Bier L. Clone detection using abstract syntax trees. Proceedings of International

Conference on Software Maintenance 98, March 1998; 368–377.
6. Kamiya T, Kusumoto S, Inoue K. CCFinder: A multilinguistic token-based code clone detection system for large scale

source code. IEEE Transactions on Software Engineering 2002; 28(7):654–670.
7. Komondoor R, Horwitz S. Using slicing to identify duplication in source code. Proceedings of the 8th International

Symposium on Static Analysis, July 2001; 40–56.
8. Mayrand J, Leblanc C, Merlo E. Experiment on the automatic detection of function clones in a software system using

metrics. Proceedings of the International Conference on Software Maintenance 96, November 1996; 244–253.
9. Fowler M. Refactoring: Improving the Design of Existing Code. Addison-Wesley: Reading MA, 1999.
10. Rysselberghe F, Demeyer S. Evaluating clone detection techniques from a refactoring perspective. Proceedings 19th

IEEE International Conference on Automated Software Engineering, September 2004; 336–339.
11. Mens T, Tourwe T. A survey of software refactoring. IEEE Transactions on Software Engineering 2004; 30(2):126–139.
12. Higo Y, Kamiya T, Kusumoto S, Inoue K. Method and implementation for investigating code clones in a software

system. Information and Software Technology 2007; 49(9–10):985–998.
13. Ant. Available at: http://ant.apache.org/ [5 August 2008].
14. JUnit. Available at: http://www.junit.org/ [5 August 2008].
15. Balazinska M, Merlo E, Dagenais M, Lagüe B, Kontogiannis K. Advanced clone-analysis to support object-oriented

system refactoring. Proceedings 7th IEEE International Working Conference on Reverse Engineering, November 2000;
98–107.

16. XML-Based Variant Configuration Language—Technology for Reuse. Available at: http://xvcl.comp.nus.edu.sg/ [5 August
2008].

17. Jarzabek S. Effective Software Maintenance and Evolution: Reused-based Approach. CRC Press, Taylor & Francis:
Boca Raton, London, 2007.

18. Jarzabek S, Shubiao L. Eliminating redundancies with a ‘composition with adaptation meta-programming’ technique.
Proceedings of ESEC-FSE’03 European Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering, September 2003; 237–246.

19. Jarzabek S, Li S. Unifying clones with a generative programming technique: A case study. Journal of Software
Maintenance and Evolution: Research and Practice 2006; 18(4):267–292.

20. Kim M, Sazawal V, Notkin D, Murphy GC. An empirical study of code clone genealogies. Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, September 2005; 187–196.

21. Higo Y, Ueda Y, Kusumoto S, Inoue K. Simultaneous modification support based on code clone analysis. Proceedings
of the 14th Asia-Pacific Software Engineering Conference, December 2007; 262–269.

22. Kapser C, Godfrey MW. ‘Cloning considered harmful’ considered harmful. Proceedings of the 13th Working Conference
on Reverse Engineering, October 2006; 19–28.

23. Balazinska M, Merlo E, Dagenais M, Lagüe B, Kontogiannis K. Measuring clone based reengineering opportunities.
Proceedings 6th IEEE International Symposium on Software Metrics, November 1999; 292–303.

24. Li Z, Lu S, Myagmar S, Zhou Y. CP-Miner: Finding copy-paste and related bugs in large-scale software code. IEEE
Transactions on Software Engineering 2006; 32(3):176–192.

25. Toomim M, Begel A, Graham S. Managing duplicated code with linked editing. Proceedings IEEE Symposium on Visual
Languages and Human-Centric Computing, September 2004; 173–180.

26. Duala-Ekoko E, Robillard MP. Tracking code clones in evolving software. Proceedings of the 29th International
Conference on Software Engineering, May 2007; 158–167.

27. Mann ZA. Three public enemies: Cut, copy, and paste. IEEE Computer 2006; 39(7):31–35.
28. Kim M, Bergman L, Lau T, Notkin D. An ethnographic study of copy and paste programming practices in OOPL.

Proceedings of 2004 International Symposium on Empirical Software Engineering, August 2004; 83–92.
29. Balint M, Girba T, Marinescu R. How developers copy. Proceedings 14th IEEE International Conference on Program

Comprehension, June 2006; 56–68.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

A METRIC-BASED APPROACH 461

AUTHORS’ BIOGRAPHIES

Yoshiki Higo received his master’s degree and PhD degree in information science and
technology from Osaka University in 2004 and 2006, respectively. At present he is an
assistant professor at the Osaka University. His research interests include code clone
analysis, software metrics, and refactoring support techniques. He is a member of the
IEEE, IPSJ, and IEICE.

Shinji Kusumoto received his BE, ME, and DE degrees in information and computer
sciences from Osaka University in 1988, 1990, and 1993, respectively. At present he
is a professor in the Graduate School of Information Science and Technology at Osaka
University. His research interests include software metrics and software quality assurance
techniques. He is a member of the IEEE, the IEEE Computer Society, IPSJ, IEICE, and
JFPUG.

Katsuro Inoue received his BE, ME, and DE degrees in information and computer
sciences from Osaka University, Japan, in 1979, 1981, and 1984, respectively. He was
an assistant professor at the University of Hawaii at Manoa from 1984–1986. He was
a research associate at Osaka University from 1984–1989, an assistant professor from
1989–1995, and has been a professor since 1995. His interests are in various topics of
software engineering such as software process modeling, program analysis, and software
development environment. He is a member of the IEEE, the IEEE Computer Society,
and the ACM.

Copyright q 2008 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2008; 20:435–461
DOI: 10.1002/smr

