修士学位論文

題目

ソースコードの変更予測手法を用いた
自動プログラム修正の高速化手法

指導教員
柄本 真二 教授

報告者
鷲見 剛一

平成29年2月7日

大阪大学 大学院情報科学研究科
コンピュータサイエンス専攻
内容梗概

近年、自動プログラム修正手法が注目されている。自動プログラム修正手法の中に、既存プログラムの再利用に依る手法がある。再利用に基づく自動プログラム手法では、修正対象プログラムからプログラム文を取得して、欠陥であると判定された箇所へそのプログラム文を挿入する。修正対象プログラム中にはプログラム文が大量に存在しており、既存手法ではランダムにそれらの中からプログラム文を取得するため、修正に長い時間を要する。一方で、プログラムの構文情報と開発履歴を入力として、次の変更後にプログラムが持つ構文情報を予測するソースコードの変更予測手法が提案されている。予測結果と予測対象の構文情報を比較することによって次にどのような構文情報を持つプログラム文が追加される可能性が高いかを予測できる。そのようなプログラム文を修正に用いることにより、修正に要する時間を大きく削減できると考えられる。

そこで本研究では、ソースコードの変更予測を用いて自動プログラム修正手法を高速化する手法を提案する。オープンソースソフトウェアの開発過程で発生した欠陥に対して提案手法を適用した結果を報告する。評価実験の結果、83パターン中40パターンで提案手法の方がより高速に修正を行った。また、既存手法よりも5つ多く欠陥を修正した。平均修正時間が比較すると約20%の削減であった。

主な用語
デバッグ
プログラム自動修正
コード再利用
機械学習
遺伝的プログラミング
目次

1 まえがき 1

2 準備 3
2.1 バージョン管理システム 3
2.2 抽象構文木 4
2.3 プログラムのテスト 5

3 関連研究 6
3.1 欠陥箇所の限局 6
3.2 自動プログラム修正 6
3.2.1 再利用に基づく手法 6
3.2.2 プログラム意味論に基づく手法 8
3.2.3 修正パターンに基づく手法 9
3.2.4 自動プログラム修正手法の比較実験 9

4 ソースコードの変更予測手法 11
4.1 状態ベクトル 11
4.2 ソースコードの変更予測 12

5 提案手法 13
5.1 STEP1: データベースの構築 14
5.2 STEP2: プログラム文の推奨 14

6 実装 15
6.1 変更予測の実装 15
6.2 状態ベクトルの取得方法 15
6.3 欠陥修正コミットの特定 15

7 評価実験 16
7.1 実験対象 16
7.2 実験条件の統一 17
7.3 実験結果 17

8 妥当性の考察 28

9 まとめと今後の課題 29
謝辞 30
参考文献 31
図 目 次

1 バージョン管理システム 3
2 抽象構文木の例 4
3 GenProg の動作の流れ 7
4 状態ベクトルの例 11
5 ソースコードの変更予測手法の概要 12
6 提案手法の概要 13
7 提案手法の詳細 14
8 実験結果 .. 18
9 実験結果 (seed=0) 19
10 実験結果 (seed=1) 19
11 実験結果 (seed=2) 20
12 開発者と等価な修正バッチの例 (Math-5) 26
13 開発者と等価な修正バッチの例 (Math-22) 26
14 全てのテストケースは通過するが正しくないバッチの例 (Math-53) 26
15 全てのテストケースを通過するが正しくないバッチの例 (Math-31) 27
表 目 次

<table>
<thead>
<tr>
<th>章目</th>
<th>内容</th>
<th>頁碼</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Defects4J の詳細</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>実験結果 (seed=0)</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>実験結果 (seed=1)</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>実験結果 (seed=2)</td>
<td>25</td>
</tr>
</tbody>
</table>
1 まえがき

デバッグはソフトウェアの信頼性の向上のために避けることのできない作業である。ソフトウェア開発においてデバッグは多くの労力を必要とする作業であり、開発工数の半数以上を占めるとされる [1]。そのため、デバッグの支援を目的とした多くの研究が行われている。

デバッグを行う際には、欠陥の所在の特定を行い、適切な修正方法を決定し、修正を適用する。デバッグを支援するため、欠陥箇所の限局手法 [7] や欠陥の理解を支援する手法などが提案されている [8]。しかしこの方法の利用を前提としても、適切な修正方法の決定やプログラムの変更が必要である。そこで、近年欠陥箇所の特定と修正の適用を自動的に行う自動プログラム修正手法が提案されている。

自動プログラム修正手法の 1 つに、修正対象プログラムのプログラム文を用いて欠陥箇所を変更したプログラム（以下、変異プログラムと呼ぶ）の生成、評価を繰り返し行うことによりプログラムを修正する手法がある。この手法の 1 つとして、Weimer らが開発した GenProg がある [11]。GenProg は変異プログラムを複数生成し、伝達的プログラム文に基づいて変異プログラムの評価、選択を繰り返すことにより欠陥の修正を行う。欠陥箇所の変更には修正対象プログラムに存在するプログラム文を用いる。また、プログラムの修正が完了したらも、変異が加えられたプログラムが全てのテ스트を通じてどうかを判定する。

GenProg は 8 つのオープンソースソフトウェア（以下、OSS と呼ぶ）に対して適用され、105 個中 55 個の欠陥の修正に成功することによってその有効性を示した [11]。しかし、修正対象プログラム中に存在しないプログラム文が必要な欠陥は修正できないことや、修正に要する時間は修正成功の場合は平均 1 時間 36 分、修正失敗の場合は平均 11 時間 12 分と、修正に時間要する事が課題である。

GenProg は変異プログラムを生成する際に修正対象プログラムからプログラム文をランダムに取得して、欠陥箇所の変更に用いる。修正対象プログラムにはプログラム文が大量に存在するため、効率的修正を行えない場合が多い。

一方で、プログラムの構文情報と開発履歴を入力として、次の変更後にプログラムが持つ構文情報を出力するソースコードの変更予測手法が提案されている [31]。この手法によって得られる構文情報の予測結果と、予測対象の構文情報を比較することによって、次にどのような構文情報を持つプログラム文が追加される可能性が高いか予測できる。追加される可能性が高いプログラム文を変異プログラムの生成に用いることにより、修正に要する時間を大きく削減できると考えられる。

そこで本研究では、ソースコードの変更予測を用いて自動プログラム修正手法を高速化する手法を提案する。提案手法は修正対象プログラム、修正箇所の情報と修正対象プロジェクトの変更履歴を入力として、ソースコードの変更予測手法を用いて、追加されるプログラム要素を持つプログラム文を出力する。出力されたプログラム文は次の変更時に追加される可能性が高いプログラム文であるため、このプログラム文を変異プログラムの生成に用いることで、全てのテストを通じての変更箇所の変更を生成される変異プログラムの数が減少すると考えられる。そのためテストケースを実行する回数が減
り，自動プログラム修正を高速化できると考えられる。
また，提案手法を評価するために OSS の開発過程で発生した欠陥に対して提案手法と GenProg を適用した。評価実験の結果，提案手法は平均修正時間を約 20%短縮できていることを確認した。以下に，実験によって得られた結果をまとめると次のような。

・提案手法は GenProg に対して平均修正時間を約 20%削減し，特に GenProg が修正に長い時間を要する欠陥の修正を早く終えることを確認した

・提案手法と GenProg のどちらか一方のみによって修正された 17 個の欠陥のうち，11 個が提案手法によって，6 個が GenProg によって修正された。提案手法は GenProg よりも 5 つ多くの欠陥を修正した

・提案手法と GenProg の少なくともどちらか一方によって修正された 64 個の欠陥のうち，提案手法のほうが早く修正を終えたものは 29 個，GenProg のほうが早く修正を終えたものは 35 個であり，早く修正を終える欠陥の個数自体には大きな差は見られなかった

以降，2 章で準備について述べる。3 章で自動プログラム修正の関連研究について述べ，4 章で提案手法が用いるソースコードの変更予測手法について述べる。5 章で提案手法，6 章でその実装について述べる。7 章で提案手法の評価を行った結果並びに提案手法の評価実験について述べ，8 章で実験結果の考察を行う。9 章で妥当性の検討を述べ，10 章で本研究のまとめについて述べる。
2 準備

本章では、本論文で使用する用語について述べる。

2.1 バージョン管理システム

バージョン管理システムとは、ソースファイルやドキュメントなどのファイルに行われる変更を管理するシステムのことである。バージョン管理システムとは、ファイルの変更履歴を管理するシステムである。バージョン管理システムの概要を図1に示す。バージョン管理の主な機能は以下の2つである。バージョン管理システムには、CVS[2], Subversion[3], Git[4]などがあり、ソフトウェア開発において広く用いられている。

・変更情報の保持
バージョン管理システムは、管理対象となっているファイルがいつ、誰によって変更されたかを保持する。例えばソフトウェア開発の際には、ある機能を変更することにより、他の機能が意図通り動作しない場合がある。また、ソフトウェアの開発時に過去に発生した欠陥と似た欠陥が発生する場合がある。これらのような場合に、欠陥がある機能に対応したソースコードが変更前にどのような状態であったかを知ることができれば、欠陥の修正が容易となる。これ
```java
public int max(int x, int y) {
    if (x >= y) {
        return x;
    } else {
        return y;
    }
}
```

(a) ソースコード

(b) 抽象構文木

図2: 抽象構文木の例

- 変更情報の共有

バージョン管理システムは、各変更をリビジョンという単位で保持している。例えばソフトウェア開発では複数人でソフトウェアを開発する場合がある。バージョン管理システムは過去に誰がどのような変更を行ったかを保持しているため、開発者が他の開発者がどのような作業を行っているのか把握するのに役立つ。また、多くのバージョン管理システムには複数の開発者が同じファイルに変更を加えた場合、各開発者が行った変更を可視化し、統合を支援する機能が実装されている。

2.2 抽象構文木

抽象構文木とは、プログラムの構造を木構造で表したものである。図4(a), 図4(b)にプログラムとその抽象構文木を示す。図4(b)の抽象構文木は、15個のノードを持つ。抽象構文木の構造はプログラムの構造に対応しており、根にはメソッド宣言、葉には識別子という構造となっている。抽象構文
木の各ノードは型や実際の値、プログラムにおける位置情報を持っており、抽象構文木を解析することによりプログラム中の文や式の情報を取得することが可能である。

2.3 プログラムのテスト

プログラムのテストとは、プログラム全体やその一部の機能が入力に対して正しい出力を返すかを検証する作業のことである。現在多くのプログラムは開発者が手作業で作成しているが、作成されたプログラムが正しいという保証はない。プログラムのテストにより、プログラムが与えられた入力に対して正しい出力を行うかどうか確かめる事が可能である。以降、本論文では、テストを実行した結果、期待した結果が得られたテストを通過テスト、期待した結果を得られなかったテストを未通過テストと呼ぶ。
3 関連研究

3.1 欠陥箇所の限局

欠陥箇所の限局手法は、欠陥である可能性の高い箇所を開発者に提示する手法である。ここで、欠陥の可能性が低い箇所とは、与えられた入力に対して期待する結果を出力するプログラムを作成するために、変更すべき箇所のことである。現在多くの欠陥箇所の限局手法では、プログラムのテストの実行結果を利用して欠陥箇所を行う [7][8][9]。具体的には、プログラムのテストを実行して通過しないテストが存在する場合、通過テストと未通過テストの割合を用いて欠陥である可能性の高さを算出する。

上記した欠陥箇所手法は比較実験が行われている。Xie らの提案した手法はテストカバレッジ（プログラム中の全ての行のうち、テストケースによって実行されるものの割合）が 100% という仮定の下で、理論的に Tarantula[7], Ochiai[8] よりも少ない行数の調査で欠陥を発見できると報告されている。しかし Xie らの手法の理論的な保証にも関わらず、Le らは Ochiai[8] がもっとも効率よく欠陥箇所を限局することが約 200 個の欠陥への適用実験から分かったと報告している [10]。

また、上記した欠陥箇所の限局手法はほとんどの自動プログラム改正で変更する箇所の特定に用いられている。

3.2 自動プログラム修正

既存の自動プログラム修正手法は再利用に基づく手法 [11][12], プログラム意味論に基づく手法 [16][39], 修正パターンに基づく手法 [17][38][40] の 3 種類に分かれている。これらの手法は修正対象プログラムと失敗テストを含むテストスイートを入力として、修正が完了したプログラムを出力する。修正が完了したかどうかの判断には修正対象プログラムのテストスイートを用いる。以降では、それぞれの手法がどのように修正を行うか説明する。本節では各自動プログラム修正手法とその比較調査結果について述べる。

3.2.1 再利用に基づく手法

Weimer らは、再利用に基づく手法の 1 つである GenProg を提案した [11]。GenProg は修正対象プログラムのプログラム文を用いて欠陥の箇所を変更したプログラム（以降、変異プログラムと呼ぶ）の生成、評価、選択を遺伝的プログラミングに基づいて行う。プログラムの変更はプログラム文単位で行う。図 3 に GenProg の動作の流れを示す。プログラムの変更で行うのは以下の処理のうちの 1 つである。
図3: GenProgの動作の流れ

挿入 欠陥箇所の前または後ろにプログラム文の挿入を行う処理

削除 欠陥箇所を削除する処理

置換 欠陥箇所の削除と挿入を同時に行う処理

GenProgはOSSの開発過程で発生した欠陥に対して適用され、105箇所55箇所の欠陥を修正することにより、その有用性を示した[11]。しかしGenProgは、変異プログラムを評価する際に全てのテストケースを実行するため、計算コストが高い。そこで、Qiらは実行するテストケースに優先順位付けを行い、失敗したテストが現れた時点でテストの実行を打ち切ることにより高速にプログラムの修正を行うRRepairを提案した[12]。QiはRRepairを8つのOSSに対して適用し、GenProgよりも多くの欠陥を短い時間で修正に成功したことを報告している。しかし、RRepairは複数箇所の変更を必要とする欠陥を修正できない。

AEもGenProgを改良した手法である[20]。GenProgは意味的に等価なバッチを複数生成した場合でもテストを実行していた。AEはGenProgの修正過程において2つ目以降の等価なバッチが生成された場合にそのバッチのテスト実行をスキップする手法である。AEはGenProgよりも少ないテスト実行回数でバッチを生成できたと報告されている。

HDRRepairは開発者が行う修正と等価な修正が出来されやすくなるよう、GenProgを改良した手法
3.2.2 プログラム意味論に基づく手法

プログラム意味論に基づく手法である SemFix では、テストスイートを用いて欠陥箇所を特定し、欠陥箇所に関わる全ての欠陥であると特定された箇所が満たすべき制約を導出し、制約を満たすプログラム文を生成する [13]。Nguyen らはこの手法を 5 つのソフトウェアに対して適用し、GenProg よりも多くの欠陥の修正に成功したことを報告している。再利用に基づく手法は既存ソースコードに存在しない記述による修正を行えないことに対し、プログラム意味論に基づく手法は既存ソースコードに存在しない記述を用いた修正が可能であることが特徴である。この手法はテストスイートから欠陥の箇所が満たすべき論理式を導出し、その論理式を SMT ソルバを用いて解く [15]。SMT 問題は NP-完全の問題であるため、論理式によっては現実的な時間で解くことができない。

そこで SemFix を改良した DirectFix が提案された [16]。DirectFix は、SemFix よりも修正に時間を要するが、人が理解しやすい修正を生成できることと報告されている。

Nopol も SemFix を改良した手法である。Nopol は欠陥箇所が満たすべき制約を導出す際に記号化する文を絞り込むことにより、欠陥の修正を効率的に行えたと報告されている [14]。

Angelix は DirectFix を改良した手法である [39]。Angelix も欠陥箇所が満たすべき制約を導出する際に記号化する文を絞り込む。この手法は Nopol と似ているが、複数箇所の変更が必要な修正に対応している点が異なっている。評価実験により Angelix は DirectFix と同程度の時間が欠陥の修正を行えたと報告されている。

ACS は Angelix を改良した手法である。ACS の工夫点は次の 3 つである。1つ目は記号化した部分に式や値を割り当てる際にどの変数が使われるべきかを判断する基準を設け、その基準に従って変数をソートし、割当時に利用する。2つ目は修正対象の関数やメソッドに付属のドキュメント情報の利用である。例えば、ドキュメントに例外を吐くこと、その際に関係する変数が記述されており、かつその例外部分の記号への割り当てを行う場合、ドキュメントに書いてある記号を用いた割り当てを試みる。3つ目は変数と共に用いられやすい演算の適用である。ある if 文の条件式への記号割り当てを考えた場合を考える。記号に変数 hour を割り当てる事が決まっているときに hour に適用する演算としては < 12 や > 24 が適用されやすいと考えられる。演算の使い方のマイニングにより、ACS は変数名に対する適用されやすさを演算を優先順位付けする。これらの工夫により、Xi らは ACS によって出力される修正バッチが開発者が行うバッチと等価なバッチである可能性を高めた。既存のプログラム意味論に基づく手法 (Prophet [38], Angelix [39]) が開発者が行った修正と等価であった確率は 40% に満たない程度だったのに対し、ACS は 78.3% であったことを報告している。
3.2.3 修正パターンに基づく手法

修正パターンに基づく手法である PAR は Null チェックやオブジェクトの初期化など 10 個の修正パターンを定義しており、それらに基づいて修正を行う [17]。Kim らは 6 つの OSS への適用によって GenProg よりも多くの欠陥を修正することに成功し、理解しやすい修正を生成できたと報告している。SPR も修正パターンに基づく手法の 1 つである [40]。SPR は条件式の変更や値の変更、制御フローの導入など、6 つの修正パターンを定義してプログラムの修正を行う。PAR と比較して抽象的な修正パターンが定義されており、より多くの欠陥を修正可能なことや、条件式や値の探索を枝切りによって効率的に行うことが特徴である。Long らは SPR を 8 つの OSS に対して適用し、開発者が行った修正と等価な修正を GenProg よりも多く行えたと報告している。

Tan らは SPR が開発者が行う修正と似た修正をより高い確率で行えるよう改良した手法である mSPR を提案している [19]。Tan らは SPR が意味的な削除の操作を行うときに開発者にとって有用ではないパッチが出されることに着目した。意味的な削除とは、if 文やブロックの削除だけでなく、関数内への return 文の追加や、条件式中の識別子を操作する文の削除などのことである。mSPR は、SPR の修正過程における意味的な削除を禁止することにより、より開発者が作成するパッチに近いパッチが修正できたことを報告している。

Prophet はより高い確率で開発者が行った修正と等価な修正 (以下、正しい修正と呼ぶ) が可能となるよう、SPR を改良した手法である [38]。Prophet はまず OSS の開発履歴から欠陥修正コミットを抽出する。そして、修正パターンと修正箇所の周囲の構文情報から SPR によって生成された修正パッチが正しい修正かどうか判定する確率モデルを構築する。最後に構築したモデルを用いて生成されたパッチを並べ替え、もっとも正しい修正である可能性が高い順に出力する。Long らは OSS の開発過程で発生した 69 個の欠陥に対して Prophet を適用し、18 個の欠陥に対して正しい修正を行う事ができたと報告している。しかし、定義された修正パターンに当てはまらないものは修正できないことや、複数箇所の変更が必要な欠陥は修正できないことが課題である。

3.2.4 自動プログラム修正手法の比較実験

上記した 3 項で述べた自動プログラム修正手法は全てテストケースを用いてプログラムの修正を行っている。これらの手法は全てのテストケースを通じてプログラムの修正ができできたため、生成したパッチが開発者の望む仕様を満たしていない可能性がある。Qi らは GenProg[11]、RSRepair[12]、AE[20] が生成した約 200 個のパッチを目視で調査し、調査対象のツールが出力するほとんどのパッチは開発者が作成したパッチと異なり、開発者には受け入れられないパッチであることを示した [41]。

Long らは GenProg と SPR が生成するパッチの質に関する調査を行った [22]。Long らはこれらのツールが生成したパッチの中、どの程度が開発者が書いたパッチと等価で、どの程度がテストケースを通じて開発者が生成するパッチとは異なるのかを調査した。GenProg と SPR が調査の結果、ほとんどの欠陥について全てのテストを通じて生成するパッチは 1,000 個から 10,000 個と大量に存在し、開
発者が書いたバッチと意味的に等しいバッチはそのうち10個程度であった。Longらは出力されるバッチが正しいバッチかどうか見分ける方法が必要だと主張した。

本研究は、再利用に基づく手法を対象とした自動プログラム修正の高速化手法を提案する。この手法は複数箇所の変更を必要とする欠陥を修正可能であり、より多くのソースコードを再利用するることによって、より多くの欠陥を修正可能である。そのため修正に長い時間を要するという課題を解決できればより有用な手法となると考えられる。
4 ソースコードの変更予測手法

本章では，提案手法で用いるソースコードの変更予測手法[31]について述べる。

4.1 状態ベクトル

状態ベクトルとは，ソースコード中に存在するプログラム要素の数のベクトルである。ここでは，プログラム要素にはif文やreturn文，変数宣言，識別子名などが含まれる。ソースコード中の各プログラム要素の出現在数をカウントしたものが状態ベクトルとなる。

図4に状態ベクトルの例を示す。図4(a)のメソッドを状態ベクトルにしたもののが図4(b)である。図4(a)のメソッドには，修飾子，基本型名，メソッド宣言，識別子名，return文，if文，2項演算子，ブロックの8種類のノードが出現している。状態ベクトルは83個の要素を持つため，それらの内の8つの要素は1以上の値を持ち，残りの75要素が0となる。
4.2 ソースコードの変更予測

本研究で用いるソースコードの変更予測手法について説明する。この手法はプログラムの開発履歴と変更予測対象の状態ベクトルを入力として受け取り、修正が加えられた後の状態ベクトルを出力する。予測結果と予測対象の状態ベクトルの差分を取る事によって、次の中戦で追加、削除されるプログラム要素の情報を取得可能である。

図5にソースコードの変更予測手法の処理の流れを示す。ソースコードの変更予測手法では、まずはじめに対象プログラムの開発履歴を入力として予測モデルを構築する。構築する予測モデルは2種類である。1つ目が次の変更が大きいか小さいかを予測するモデル、2つ目が次の変更でどのプログラム要素が追加または削除されるかを予測するモデルである。次に1つ目のモデルに状態ベクトルを与え、次の変更が大きいか小さいかを予測する。次の方が小さいなら2つ目のモデルに状態ベクトルを与え、変更後の状態ベクトルを得る。ソースコードの変更予測手法は大きい変更に対して精度良く予測を行う事ができないため、次の変更が大きいなら状態ベクトルの予測を行わない。変更の大きさは、変更前の状態ベクトルのマンハッタン距離で表され、距離が決められた閾値以下なら変更が小さいとする。また予測アルゴリズムには、1つ目でk近傍法、2つ目に重回帰分析を用いている。

ソースコードの変更予測手法は2つのOSSに対して適用され、変更の大きさの閾値が3の場合に約70%の精度で変更後の状態ベクトルの全ての要素の予測に成功したと報告されている。

図5: ソースコードの変更予測手法の概要
5 提案手法

本研究では、自動プログラム修正を高速化する手法を提案する。提案手法の概要を図6に示す。提案手法は修正対象プログラム、修正箇所の情報と修正対象プロジェクトの変更履歴を入力として、追加されるプログラム要素を持つプログラム文を出力する。まず、ソースコードの変更予測手法を用いて、修正対象プログラムが次の変更でどのようなプログラム要素が追加されるかを予測する。そして、追加されるプログラム要素を持つプログラム文を修正対象プログラムから取得する。

提案手法では、次の変更で追加されるプログラム要素の予測や、追加されるプログラム要素を持つプログラム文の検索の際にソースコードやプログラム文をプログラム変更予測の出現回数を要素としたベクトル (以降では状態ベクトルと呼ぶ) として表現する。本編では提案手法の処理の内容について述べる。

提案手法の詳細を図7に示す。提案手法は以下の2つのSTEPに分かれている。

STEP1: データベースの構築

STEP2: プログラム文の推奨

STEP1 では修正対象プログラムからプログラム文とその状態ベクトルを抽出し、データベースに格納する。STEP2 では、修正対象プログラムと修正対象プロジェクトの変更履歴を入力として、追加されるプログラム要素を持つプログラム文の特定を行う。推薦されたプログラム文を自動プログラム修正に用いることにより全てのテストケースを通じて修正が行われる。修正されたプログラム文の数を減らし、全てのテストケースを通じて修正が行われるテストを減らす事により修正を高速化可能であると考える。以降では各STEPで行う処理について述べた後、実装について述べる。
図7: 提案手法の詳細

5.1 STEP1: データベースの構築

STEP1 では、修正対象プログラムから抽象構文木を構築し、プログラム文と状態ベクトルを対応付けてデータベースに格納する。まず、修正対象プログラムから抽象構文木を構築する。そして抽象構文木のノードの内、プログラム文のノードを根とする全ての部分木を辿り、全てのプログラム文とその状態ベクトルを得る。最後に得られた状態ベクトルをキー、プログラム文をバリューとしてデータベースに格納する。

5.2 STEP2: プログラム文の推奨

STEP2 では、修正プログラムの状態ベクトル、修正対象プロジェクトの変更履歴を入力として、プログラム修正のために追加されるプログラム要素を持つプログラム文の推奨を行う。

まず、ソースコードの変更予測手法を用いてプログラムの状態ベクトルと変更履歴から、状態ベクトルが次の変更でどのような状態ベクトルになるかを予測する。その後、修正対象プログラムの次の状態ベクトルと元の状態ベクトルとの差分をとることにより、次の変更で追加されるプログラム要素の状態ベクトルを得る。最後に、追加されるプログラム要素の状態ベクトルをキーとして STEP1 で構築したデータベースに対して問い合わせを行うことにより、次の変更で追加されるプログラム文の集合を取得可能である。
6 実装

本節では提案手法の詳細な実装方法について述べる。実験ツールは、GenProg の Java 実装である jGenProg[42] を一部変更して実装した。

6.1 変更予測の実装

提案手法は jGenProg が修正対象プログラムから抽出候補を区別し、変異プログラムを生成する部分を変更して実装した。提案手法は jGenProg に組み込むため、本研究においてはソースコードの変更予測手法の実装は R を用いた数上からの実装[32] とは異なり、Weka[33] を用いて実装した。変更予測アルゴリズムには、変更の大きさ予測には k 近傍法[34]、次の変更後の状態ベクトルの予測には線形回帰[35] を用いた。

実験ツールは Git[4] でバージョン管理されたソフトウェアを選択する。変更履歴の取得には JGit[37] を用いた。

6.2 状態ベクトルの取得方法

状態ベクトルはソースコードから抽象構文木を構築して根から葉まで辿り、各プログラム要素の出現回数をカウントしたものである。抽象構文木の構築には Eclipse JDT(Java Development Tools)[36] を用いた。JDT は抽象構文木の構築や操作が可能であり、各プログラム要素をあらわす 83 種類のノードが定義されている。そのため状態ベクトルの次元は 83 となる。また提案手法の STEP1 では、修正対象プログラムに存在する全てのプログラム文を取得する必要がある。これは抽象構文木のノードのうち、JDT の Statement クラスのサブクラスであるノードを根とする全ての部分木を辿る事により取得した。

6.3 欠陥修正コミットの特定

提案手法の STEP2 では、ソースコードの変更予測手法を用いて次の変更でプログラムの状態ベクトルがどうなるかを予測する。提案手法では、ソースコードの変更予測手法を欠陥の修正に用いるため、変更履歴から欠陥修正に関する変更のみを抽出して変更予測に用いる。これにより、次の欠陥の修正でどのような状態ベクトルになるかを予測可能である。欠陥の修正の特定はコミットコメントが“bugfix”、“fix”などの欠陥の修正を表すキーワードを含んでいるかどうかによって判断した。
7 評価実験

本実験の目的は、ソースコードの変更予測手法を用いて、自動プログラム修正を高速化できるかどうかを確かめることである。そのため本実験では、実際の OSS の開発過程で生じた 106 個の欠陥に対して GenProg と提案手法を適用する。修正に用いるプログラム文をランダムに選択した場合と提案手法によって推奨されたプログラム文を用いた場合で修正時間の比較を行う。また、GenProg は修正に用いるプログラム文だけでなく、修正箇所も欠陥限局された箇所の中からランダムに選択するため、修正時間のばらつきが大きい。同じ実験対象であっても実行のたびに修正時間やパッチが生成されるかどうかが異なるため、実験は各実験対象について 3 回行った。

実験は 2.40GHz Intel Xeon CPU(2 プロセッサ、計 16 コア)、メモリサイズ 128GB の計算機に Docker コンテナを 7 個同時に立ち上げて行った。各コンテナには CPU コアを 2 つ、メモリを 18GB 割り当てた。タイムアウトは 3 時間とした。また、実験に用いるデータは全て SSD 上に配置した。

GenProg など、全てのテストケースを通したかどうかで修正が成功したかを判断する自動プログラム修正手法は、開発者の意図とは異なる修正パッチを出力する事があると知られている [41]。そのため GenProg、提案手法によって行われた修正が正しい修正であったかどうかについても調査する。実験対象が多いため、正しい修正であったかどうかの調査は 1 回目の実行で出力されたパッチに対してのみ行う。修正が正しいかどうかは GenProg や提案手法が開発者が行った修正と同じ修正かどうかにより判定する。正しい修正に関する情報は Defects4J[25] より修正前のリビジョンと修正後のリビジョンを取得し、差分を取ることにより得た。各修正パッチが正しいかどうかの判定は目視で行った。

7.1 実験対象

実験には Defects4J[25] を用いる。Defects4J とは、Java で記述された 5 つの OSS(JFreechart[26], Closure compiler[27], Apache Commons-Lang[28], Apache Commons-Math[29], Joda-time[30]) の開発過程で発生した 357 個の欠陥を収集したものである。本実験では Defects4J で収集された欠陥の内、Apache Commons-Math の 106 個の欠陥を実験対象とする。Defects4J の詳細を表 1 に示す。Defects4J に収集されている欠陥は次の特徴を持つ。

<table>
<thead>
<tr>
<th>程格</th>
<th>欠陥数</th>
<th>総行数 [LOC]</th>
<th>テスト数</th>
</tr>
</thead>
<tbody>
<tr>
<td>JFreeChart</td>
<td>26</td>
<td>96,000</td>
<td>2,205</td>
</tr>
<tr>
<td>Closure Compiler</td>
<td>133</td>
<td>90,000</td>
<td>7,927</td>
</tr>
<tr>
<td>Commons Math</td>
<td>106</td>
<td>85,000</td>
<td>3,602</td>
</tr>
<tr>
<td>Joda-Time</td>
<td>27</td>
<td>28,000</td>
<td>4,130</td>
</tr>
<tr>
<td>Commons Lang</td>
<td>65</td>
<td>22,000</td>
<td>2,245</td>
</tr>
</tbody>
</table>
・課題管理システムで課題と関連付けられており、コミットメッセージで修正されたと述べられている

・修正が1つのコミットで完結している

・Javaのソースコードの変更により修正されている(設定ファイルやテストファイルに関する欠陥は含まない)

・修正前には失敗テストが存在し、修正後には全てのテストを通する

7.2 実験条件の統一

GenProgは修正箇所潰入候補の選択などにランダム値を用いているため、同じ欠陥の修正であっても実行時に乱数生成器に与えるシード値によって修正時間が大きく異なる。また同じシード値を乱数生成器に与えたとしても提案手法は潰入候補の選択にランダム値を用いないため、変異プログラムを同じ数だけ生成したとしても、GenProgと提案手法で乱数を取得する回数は異なる。そのため各変異プログラムの修正箇所や適用する操作は異なってしまう。GenProgと提案手法をより厳密に比較するため、本実験では乱数生成器を修正箇所用とその他用に分けることにより、同じシード値を乱数生成器に与えて変異プログラムを同じ数だけ生成した場合に、同じ箇所に同じ操作が加わるよう実装した。

7.3 実験結果

実験結果を図8、図9、図10、図11に示す。図8の散布図に示されている実験結果は、106個の欠陥に対する3回の実験のうち、提案手法を用いなかった場合と用いた場合でどちらも修正に成功した場合の実験結果を示している。グラフは対数スケールで表している。縦軸は提案手法の修正時間、横軸はGenProgの修正時間で示している。修正時間の単位は秒であり、全てのテストケースを通過する変異プログラムが生成されるまでにかかった時間を示している。グラフ中の丸は1つの欠陥に対する修正時間で示している。青色の対角線上に丸があれば提案手法とGenProgの修正時間が等しいことを示し、青線よりも右側に丸がある場合はGenProgよりも提案手法のほうが早く修正を終えたことを示す。青線よりも左側に丸がある場合は、提案手法よりもGenProgのほうが早く修正を終えたことを示す。赤線は実験結果の回帰直線である。

図8から、GenProgにおいて潰入候補を選択する際に提案手法が提案するプログラム文を用いた場合に、修正時間に差がある63パターン、29パターンで提案手法を用いなかった場合よりも高速に修正を行った。このことから修正を早く終えたパターンの数で比較すると提案手法とGenProgはほぼ同数である。しかし、提案手法を用いない場合、用いた場合両方で修正に成功した欠陥に対する平均修正時間を比較すると、提案手法を使わない場合は1,379.7秒、提案手法を用いた場合は1,127.8秒
秒であり、提案手法によって平均修正時間を18.3%削減した。図8の回帰直線に注目すると、修正時間が700秒以内ではGenProgのほうが早く修正を終えるが、700秒を超えてからは提案手法のほうが大幅に早く修正を終える傾向があることが分かる。このことから提案手法は特にGenProgが修正に時間がかかる対象の高速化に有用であると言える。

図9、図10、図11に、GenProgと提案手法の少なくともどちらか一方が修正に成功した場合の実験結果を示している。図9、図10、図11は順に1回目の実行結果、2回目の実行結果、3回目の実行結果を示している。縦軸は修正時間、横軸は実験対象を示している。青色はGenProgの実験結果、赤色は提案手法の実験結果を示している。各実験対象についての色はどちらの手法が早く修正を終えたかを示している。網状のマスクがかかった実験結果はタイムアウトした実験結果を示している。図9、図10、図11において、一方のみが修正できた実験結果に着目すると、GenProgは6個、提案手法は11個であり、提案手法はGenProgに比べて5個多くの欠陥の修正に成功した。
图 9: 实验结果 (seed=0)

图 10: 实验结果 (seed=1)
表 2, 表 3, 表 4 に図 9, 図 10, 図 11 の詳細な実験結果を示す。提案手法は、推薦されたプログラム文を用いて修正が完了しなかった場合に GenProg と同様、プログラム文をランダムに取得して修正に用いる。各表には修正時間の数値データに加え、5 列目に提案手法で行われた修正が提案手法によって推奨されたプログラム文かどうかを示している。Yes なら提案手法が推奨したプログラム文によって全てのテストケースを通じたプログラムが生成され、修正に成功したことを示す。No なら、GenProg と同様にランダムに選択されたプログラム文により修正に成功したことを示す。- はどちらかが修正に成功しなかった、プログラム文の削除により修正に成功した、またはソースコードの変更予測の際に次の変更が大いと予測された場合を示している。

全ての実験結果のうち、推薦されたプログラム文を用いて修正に成功した実験結果の修正時間に注目する。推薦されたプログラム文によって修正に成功した実験結果のうち提案手法のほうが早く修正を終えたものは 28 個、GenProg のほうが早く修正を終えたものは 14 個であり、66.7%の欠陥に対して提案手法手法が早く修正を終えた。また、修正時間がほぼ変わらない大きく変化した場合について考察するため、GenProg と提案手法の修正時間に 100 秒以上の差がある 23 個の実験結果について考える。それらの実験結果について、提案手法のほうが早く修正を終えたものは 18 個、GenProg の
ほうが早く修正を終えたものは5個であり、提案手法が推奨したプログラム文によって修正を終えた場合に、提案手法は78.3%の欠陥に対して修正時間を大きく短縮するということが分かった。

GenProg を含めた、テストの通過状態を用いた現在の自動プログラム修正手法が行う修正は、全てのテストを通過するバッチを出力する方法が指摘されている。そのため、提案手法によって行われた修正が開発者が行う修正と意味的に等価かどうかについて調査した。調査は目視で行った。また、3回行った実験のうち1回の実験結果について調査を行った。表2の3行目、6行目の正しいバッチという項目は、**GenProg** が提案手法によって行われた修正が開発者が行う修正と等価かどうかを示している。調査の結果、**Math-5** と **Math-22** に対して提案手法、**GenProg** 共に正しいバッチを生成できたことが分かった。

図12に提案手法と **GenProg** が **Math-5** に対して生成したバッチを示す。**Math-5** では図12のif文内で返す値がINFであった為に未通過テストが存在していた。提案手法、**GenProg** によりif文内容から返す値をINFに変更するバッチが生成され、修正に成功した。また、バッチは開発者が作成したバッチと同じであった。

図13に提案手法と **GenProg** が **Math-22** に対して生成したバッチを示す。**Math-22** では図13のisSupportLowerBoundInclusiveメソッドとisSupportUpperBoundInclusiveメソッド内で返すboolean値が異っていた。そのためこの欠陥の修正には複数箇所の変更を正しく行う必要がある。提案手法、**GenProg** がメソッドからの返す値の正しいプログラム文に変更するバッチが生成し修正に成功した。但し提案手法、**GenProg** が生成したバッチは、プログラムの出力としては開発者のものとは同じもの、Betaクラス内のlogBetaメソッド内に不要なdouble型の変数mを追加していた。

上記した2つの例から、自動プログラム修正により全てのテストを通過するバッチを生成することは可能であり、開発者が作成するバッチと等価なバッチを生成する事ができる事が分かる。

Math-5、**Math-22** 以外の欠陥に対して生成されたバッチは全て開発者が生成したバッチとは異なるバッチであった。全てのテストを通過するが必要な機能が削除されているバッチの例を2つ示す。図14に **Math-53** に対して開発者が作成したバッチを示す。**Math-53** でComplexクラスのaddメソッドにおいて、引数rhsがNaNである場合の処理が不足しており、テストに失敗していた。開発者はこの欠陥に対してComplexクラスのaddメソッド内にメソッドの定義rthsがNaNかどうかをチェックする処理を記述した。そして、提案手法が作成したバッチでは、MathUtils.checkNotNullメソッドの呼び出しを削除し、開発者と同様の処理を追加していた。その為、テストは通過するが、引数がnullのときにすべき処理が削除されている。

図15(a)に **Math-31** に対して開発者が作成したバッチを、図15(b)に **GenProg** が生成したバッチを示す。 **Math-31** ではContinuedFractionクラスの開発者が変更した3箇所に欠陥があり、テストケースの中の1つがConvergenceExceptionの例外を吐いて失敗していた。**GenProg** では開発者が変更した3箇所を変更するのではなく、テストが失敗した原因であるConvergenceExceptionのthrow文を削除し、return文で置き換えた。これにより必要な機能を削除してテストを通通するバッチを生成する場合がある。
GenProg が上記したバッチを生成することは Long らが報告している内容と一致する [22]。一方で、Le らは自動プログラム修正手法によって生成されたバッチを並び替え、開発者によって生成されたバッチである可能性が高いバッチを生成する手法を提案している [24]。本研究で提案した手法を用いてより多くのバッチを生成し、HDRepair [24] と組み合わせる事により、より多くの実験対象に対して、より早く開発者が作成するバッチと等価なバッチを生成できるようになると考える。
<table>
<thead>
<tr>
<th>修正対象</th>
<th>GenProg</th>
<th>提案手法</th>
<th>差 [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math-2</td>
<td>196</td>
<td>No</td>
<td>1,350</td>
</tr>
<tr>
<td>Math-5</td>
<td>268</td>
<td>Yes</td>
<td>325</td>
</tr>
<tr>
<td>Math-7</td>
<td>4,588</td>
<td>No</td>
<td>2,463</td>
</tr>
<tr>
<td>Math-8</td>
<td>218</td>
<td>No</td>
<td>218</td>
</tr>
<tr>
<td>Math-20</td>
<td>1,628</td>
<td>No</td>
<td>3,082</td>
</tr>
<tr>
<td>Math-22</td>
<td>412</td>
<td>Yes</td>
<td>298</td>
</tr>
<tr>
<td>Math-28</td>
<td>152</td>
<td>No</td>
<td>174</td>
</tr>
<tr>
<td>Math-31</td>
<td>8,374</td>
<td>No</td>
<td>666</td>
</tr>
<tr>
<td>Math-40</td>
<td>5,286</td>
<td>No</td>
<td>596</td>
</tr>
<tr>
<td>Math-44</td>
<td>2,976</td>
<td>No</td>
<td>351</td>
</tr>
<tr>
<td>Math-49</td>
<td>432</td>
<td>No</td>
<td>62</td>
</tr>
<tr>
<td>Math-50</td>
<td>77</td>
<td>No</td>
<td>41</td>
</tr>
<tr>
<td>Math-53</td>
<td>28</td>
<td>No</td>
<td>153</td>
</tr>
<tr>
<td>Math-56</td>
<td>–</td>
<td>No</td>
<td>8,091</td>
</tr>
<tr>
<td>Math-60</td>
<td>3,225</td>
<td>No</td>
<td>2,996</td>
</tr>
<tr>
<td>Math-70</td>
<td>175</td>
<td>No</td>
<td>110</td>
</tr>
<tr>
<td>Math-71</td>
<td>5,003</td>
<td>No</td>
<td>7,956</td>
</tr>
<tr>
<td>Math-73</td>
<td>21</td>
<td>No</td>
<td>403</td>
</tr>
<tr>
<td>Math-74</td>
<td>7,962</td>
<td>No</td>
<td>–</td>
</tr>
<tr>
<td>Math-78</td>
<td>–</td>
<td>No</td>
<td>307</td>
</tr>
<tr>
<td>Math-80</td>
<td>141</td>
<td>No</td>
<td>146</td>
</tr>
<tr>
<td>Math-81</td>
<td>735</td>
<td>No</td>
<td>302</td>
</tr>
<tr>
<td>Math-82</td>
<td>376</td>
<td>No</td>
<td>534</td>
</tr>
<tr>
<td>Math-84</td>
<td>3,407</td>
<td>No</td>
<td>267</td>
</tr>
<tr>
<td>Math-85</td>
<td>25</td>
<td>No</td>
<td>23</td>
</tr>
<tr>
<td>Math-95</td>
<td>719</td>
<td>No</td>
<td>619</td>
</tr>
<tr>
<td>Math-103</td>
<td>–</td>
<td>No</td>
<td>1,767</td>
</tr>
</tbody>
</table>

平均 1,672.3 – 1,005.9 – -666.4
表 3: 実験結果 (seed=1)

<table>
<thead>
<tr>
<th>修正対象</th>
<th>GenProg 修正時間 [sec]</th>
<th>提案手法 修正時間 [sec]</th>
<th>推薦された文</th>
<th>差 [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math-2</td>
<td>4,845</td>
<td>5,854</td>
<td>No</td>
<td>1,009</td>
</tr>
<tr>
<td>Math-5</td>
<td>–</td>
<td>249</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Math-7</td>
<td>–</td>
<td>1,244</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Math-8</td>
<td>246</td>
<td>267</td>
<td>No</td>
<td>21</td>
</tr>
<tr>
<td>Math-20</td>
<td>3,018</td>
<td>1,758</td>
<td>No</td>
<td>-1,260</td>
</tr>
<tr>
<td>Math-22</td>
<td>712</td>
<td>1,091</td>
<td>Yes</td>
<td>379</td>
</tr>
<tr>
<td>Math-28</td>
<td>229</td>
<td>299</td>
<td>Yes</td>
<td>70</td>
</tr>
<tr>
<td>Math-31</td>
<td>–</td>
<td>265</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Math-32</td>
<td>–</td>
<td>9,688</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Math-40</td>
<td>368</td>
<td>1,811</td>
<td>Yes</td>
<td>1,443</td>
</tr>
<tr>
<td>Math-44</td>
<td>413</td>
<td>137</td>
<td>Yes</td>
<td>-276</td>
</tr>
<tr>
<td>Math-49</td>
<td>199</td>
<td>172</td>
<td>Yes</td>
<td>-27</td>
</tr>
<tr>
<td>Math-50</td>
<td>47</td>
<td>5</td>
<td>Yes</td>
<td>-42</td>
</tr>
<tr>
<td>Math-53</td>
<td>45</td>
<td>293</td>
<td>No</td>
<td>248</td>
</tr>
<tr>
<td>Math-60</td>
<td>1,158</td>
<td>1,936</td>
<td>No</td>
<td>778</td>
</tr>
<tr>
<td>Math-64</td>
<td>6,295</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Math-70</td>
<td>91</td>
<td>147</td>
<td>Yes</td>
<td>56</td>
</tr>
<tr>
<td>Math-71</td>
<td>6,239</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Math-73</td>
<td>135</td>
<td>423</td>
<td>No</td>
<td>288</td>
</tr>
<tr>
<td>Math-74</td>
<td>3,511</td>
<td>4,720</td>
<td>No</td>
<td>1,209</td>
</tr>
<tr>
<td>Math-78</td>
<td>11</td>
<td>21</td>
<td>Yes</td>
<td>10</td>
</tr>
<tr>
<td>Math-80</td>
<td>270</td>
<td>1,912</td>
<td>No</td>
<td>1,642</td>
</tr>
<tr>
<td>Math-81</td>
<td>5</td>
<td>5</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>Math-82</td>
<td>1,182</td>
<td>1,384</td>
<td>No</td>
<td>202</td>
</tr>
<tr>
<td>Math-84</td>
<td>5,151</td>
<td>3,033</td>
<td>No</td>
<td>-2,118</td>
</tr>
<tr>
<td>Math-85</td>
<td>94</td>
<td>110</td>
<td>No</td>
<td>16</td>
</tr>
<tr>
<td>Math-95</td>
<td>82</td>
<td>309</td>
<td>Yes</td>
<td>227</td>
</tr>
<tr>
<td>Math-103</td>
<td>–</td>
<td>964</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>平均</td>
<td>1,038.7</td>
<td>1,223.2</td>
<td>–</td>
<td>184.5</td>
</tr>
<tr>
<td>修正対象</td>
<td>GenProg 修正時間 [sec]</td>
<td>提案手法 修正時間 [sec]</td>
<td>推薦された文差 [sec]</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Math-2</td>
<td>578</td>
<td>2,924</td>
<td>No 2,346</td>
<td></td>
</tr>
<tr>
<td>Math-5</td>
<td>348</td>
<td>516</td>
<td>Yes 168</td>
<td></td>
</tr>
<tr>
<td>Math-8</td>
<td>276</td>
<td>280</td>
<td>Yes 4</td>
<td></td>
</tr>
<tr>
<td>Math-12</td>
<td>8,066</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Math-20</td>
<td>996</td>
<td>288</td>
<td>No -708</td>
<td></td>
</tr>
<tr>
<td>Math-22</td>
<td>1,016</td>
<td>624</td>
<td>Yes -392</td>
<td></td>
</tr>
<tr>
<td>Math-24</td>
<td>609</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Math-28</td>
<td>110</td>
<td>128</td>
<td>No 18</td>
<td></td>
</tr>
<tr>
<td>Math-31</td>
<td>–</td>
<td>701</td>
<td>Yes –</td>
<td></td>
</tr>
<tr>
<td>Math-40</td>
<td>312</td>
<td>3,994</td>
<td>Yes 3,682</td>
<td></td>
</tr>
<tr>
<td>Math-44</td>
<td>7,578</td>
<td>352</td>
<td>Yes -7,226</td>
<td></td>
</tr>
<tr>
<td>Math-49</td>
<td>80</td>
<td>68</td>
<td>Yes -12</td>
<td></td>
</tr>
<tr>
<td>Math-50</td>
<td>50</td>
<td>5</td>
<td>No -45</td>
<td></td>
</tr>
<tr>
<td>Math-53</td>
<td>23</td>
<td>108</td>
<td>No 85</td>
<td></td>
</tr>
<tr>
<td>Math-56</td>
<td>–</td>
<td>9,218</td>
<td>Yes –</td>
<td></td>
</tr>
<tr>
<td>Math-60</td>
<td>2,166</td>
<td>2,282</td>
<td>Yes 116</td>
<td></td>
</tr>
<tr>
<td>Math-64</td>
<td>7,831</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Math-70</td>
<td>64</td>
<td>52</td>
<td>Yes -12</td>
<td></td>
</tr>
<tr>
<td>Math-71</td>
<td>4,437</td>
<td>1,970</td>
<td>No -2,467</td>
<td></td>
</tr>
<tr>
<td>Math-73</td>
<td>23</td>
<td>537</td>
<td>No 514</td>
<td></td>
</tr>
<tr>
<td>Math-78</td>
<td>74</td>
<td>56</td>
<td>Yes -18</td>
<td></td>
</tr>
<tr>
<td>Math-80</td>
<td>129</td>
<td>182</td>
<td>No 53</td>
<td></td>
</tr>
<tr>
<td>Math-81</td>
<td>443</td>
<td>648</td>
<td>Yes 205</td>
<td></td>
</tr>
<tr>
<td>Math-82</td>
<td>873</td>
<td>834</td>
<td>Yes -39</td>
<td></td>
</tr>
<tr>
<td>Math-84</td>
<td>9,263</td>
<td>4,578</td>
<td>No -4,685</td>
<td></td>
</tr>
<tr>
<td>Math-85</td>
<td>88</td>
<td>101</td>
<td>Yes 13</td>
<td></td>
</tr>
<tr>
<td>Math-95</td>
<td>482</td>
<td>415</td>
<td>Yes -67</td>
<td></td>
</tr>
<tr>
<td>Math-103</td>
<td>–</td>
<td>3,541</td>
<td>No –</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>1,278.7</td>
<td>1,064.5</td>
<td>– -214.2</td>
<td></td>
</tr>
</tbody>
</table>
図12: 開発者と等価な修正パッチの例 (Math-5)

図13: 開発者と等価な修正パッチの例 (Math-22)

図14: 全てのテストケースは通過するが正しくないパッチの例 (Math-53)
(a) 開発者のバッチ

(b) 提案手法が生成したバッチ

図 15: 全てのテストケースを通過するが正しくないバッチの例 (Math-31)
8 妥当性の脅威

実験対象

本研究では提案手法を Java で記述された OSS の開発過程で発生した 106 個の欠陥に対して適用した。他の実験対象は Java 以外の言語で書かれたプログラムを修正対象とした場合に異なった結果が得られる可能性がある。

欠陥修正コミット

提案手法で欠陥修正コミットを特定する際に欠陥の修正に関連した“bug”や“fix”、“bugfix”などのキーワードを含むコミット全てを欠陥修正コミットとした。そのためキーワードを含むが実際には欠陥修正コミットではないコミットを欠陥修正コミットとして扱っている可能性がある。

jGenProg における抽象構文木

jGenProg では修正対象プログラムの抽象構文木を Eclipse JDT[36] ではなく独自の形式で扱っている。jGenProg における抽象構文木では、プログラム要素を約 40 種類しか定義していない。提案手法は Eclipse JDT を用いているため予測の精度に影響は考えにくいが、予測結果を用いたプログラム文の挿入・削除の際により多くプログラム文が推奨されてきている可能性がある。JDT を用いて jGenProg を再実装した場合に異なった結果が得られる可能性がある。

機械学習ライブラリ

本研究では、Weka のライブラリを用いて学習モデルを構築している。Weka は学習モデルを構築する際に様々なオプションを設定する事ができる。本研究では、デフォルト設定のまま学習モデルを構築した。異なったオプションや他の機械学習ライブラリを用いた場合に本研究で得られた結果と異なる結果が得られる可能性がある。
9 まとめと今後の課題

本研究では、ソースコードの再利用に基づく自動プログラム修正手法を高速化するため、ソースコードの変更予測手法を用いた自動プログラム修正の高速化手法を提案した。既存のソースコードの再利用に基づく自動プログラム修正手法は数値値を変更するプログラム文を修正対象のソースコードからランダムに選択する。プログラム文は修正対象中に大量に存在するためこれは非効率である。そこで提案手法では、ソースコードの変更予測を用いて次に追加されるプログラム要素を特定し、そのプログラム要素を持つプログラム文を修正に用いる。実際の OSS 開発で発生した欠陥に対して提案手法と既存手法を適用した結果から、提案手法は平均修正時間を約 20% 短縮できていることを確認した。また、どちらか一方のみによって修正された 17 個の欠陥を着目すると、11 個が提案手法によって、6 個が GenProg によって修正されており、提案手法は GenProg よりも 5 つ多くの欠陥を修正した。

今後の課題は以下の通りである。

- 異なるプログラムの開発過程で発生した欠陥に対して実験を行う
- 機械学習ライブラリの設定を変更して実験を行う
- jGenProg の抽象構成文構築部分を EclipseJDT に変更して実験を行う
- 提案手法が GenProg よりも早く修正に成功した欠陥は小さい変更によって修正可能であったのかどうかの調査
謝辞

本研究を行うにあたり、理解あるご指導を賜り、常に励まして頂きました楠本真二教授に心から感謝申し上げます。

本研究の全過程を通し、終始熱心かつ丁寧なご指導を頂きました肥後芳樹助教に深く感謝申し上げます。

本研究に関して、有益かつ的確なご助言を頂きました松本真佑助教授に深く感謝申し上げます。

その他、楠本研究室の皆様のご助言、ご協力に心より感謝致します。

最後に、本研究に至るまでに、講義などでお世話になりましたコンピュータサイエンス専攻の諸先生方に、この場を借りて心から御礼申し上げます。
参考文献

[34] D. W. AHA, D. Kibler and M. K. Albert, "Instance-Based Learning Algorithms,”
https://pdfs.semanticscholar.org/395b/2e9bd23e56394b61b8deab2e0cbe9718f7fd.pdf

the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

Symbolic Analysis,"In Proceedings of the 38th International Conference on Software Engineering,

10th Joint Meeting on Foundations of Software Engineering, pp.166–178, Bergamo, Italy, August

[41] Z. Qi, F. Long, S. Achour and M. Rinard, "An Analysis of Patch Plausibility and Correct-
ness for Generate-and-validate Patch Generation Systems," In Proceedings of the 18th Interna-
http://dl.acm.org/citation.cfm?id=2771791

the 25th International Symposium on Software Testing and Analysis, Saarbrü,Germany, July