
Evaluating Automated Program Repair
Using Characteristics of Defects

Haruki Yokoyama, Yoshiki Higo and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan

Email: {y-haruki, higo, kusumoto} @ist.osaka-u.ac.jp

Abstract—Debugging is a cost-consuming activity and reducing
debugging cost is mandatory. Automated program repair (APR)
is a debugging support technique which fixes a defect from a
buggy program and a test suite. Recently, many APR techniques
have been proposed. The performance of APR techniques are
mainly evaluated by the number of fixed defects. Although the
difficulties of fixing defects differ from defects, there are few
evaluations using characteristics of defects. In this research, we
extracted characteristics of defects from defect reports such as
priority and isReopened, and we evaluated the performance of
three APR tools against 138 defects in open source Java projects.
The investigation revealed that jGenProg and Nopol were able
to fix defects with high priority at a high rate. In addition,
we evaluated the performance of the APR tools from various
viewpoints such as fixing time and fixing LOCs.

I. INTRODUCTION

In software development, debugging is a cost-consuming
activity. There is a report that an estimated debugging cost is
approximately 300 billion US dollars a year in the world, and
about half of programming time is spent on debugging [1].
Thus, reducing debugging cost is mandatory. In recent years,
research on automated program repair (APR) has been actively
carried out [2]–[9].

APR takes a buggy program and a test suite as its inputs
and generates a fixed version of the program, which passes all
the given tests. The performance of APR is mainly evaluated
by the number of fixed defects. Additional evaluations such
as fixing time [2], readability [10], or patch simplicity [11]
have been carried out. Although the difficulties of fixing
defects differ from defects, there are few evaluations using
characteristics of defects.

In this research, we evaluate three APR tools using the
characteristics of defects. We use the following characteristics
obtained from defect reports in JIRA1 and Github2.

• priority
• isReopened

When a defect has high priority, developers need to fix it as
soon as possible. Reopened means that fixing the defect has
failed at least once. If the APR tools can fix high-priority
and/or reopened defects, it will significantly contribute to
developers.

We manually identified priority and isReopened for 138
defects, which are included in Defects4J [12] dataset, by

1https://ja.atlassian.com/software/jira
2https://help.github.com/articles/about-issues

investigating their defect reports in JIRA and Github. Fur-
thermore, we associated the defects with their success/failure
of three APR tools: jGenProg [5], jKali [5], and Nopol [6].
We investigated the relationship between the performance of
the APR tools and the characteristics of defects. The main
contributions of this research are as follows.

• We revealed that jGenProg and Nopol fixed many high-
priority defects.

• We revealed that Nopol was not able to fix reopened
defects at all.

• We evaluated the performance of APR tools from various
viewpoints such as fixing time and fixing LOCs.

The remainder of this paper is organized as follows: Section
II introduces bug tracking systems and automated program
repair as our research background, describes our research
purpose, and shows our research questions. Section III de-
scribes the investigation method and our investigation targets.
Section IV shows our findings and our answers to the research
questions. Section V discusses the results of the investigation
and describes additional investigation. Section VI describes
the threats to internal and external validity in the investigation.
Finally, we conclude this paper and describe our future works
in section VII.

II. BACKGROUND

A. Bug Tracking System

Bug tracking system (BTS) tracks debugging process of
reported defects in software development. BTS allows unified
management of defects, developer assignment to defects, and
recording discussion for defects. In BTS, a defect is registered
as a defect report. A defect report includes the following
various records:

• a title of a given defect,
• detailed description of a given defect,
• a reporter of a given defect,
• developers assigned to a given defect,
• a life cycle of a given defect, and
• priority of a given defect.

When a given defect has high priority, developers need to fix
it as soon as possible. A defect report has a life cycle, and all
events related to a given defect are recorded in it. For example,
events contain followings:

• changing status of the defect report,
• assigning developers to the defect, and

Open Resolved Closed

Reopened

Fig. 1. A Simplified Life Cycle of a Refect Report on JIRA

• recording commits for the defect.
Figure 1 shows a simplified life cycle of a defect report in

JIRA. Usually, a defect report is opened by a reporter or devel-
opers, resolved in several ways such as “Fixed”, “Duplicate”,
and “Won’t Fix”, and closed when resolving is confirmed by
the reporter or the developers. However, if there is a problem
in resolving or if the same problem is also found again after
getting closed, the defect report gets reopened. If a defect
report gets reopened, developer’s workloads get increased and
some users of the software may become untrusting it [13].
There is a research study that reopened defect reports have a
longer time to be closed than non-reopened ones [14].

B. Automated Program Repair

Automated program repair (APR) is a promising way to
support debugging, and many APR techniques have been
proposed [2]–[9]. There are also techniques to predict whether
APR should be used [15] and empirical studies for APR
techniques which use program synthesis [16]. APR is a generic
term for techniques of inputting a buggy program, fixing
source code, and outputting a fixed program.

Before now, APR techniques have been evaluated with
metrics such as the number of fixed defects, the fixing time,
and the fixing quality. Martinez et al.’s research [17] showed
the number of fixed defects and the fixing time by running the
APR tools: jGenProg [5], jKali [5], and Nopol [6] against
Defects4J [12], a dataset of defects in open source Java
projects. Table I shows the number of fixed defects in the
Apache Math Project3 in Defects4J.

C. Research Motivation

Some defects should be fixed immediately or need addi-
tional debugging due to incomplete fixing. If given software
is managed with JIRA, we can extract priority and isReopened
from its defect reports. Priority in JIRA is in order of

Blocker > Critical > Major > Minor > Trivial.

If the status of the defect report becomes “Reopened” at least
once, the isReopened of the defect report is Yes. In our pilot
investigation, we mapped priority and isReopened for each of

3http://commons.apache.org/proper/commons-math

TABLE I
THE NUMBER OF FIXED DEFECTS IN THE APACHE MATH PROJECT

jGenProg jKali Nopol # defects
Fixed defects 18 14 21 106

the defects in the Apache Math Project, which is managed
with JIRA, to their success/failure of the APR tools including
jGenProg, jKali, and Nopol.

Table II shows the number of fixed defects in the Apache
Math Project from the viewpoints of priority and isReopened.
Focusing on the priority, we can see that jGenProg and jKali
succeeded in fixing a Blocker defect. jGenProg and jKali
have also fixed a reopened defect. In this way, it is possible
to evaluate APR tools by using the characteristics of defects
such as priority and isReopened. However, the above pilot
investigation is an analysis with small data, and investigations
with larger data are necessary to make a reasonable evaluation.

The purpose of this research is to evaluate APR tools using
characteristics of defects. As a way of obtaining characteristics
of defects, we use defect reports in BTS. In particular, as
characteristics of defects, we use the following characteristics:

• priority
• isReopened

If the APR tools can fix high-priority defects that require
immediate fixing, it will significantly contribute to developers.
If the APR tools can fix reopened defects, the APR tools have
ability to fix defects which are developers fail to fix.

D. Research Questions

In this research, we evaluate APR tools using characteristics
of defects by answering the following two research questions.
RQ-1: Can APR tools fix high-priority defects?
RQ-2: Can APR tools fix reopened defects?

In RQ-1, we investigate whether APR tools can fix high-
priority defects at a high rate. In this investigation, we regard
a defect as a high priority defect when its priority level is
Critical or Blocker in JIRA. If the APR tools can fix high-
priority defects, it will be significantly helpful to developers.

In RQ-2, we investigate whether APR tools can fix reopened
defects at a high rate. In this investigation, we regard a defect
as reopened if the status of a given defect report has become
“Reopened” at least once. If the APR tools can fix reopened
defects, fixing time for reopened defects will get shorter.

III. METHODOLOGY

A. Investigation Method

Figure 2 shows our investigation method in this research.
The investigation consists of the following two steps.

TABLE II
THE NUMBER OF FIXED DEFECTS IN THE APACHE MATH PROJECT BY

PRIORITY AND ISREOPENED

jGenProg jKali Nopol # defects
Blocker 1 1 0 1
Critical 2 0 2 8
Major 11 11 15 63
Minor 4 2 4 32
Trivial 0 0 0 1

Non-priority 0 0 0 1
Reopened 1 1 0 7

Non-reopened 17 13 21 99

 STEP-1
Mapping Defects

 to Defect Reports

jGenProg

jKali

Nopol

Defect
r100

Defect
r200

Defect
Report #1

Defect
Report #2

Priority: Major

isReopened: Yes

Priority: Critical

isReopened: No

Running Results of
APR Tools Are Available

at Martinez's Research[17]

Defects4J
Bug

Datasets

Bug
Tracking
System

… … …

 STEP-2
Extracting Priority and

isReopened

Running Mapping Extracting

Fig. 2. The Overview of Investigation Method

Open

Resolved

Closed

Fixed with commit r110

Reopened

Resolved

Closed

We use the oldest defect

Fixed with commit r130

Setting priority Major

Minor

Minor

Major

Major

Major

Major

We use the latest priority

Commit IDs
of defects

r100

r110

r110

r120

r130

r130

Fig. 3. An Example of Multiple Defects in A Defect Report

STEP-1: mapping defects to defect reports.
STEP-2: extracting priority and isReopened from defect re-

ports.

In STEP-1, we match defects in the Defects4J dataset with
their corresponding JIRA/Github defect report. We assume that
each defect is extracted from version control system (VCS),
and a commit log in VCS can be referenced from a defect
report. Under the assumption, we can obtain a commit ID
(e.g. r100) of a defect and we can map the defect to its
defect report. However, in general, a defect report and commit
IDs of defects are in a one-to-many relationship because a
complex debugging process or a reopened defect may result in
multiple commits. In this investigation, when multiple defects
correspond to a certain defect report like Figure 3, we use only

the oldest one. Using a new defect is not appropriate for the
investigation because the defect was generated after reopened
and the defect itself was not reopened.

In STEP-2, we extract priority and isReopened from each
defect report. Priority is described in a defect report. However,
developers may change the priority of the defect report like
Figure 3. In this investigation, we use the latest priority
described in the defect report because we think that the
latest priority most reflects the priority decided by developers.
isReopened can be decided from the life cycle in the defect
report. If “Reopened” is prepared as the status of the defect
report as in JIRA, it is easy to decide whether the defect is
isReopened. On the other hand, if “Reopened” is not prepared
in advance as in Github, we regard a defect report which has
multiple “Closed” as reopened.

B. Subject systems

Our subject systems are open source Java projects in De-
fects4J dataset including defects. We use three projects, the
Apache Lang4 (hereinafter called “Lang”), the Apache Math
(hereinafter called “Math”), and the Joda-Time5 (hereinafter
called “Time”), which were also used in the investigation of
Martinez et al [17]. The subject systems in this research are as
shown in Table III. In Time project, since there is no priority
item in Github’s defect report, priority cannot be extracted.

4http://commons.apache.org/proper/commons-lang
5http://www.joda.org/joda-time

TABLE III
SUBJECT SYSTEMS

Project # Defects BTS Priority isReopened
Lang 65 JIRA Available Available
Math 106 JIRA Available Available
Time 12 Github Unavailable Available

In our investigation, we did not use JFreeChart6 and Closure
Compiler7 in Defects4J as subject systems. In JFreeChart, we
were not able to match the defect reports in the BTS with the
commits of the version control system. Since the test cases
attached to Closure Compiler are not for JUnit, they can not
be handled by current jGenProg, jKali, and Nopol [17].

IV. INVESTIGATION RESULTS

Table IV shows the results of classifying the number and
the success rate(%) of fixed defects of each tool by priority
and isReopened. Success rate means the percentage of the
number of fixed defects in the total number of defects for
each cell of Table IV. Furthermore, we show the success
rate of fixing defects by priority and isReopened in Figure
4. In our definition, when the success rate of fixing specific-
priority defects is higher than of fixing overall defects, the
APR tools can fix specific-priority defects at a high rate. When
the success rate of fixing reopened defects is higher than of
fixing non-reopened defects, the APR tools can fix reopened
defects at a high rate.

Please note that the success rate of fixing defects for Blocker
and Critical defects was higher than for overall defects.
However, jKali failed to fix any Critical defects. Therefore,
our answer to the RQ1 is YES for jGenProg and Nopol, but
NO for jKali. In addition, Trivial defects were not fixed by
any tools.

On the other hand, the success rate of fixing defects did not
change very much from the viewpoint of isReopened. Nopol
has not been able to fix any reopened defects. Therefore, our
answer to the RQ2 is NO for any tools.

In addition to the above, we investigated the fixing time
when each tool succeeded in fixing the defect. Figure 5
shows the mean time of fixing defects from the viewpoint of
isReopened. We calculated the mean time for each cell of Table
IV. For example, in the cell of Nopol and Non-reopened, the
mean time was calculated from 29 defects. From these results,
in all the tools, we can see that the mean time of fixing defects
for Minor is longer than the overall mean. In jGenProg and
jKali, the mean time of fixing defects for reopened is longer
than that for non-reopened. Furthermore, Nopol was not able
to fix any reopened defects.

This investigation differs from our pilot investigation in the
following points:

• increasing the number of subject systems from one
(Math) to three (Lang, Math, and Time), and

• evaluating the APR tools using success rate instead of the
number of fixed defects.

V. DISCUSSION

As the results of our investigation, We found that jGenProg
and Nopol fixed many high-priority defects, but all the APR
tools were not able to fix many reopened defects. In particular,
Nopol was not able to fix any reopened defects. From the

6http://jfree.org/jfreechart
7https://developers.google.com/closure/compiler

viewpoint of fixing time, all the APR tools take much time to
fix Minor or reopened defects.

In addition, we focused on the amount of change in source
code in case of successful fixing. When an APR tool succeeds
to fix a defect, we can obtain a part of fixing as a difference of
the source code. The source code difference is obtained in the
Unix Diff format, and it consists of added lines and deleted
lines. We counted added/deleted lines separately. Figure 6
shows the mean added/deleted lines of each tool. We calcu-
lated the mean added/deleted lines for each cell of Table IV.
From Figure 6, we can see that the mean added/deleted lines
of fixing defects for Minor is higher than the overall mean.
The fact that added/deleted lines of Minor defects are large
can be a factor of its low success rate and long fixing time. In
reopened defects, the added lines of jKali are much larger than
others. From these results, an increase in the added/deleted
lines may lead to making the fixing time longer.

We evaluated the APR tools with characteristics of defects.
Using characteristics of defects is a new viewpoint of eval-
uating APR techniques. We suggest that researchers use not
only the number of fixed defects but also characteristics of
defects when evaluating APR techniques. Using characteristics
of defects makes their evaluations more multidirectional. We
are add investigation targets and consider more characteristics
of defects to make our findings more general.

VI. THREATS TO VALIDITY

A. Threats to internal validity
In this research, we used the execution time of the APR tools

to evaluate fixing time, but we did not consider the execution
time for failed defects. Please note that the execution time for
failed defects is affected by the tool’s timeout setting. If we
do not set the timeout limitation, there are tools which do not
stop the operation within realistic time in some cases [2], [5].
For this reason, we were aware of the fact that we cannot
consider the exact execution time of the APR tools, and we
only used the execution time when fixing was succeeded.

In this research, characteristics of the defects are extracted
from defect reports. Since defect reports and their priority dif-
fer by reporters who have different understanding of priority,
there is a possibility that priority is mislabeled in some defect
reports.

In our evaluation of fixing time and fixing LOCs, because
of small sample size, we carried out direct comparison of
average values instead of statistical comparison. For statistical
comparison, it is necessary to increase defects.

B. Threats to external validity
In our investigation target, Major defects occupied 55%

or more. On the other hand, the ratio of Critical or Blocker
defects is about 6%, and the number of high-priority defects
was insufficient. Therefore, it is necessary to investigate more
high-priority defects.

The ratio of reopened defects was about 6%. The results
support Mi et al.’s findings [14] against Bugzilla8 that the

8https://www.bugzilla.org

TABLE IV
THE NUMBER AND THE SUCCESS RATE(%) OF FIXED DEFECTS BY PRIORITY AND ISREOPENED

Blocker Critical Major Minor Trivial Non-priority Reopened Non-reopened Total
jGenProg 1 (33%) 2 (25%) 11 (11%) 4 (9%) 0 (0%) 2 (17%) 1 (9%) 19 (11%) 20 (11%)

jKali 1 (33%) 0 (0%) 11 (11%) 2 (5%) 0 (0%) 2 (17%) 1 (9%) 15 (9%) 16 (9%)
Nopol 1 (33%) 2 (25%) 21 (21%) 4 (9%) 0 (0%) 1 (8%) 0 (0%) 29 (17%) 29 (16%)

Defects 3 8 101 44 1 12 11 172 183

0.0

0.1

0.2

0.3

0.4

Blocker Critical Major Minor Trivial NonPriority Reopened NonReopened Total

T
h
e

su
cc

es
s

ra
te

 o
f
fi
xi

n
g
 d

ef
ec

ts

jGenProg jKali Nopol

Fig. 4. The Success Rate of Fixing Defects by Priority and isReopened

00:00:00

00:15:00

00:30:00

00:45:00

01:00:00

Blocker Critical Major Minor Trivial NonPriority Reopened NonReopened Total

T
h
e

m
ea

n
 t

im
e

of
 f
ix

in
g
 d

ef
ec

ts
 (

h
:m

:s
)

jGenProg jKali Nopol

Fig. 5. The Mean Time of Fixing Defects by Priority and isReopened

percentage of reopened defects is 6∼10%. However, the
number of reopened defects was insufficient. Therefore, it is
necessary to investigate more reopened defects.

Our evaluation does not consider differences in projects. To
evaluate by project, the number of defects in each category is
too small. Therefore, it is necessary to increase defects.

Our investigation targets are Java defect dataset. Therefore,
if someone conducts similar investigations on other program-
ming languages, the investigation results may be different.

The characteristics of the defects used in this research are
only priority and isReopened. By adding more characteristics,
it is possible to clarify the relationship between the character-
istics of defects and the performance of APR tools.

VII. CONCLUSIONS

In this research, we manually identified priority and isRe-
opened for each of the 138 defects, which are included in
open source Java projects, by investigating their defect reports
in bug tracking system. Furthermore, we associated the defects
with their success/failure of three APR tools: jGenProg,
jKali, and Nopol. We investigated the relationship between
the performance of the APR tools and the characteristics of
defects.

As a result, we revealed that jGenProg and Nopol fixed
many high-priority defects, but Nopol was not able to fix the
reopened defects much. We also evaluated the performance of

0

1

2

3

4

5

6

Blocker Critical Major Minor Trivial NonPriority Reopened NonReopened Total

T
h
e

m
ea

n
 a

d
d
ed

/d
el

et
ed

 l
in

es
 o

f
fi
xi

n
g
 d

ef
ec

ts

jGenProgAdd
jGenProgDelete

jKaliAdd
jKaliDelete

NopolAdd
NopolDelete

Fig. 6. The Mean Added/Deleted Lines of Fixing Defects by Priority and isReopened

the APR tools from the viewpoint of fixing time and fixing
LOCs. We also manually inspected the commit in the Trivial
defect reports which APR tools were not able to fix at all.

From the findings obtained from the investigation, we
suggest that APR tools can be used in the following scenes of
actual software development.

• When developers find a high-priority defect, they first run
jGenProg or Nopol. The APR tools can fix the defect
with high probability.

• Before developers commit their debugging work to ver-
sion control system, if they see differences in their source
code and an APR tool’s one, they can get the opportunity
of finding mistakes leading to reopened.

Our future research topics are as follows:
• using more high-priority and reopened defects for the

same kinds of investigations,
• considering more characteristics of defects,
• conducting more experiment with different programming

languages and APR tools, and
• discussing why a certain repair tool can fix a certain kind

of defect.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP25220003.

REFERENCES

[1] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen, “Re-
versible debugging software,” University of Cambridge, Judge Business
School, Tech. Rep., 2013.

[2] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proceedings of the 34th International Conference on Software
Engineering, 2012, pp. 3–13.

[3] F. Long and M. Rinard, “Staged program repair with condition synthe-
sis,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, 2015, pp. 166–178.

[4] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
38th International Conference on Software Engineering, 2016, pp. 691–
701.

[5] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in Proceedings of the 25th International Symposium on Software
Testing and Analysis, Demonstration Track, 2016, pp. 441–444.

[6] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. L. Marcote,
T. Durieux, D. L. Berre, and M. Monperrus, “Nopol: Automatic repair
of conditional statement bugs in java programs,” IEEE Transactions on
Software Engineering, 2016.

[7] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering, vol. 1, 2016, pp. 213–224.

[8] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2016, pp. 298–
312.

[9] X. B. D. Le, Q. L. Le, D. Lo, and C. Le Goues, “Enhancing automated
program repair with deductive verification,” in 2016 IEEE International
Conference on Software Maintenance and Evolution, 2016, pp. 428–432.

[10] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the 2013
International Conference on Software Engineering, 2013, pp. 802–811.

[11] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for simple
program repairs,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 1, ser. Proceedings of the 2015
International Conference on Software Engineering, 2015, pp. 448–458.

[12] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Pro-
ceedings of the 2014 International Symposium on Software Testing and
Analysis, 2014, pp. 437–440.

[13] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams,
A. E. Hassan, and K. i. Matsumoto, “Predicting re-opened bugs: A
case study on the eclipse project,” in 2010 17th Working Conference
on Reverse Engineering, 2010, pp. 249–258.

[14] Q. Mi and J. Keung, “An empirical analysis of reopened bugs based
on open source projects,” in Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering,
2016, pp. 37:1–37:10.

[15] X.-B. D. Le, T.-D. B. Le, and D. Lo, “Should fixing these failures be del-
egated to automated program repair?” in 2015 IEEE 26th International
Symposium on Software Reliability Engineering, 2015, pp. 427–437.

[16] X. B. D. Le, D. Lo, and C. Le Goues, “Empirical study on synthesis
engines for semantics-based program repair,” in 2016 IEEE International
Conference on Software Maintenance and Evolution, 2016, pp. 423–427.

[17] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4j dataset,” Springer Empirical Software Engineering, pp. 1–29,
2016.

