
Rearranging the Order of Program Statements
for Code Clone Detection

Yusuke Sabi, Yoshiki Higo, Shinji Kusumoto
Graduate School of Information Science and Technology,

Osaka University, Japan
Email: {y-sabi,higo,kusumoto}@ist.osaka-u.ac.jp

Abstract—A code clone is a code fragment identical or similar
to another code fragment in source code. Some of code clones
are considered as a factor of bug replications and make it more
difficult to maintain software. Various code clone detection tools
have been proposed so far. However, in most algorithms adopted
by existing clone detection tools, if program statements are
reordered, they are not detected as code clones. In this research,
we examined how clone detection results change by rearranging
the order of program statements. We performed preprocessing
to rearranging the order of program statements using program
dependency graph (PDG). We compared clone detection results
with and without preprocessing. As a result, by rearranging the
order of program statements, the number of detected code clones
is almost the same in most projects. We classified newly detected
or disappeared clones manually. From our experimental results,
we show that there is no newly detected clone whose statements
are reordered and that there are four disappeared clones whose
statements are reordered. We think three out of the four clones
occurred by copy-and-paste operations. Therefore, we conclude
that rearranging the order of program statements is not effective
to detect reordered code clones.

I. INTRODUCTION

A code clone (hereafter, clone) is a code fragment identical
or similar to another code fragment in software. Copy-and-
paste operations in code implementation are the main reason
of clone occurrences [1]. It is said that the presence of clones
causes bug replications and makes software maintenance more
difficult [2] [3]. For example, huge software includes many
clones. In this case, It is difficult for developers to check all
clones with eyes. Thus, a variety of clone detection tools has
been developed before now [4] [5] [6].

A variety of algorithms is used in existing clone detection
tools (e.g. Parameterized-Matching algorithm [7], suffix array
algorithm [8], and Smith-Waterman algorithm [9]). Tools with
different algorithms detect different clones from the same
source code.

However, most algorithms used in existing clone detec-
tion tools cannot detect reordered clones which are clones
where their program statements are reordered. Komondoor
et al. developed a clone detection tool can detect reordered
clones [10]. Their tool has disadvantages that it takes a long
time to detect clones, and many of detected clones are not
useful for developers [1].

The authors think that some reordered clones can be de-
tected with existing clone detection tools if the order of
program statements is rearranged with a fixed rule. At this

moment, there is no clone detection tool that rearranges the
order of program statements.

In this research, we examined how clone detection results
change by rearranging the order of program statements in
target source code.

We answer following two research questions.

• RQ1…How clone detection results change by rearranging
the order of program statements?

• RQ2…Do clones that are changed by rearranging occur
by copy-and-paste operations?

We use program dependency graph (PDG) to rearrange the
order of program statements. A PDG is directed graph rep-
resenting dependencies between program statements [11]. A
node in a PDG represents a program statement. An edge
in a PDG represents a dependency between two program
statements.

In this research, we use an extended version of PDG, which
includes two kinds of dependencies. The first dependency is
control dependency, which is the same as control dependency
in traditional PDG. The second dependency is variable depen-
dency, which exists between two program statements using the
same variables. Variable dependencies are used to keep the
current order of program statements using the same variable.
Data dependency in traditional PDG is not sufficient to do
that. In other words, program statements not sharing the same
variables are reordered in a fixed rule in this research.

We conduct experiments on eight open source projects to
answer the two RQs. As a result, we show that the number
of detected clones is almost the same in most projects by
rearranging the order of program statements. Moreover, we
show that there is no newly detected clone whose statements
are reordered, and there are four disappeared clones whose
statements are reordered. We think three out of the four
clones occurred by copy-and-paste operations. Therefore, we
conclude that rearranging the order of program statements is
not effective to detect reordered clones.

The rest of the paper is organized as follows. Section II
includes terminologies, Section III describes how we rearrange
the order of program statements. Section IV explains exper-
iments, Section V answers RQs by presenting experimental
results. Section VI mentions about threats to validity, Section
VII discusses related works. Section VIII concludes this paper.

978-1-5090-6595-0/17/$31.00 c© 2017 IEEE IWSC 2017, Klagenfurt, Austria15

80: int offset = getPage() * length;
81: Date startDate = null;
82: if(sinceDays > 0) {
83: Calendar cal = Calendar.getInstance();
84: cal.setTime(new Date());
85: cal.add(Calendar.DATE, -1 * sinceDays);
86: startDate = cal.getTime();
87: }
88: List<SubscriptionEntry> results = new ArrayList<SubscriptionEntry>();

95: int offset = getPage() * length;
96: List<WeblogEntryWrapper> results = new ArrayList<WeblogEntryWrapper>();
97: Date startDate = null;
98: if(sinceDays > 0) {
99: Calendar cal = Calendar.getInstance();
100: cal.setTime(new Date());
101: cal.add(Calendar.DATE, -1 * sinceDays);
102: startDate = cal.getTime();
103: }

Clone Fragment A

Clone Fragment B

Fig. 1. An example of reordered code clone

II. TERMINOLOGY

In this section, we explain terminologies and techniques
used in this paper.

A. Types of Clones

There are three types of clones [12]. The types of clones
are as follows.

Type-1 Identical code fragments except for variations of
coding style. (e.g. existence of tabs, spaces, and
comments)

Type-2 Identical code fragments except for variations of
identifier names and literal values in addition to
Type-1 variations.

Type-3 Similar code fragments differ at statement level,
which means some statements are added, deleted
or changed, in addition to Type-2 variations.

A clone pair is a pair of code fragments detected as clones.

B. Program Dependency Graph

Two kinds of dependencies used in PDG are as follows.
Data Dependency� �
• A variable v is defined in a statement s.
• A variable v is referenced in a statement t.
• There is a path where v is not redefined from s to t.

If all the above three conditions are satisfied, a data
dependency exists between s and t.� �

Control Dependency� �
• A statement s is a control predicate.
• A statement t may be executed after a statement s.
• Whether t is executed or not is determined by results

of s.
If all the above three conditions are satisfied, a control
dependency exists between s and t.� �
Figure 2(b) is a simple example of PDG. There is a data

dependency from line 5 where a variable value1 is defined to
line 7 where the same variable is referenced. There are control
dependencies from conditional predicate of the if-statements
to statements their inner statements.

C. Reordered Clones

A Reordered clone is a code clone where program state-
ments are reordered.

An example is shown in Figure 1. In Figure 1, line 80–88 in
Clone Fragment A and line 95–103 in Clone Fragment B are
reordered clones. In Clone Fragment A, a variable is declared
in the last line of the clone fragment (line 88), whereas the
same variable is declared in the second line of the clone
fragment (line 96) in Clone Fragment B.

In most existing clone detection tools, reordered clones are
not detected. However, Komondoor et al. developed a clone
detection tool that can detect reordered clones [10]. By using
PDGs and detecting isomorphic PDG subgraphs representing
clones, their tool can detect reordered clones. It takes a long
time to detect isomorphic PDG subgraphs. Therefore, their tool
has disadvantages that it takes a long time to detect clones,
and many of detected clones are not useful for developers [1].

16

1: if (flag1){
2: int value1 = 1;
3: int value2 = 2;
4: if (flag2){
5: value1 = 3;
6: value2 = 4;
7: value1 = value1 *2;
8: return; }

︙
}

(a) Source Code

<3>

<5>

<2> <4>

<1>

<6> <7> <8>

Control Dependency

Data Dependency

Node

Condition Node

(b) Program Dependency Graph

<3>

<5>

<2> <4>

<1>

<6> <7> <8>

Control Dependency

Variable Dependency

Node

Condition Node

(c) Extended PDG

Fig. 2. An example of Program Dependency Graphs

D. Extended PDG

In this research, we use an extended version of PDG, which
includes two kinds of dependencies. The first dependency is
control dependency, which is the same as control dependency
in traditional PDG. The second dependency is variable de-
pendency. Hereafter, we call an extended version of PDG
“Extended PDG”. Variable dependency is defined below.

Variable Dependency� �
• A variable v is defined or referenced in a statement

s.
• A variable v is defined or referenced in a statement

t.
• There is a path where v is not redefined from s to t.

If all the above three conditions are satisfied, a variable
dependency exists between s and t.� �
Figure 2(c) is an example of extended PDG. There is a

variable dependency from line 2 where a variable value1 is
defined to line 5 where the same variable is also defined.

We explain why we use variable dependency. In this re-
search, we rearrange the order of program statements so that
the order of program statements sharing the same variables do
not change. Two program statements which have dependency
edge in PDG are regarded as program statements that cannot
be reordered. If we use data dependencies in traditional PDG,
two program statements referencing the same variable may be
reordered.

For example, there are two append() invocations at line 6
and 7 in Figure 3. If the two invocations are executed in a
different order, the object referenced with variable “result”
becomes a different state. If we use data dependencies in
traditional PDG, the order of the two append() invocations may
be reordered because there is no data dependency between line
6 and 7. Whereas, if we use variable dependencies, the order
of the two append() invocations cannot be reordered because
there is a variable dependency between line 6 and 7. There-
fore, we use variable dependencies to prevent inappropriate
reordering between program statements.

Rearrangement the Order of Program Statements

1: StringBuilder result = new StringBuilder();
2: public String getResponse() throws IOException {
3: result.setLength(0);
4: String line = reader.readLine();
5: if (line != null) {
6: result.append(line.substring(0, 3));
7: result.append(" "); }

Statements cannot be reordered

Fig. 3. An example of statements cannot be reordered

III. REARRANGEMENT THE ORDER OF PROGRAM
STATEMENTS

In this section, we explain how we rearrange the order of
program statements. The input and output are as follows.

• Input…Java source code
• Output…Source code where the order of the program

statements is rearranged
We perform rearranging the order of program statements

with following steps.
Step-1: generating extended PDG from the source code
Step-2: extracting groups of the nodes in the same block
Step-3: selecting the order of nodes which does not change

control and variable dependencies
Step-4: generating source code from the extended PDG
We explain each step with an example of Figure 4. In the

example of Figure 4, we give Java source code at Figure 2(a)
as an input.

A. Step-1

In this step, we generate extended PDG from source code.

B. Step-2

In this step, we construct groups of nodes. Each group
consists of nodes having control dependencies from the same
node. Nodes in a group correspond to program statements in
the same block in source code. In this step, we use a heuristic.
If there is a return statement, a break statement, or a continue
statement at the end of a given block, it is out of targets to be
rearranged.

In the example of Figure 4, node <1> has control edges
to node <2>, <3>, and <4>. Node <4> also has control
edges to node <5>, <6>, <7>, and <8>. Thus, two groups

17

<3>

<5>

<2> <4>

<1>

<6> <7> <8>

Step-2

Step-3
1: if (flag1){
2: int value1 = 1;
3: int value2 = 2;
4: if (flag2){
5: value1 = 3;
6: value1 = value1 * 2;
7: value2 = 4;
8: return; }

︙
}

Step-4

<3>

<5>

<2> <4>

<1>

<6> <7> <8>

1: if (flag1){
2: int value1 = 1;
3: int value2 = 2;
4: if (flag2){
5: value1 = 3;
6: value2 = 4;
7: value1 = value1 *2;
8: return; }

︙
}

Input: Java Source Code

Output: Rearranged Source Code

Extended PDG

<5>
↓

<6>
↓
<7>

<6>
↓

<7>
↓
<5>

<5>
↓

<7>
↓
<6>

<7>
↓

<5>
↓
<6>

<6>
↓

<5>
↓
<7>

<7>
↓

<6>
↓
<5>

Control Dependency

Variable Dependency

Group of nodes

Statement Node

Condition Node

Reordered statements

Selected order

All the possible orders

Extended PDG and group of nodes

Step-1

Fig. 4. An example of rearrangement

constructed from node <2>, <3>, and <4> and node <5>,
<6>, <7>, and <8>, respectively. Then we exclude node
<8> from the second group because it is a return statement.
Herein, we regard each condition node as its block. For
example, node <4> represents node <4>, <5>, <6>, <7>,
and <8>. In the example of Figure 4, the group of node <2>,
<3>, and <4> and the group of node <5>, <6>, and <7>
are extracted.

C. Step-3
In this step, we select an order of nodes where all pairs

of nodes having dependency edges are not reordered in all
groups. First, we enumerate all the possible orders of nodes
for groups. Then, we exclude orders where any pair of nodes
having dependency edges are reordered. Third, we normalize
all variables of nodes in the remaining orders. Finally, we sort
the remaining orders in the alphabetical order and select the
first.

We demonstrate this step through Figure 5 and 6. Figure 5
shows source code of all the possible orders (a), (b), (c), (d),
(e), and (f). In this Figure, the line numbers mean node IDs. As
shown in Figure 4, there is a dependency edge between node
<5> and <7>, so that these two nodes cannot be reordered.
Thus, three orders (d), (e), and (f) where these nodes are
reordered are excluded. Next, the variables in the remainging
orders are normalized shown in Figure 6 ((a’), (b’), and (c’)).
We sort the three orders in the alphabetical order, and (b’) get
the first position. Therefore, we select (b’). In the case of node
<2>, <3>, and <4>, these nodes are not reordered.

D. Step-4
Herein, we have obtained an order of nodes for each group.

In this step, we generate source code based on the results of
Step-3.

IV. EXPERIMENTS

A. Steps of Experiments
We conduct experiments with following four steps.

Step-A: We rearrange the order of program statements.
Step-B: We detect clones from original source code and

rearranged one, respectively.
Step-C: We extract newly detected or disappeared clones

by applying the rearrangement.
Step-D: We classify the extracted clones manually.

We do not explain Step-A here because it is described already
in Section III. From now on, we explain Step-B, C, and D.

In the Step-B, we detect clones with an existing clone
detection tool from original source code and rearranged one,
respectively. We use CCFinder [13] for detecting clones.
CCFinder is a clone detection tool that can detect Type-1 and
Type-2 clones in a short time. We choose CCFinder because
it is a popular tool. We use the default setting of CCFinder
in the experiment. If we use a clone detection tool can detect
Type-3 clones, there is a possibility that a part of reordered
clones is detected in original source code. In this case, we
can not measure the effectiveness to rearrange the order of
program statements correctly. To measure the effectiveness to
rearrange the order of program statements correctly, we use a
clone detection tool that can detect Type-1 and Type-2 clones
for detecting clones.

In the Step-C, we extract newly detected or disappeared
clones by rearranging. To extract these clones, we take a
mapping of clones which are included in both results. We
regard non-mapped clones as newly detected or disappeared
clones. We use good-value [12] to take a mapping of clones.
The good-value between two clone pairs p1 and p2 is as follow.
p1. f1,p1. f2,p2. f1, and p2. f2 represent code fragment of each
clone.

good(p1, p2) = min(overlap(p1. f1, p2. f1),

overlap(p1. f2, p2. f2))

Overlap between two code fragments f1 and f2 is as follow.
lines(f) represents a group of lines in code fragment f .

18

4: if (flag2){
5: value1 = 3;
6: value2 = 4;
7: value1 = value1 *2;
8: return; }

}

4: if (flag2){
5: value1 = 3;
7: value1 = value1 *2;
6: value2 = 4;
8: return; }

}

4: if (flag2){
6: value2 = 4;
5: value1 = 3;
7: value1 = value1 *2;
8: return; }

}

4: if (flag2){
6: value2 = 4;
7: value1 = value1 *2;
5: value1 = 3;
8: return; }

}

4: if (flag2){
7: value1 = value1 *2;
5: value1 = 3;
6: value2 = 4;
8: return; }

}

4: if (flag2){
7: value1 = value1 *2;
6: value2 = 4;
5: value1 = 3;
8: return; }

}

(a) (b) (c)

(d) (e) (f)

Reordered statements

Fig. 5. Source code of all the possible orders

4: if (flag2){
5: $1 = 3;
6: $1 = 4;
7: $1 = $1 * 2;
8: return; }

}

4: if (flag2){
5: $1 = 3;
7: $1 = $1 *2;
6: $1 = 4;
8: return; }

}

4: if (flag2){
6: $1 = 4;
5: $1 = 3;
7: $1 = $1 * 2;
8: return; }

}

(a’) (b’) (c’)

“$1 = 3; $1 = $1 * 2; $1 = 4;”
“$1 = 3; $1 = 4; $1 = $1 * 2;”
“$1 = 4; $1 = 3; $1 = $1 * 2;”

1:(b’)
2:(a’)
3:(c’) Reordered statements

Fig. 6. Normalization of variables and sorting in the alphabetical order

overlap(f1, f2) =
|lines(f1)∩ lines(f2)|
|lines(f1)∪ lines(f2)|

If a good-value between two clone pairs exceeds a given
threshold, we take a mapping of these clones. As with litera-
ture [12], we use 0.7 as a threshold.

Originally, good-value is an evaluation method for judging
whether or not the detected clones is the same as correct
answer set when clone detection tool is used for one source
code. In this research, we use good-value for mapping between
clones included in both detection results, and it is different
from the original usage method. Therefore, there is a possibil-
ity that mapping is not taken between clone pairs that should
be mapped. However, even in such case, only the target of
Step-D increases.

In the Step-D, we classify clones extracted in Step-C
manually. One author (a graduate student) of this paper
classified clones. We classify clones based on whether there
is a reordering of program statements in them or not.

B. Target Projects

We checked out 79 Java projects from Apache repository
in 2016/9/13 and chose eight target projects with their project
sizes of 1MB or more (Table I).

C. Results

Table II shows our experimental results. We discuss the
results and answer the research questions in Section V.

V. ANSWER TO RESEARCH QUESTIONS

In this section, we answer the research questions by pre-
senting our experimental results.

A. RQ1

Table II shows clone detection results. In Table II, the
number of detected clones gets decreased in three (Gora, Qpid,
Subversion) out of eight projects. However, the number of
detected clones is almost the same. We conduct paired t-test
on these two groups. As a result, no difference is found in the
groups with the significance level of 5%.

As above, we answer to RQ1 as below.
Our answer to RQ1� �

By rearranging the order of program statements, the
number of newly detected clones and the number of
disappeared clones are almost the same.� �

TABLE I
TARGET PROJECTS

Project # of Java Files LOC
Any23 396 46,957
BVal 350 37,520

Flume 314 48,986
Giraph 252 60,814
Gora 435 31,162
Qpid 118 27,037

Subversion 170 47,917
Wookie 295 48,537

19

We think that the rearranging the order of program state-
ments is not effective to detect more clones.

B. RQ2

Table III shows the classification results of newly detected
and disappeared clones. Clone pairs whose statements are not
reordered are classified into the column of “No rearrange-
ment”. Whereas, clone pairs whose statements are reordered
are classified into the column of “Rearrangement”.

There is no newly detected clone whose statements are
reordered. There are four disappeared clones whose statements
are reordered. We investigate why the four clones disappeared.
The reason why the clones disappeared is that statements out-
side the clones got inside the clones by rearranging. Because
statements outside the clones were located in the clones by
rearranging, these clones disappeared.

Copy-and-paste operations frequently occur in software
development. It is a high possibility that bugs are duplicated
by copying and pasting code fragments that have not been
fully tested. Thus, there is a possibility that clones occurring
by copy-and-paste operations contain duplicated bugs [3].
Therefore, we investigate whether disappeared clones occurred
by copy-and-paste operations or not.

We investigate project’s repositories and find that three out
of four clones are changed in the same commit and changed by
the same developer. From the above and code statements, we
think the three clones occurred by a copy-and-paste operation.
The remaining one clone is changed by different developers.
We think this clone occurred by chance.

Also, we took a manual mapping of clones whose state-
ments are not reordered. As a result, we confirmed that 196
newly detected and 196 disappeared clones that classified into
the column of “No arrangement” correspond in one-to-one.

As above, we answer to RQ2 as below.
Our answer to RQ2� �

There is no newly detected clone whose statements are
reordered by rearranging. There are four disappeared
clones whose statements are reordered by rearranging.
We think three out of the four clones occurred by a copy-
and-paste operation. Thus, our answer to RQ2 is “Yes”.� �
In this experiment, we showed that there is no reordered

clone in newly detected clones from our experimental results.
As a future work, we plan to compare clone detection results

between our tool and Komondoor’s tool.

TABLE II
CLONE DETECTION RESULTS FOR TARGET PROJECTS

of clone pairs Newly detected DisappearedOriginal Rearranged
Any23 389 389 0 0
BVal 199 199 2 2

Flume 1,051 1,051 0 0
Giraph 582 582 62 62
Gora 703 701 0 2
Qpid 426 425 132 133

Subversion 708 707 0 1
Wookie 6,090 6,090 0 0

VI. THREATS TO VALIDITY

A. Target Projects

In this research, we used eight projects from Apache repos-
itory. These projects may not be enough to generalize our
findings. As a future work, we conduct experiment toward
more targets which have various domains and scales.

B. Clone Detection Tool

We used CCFinder for detecting clones. If we use other
clone detection tool, results will be different.

However, if we use a clone detection tool can detect Type-
3 clones, there is a possibility that a part of reordered clones
is detected in original source code. In this case, we may not
measure the effectiveness to rearrange the order of program
statements correctly. To measure the effectiveness to rearrange
the order of program statements correctly, we use a clone
detection tool that can detect Type-1 and Type-2 clones for
detecting clones.

C. Rearranging

In this research, we consider only an order of program
statements for each block. If we consider all possible orders
of program statements for each block, results will be different.

VII. RELATED WORK

Komondoor et al. developed a clone detection tool using
PDG [10]. Their tool can detect reordered clones and clones
which are intertwined with each other. However, their tool has
disadvantages that it takes a long time to detect clones, and
many of detected clones are not useful for developers.

Choi et al. examined how clone detection results change
by using various types of normalization to source code [14].
As a result, it can detect clones faster by using specific
normalization than without the normalization. This research
is in common with our research with performing preprocess
for clone detection. However, we examine how clone detection
results change.

VIII. CONCLUTION

In this research, we examined how clone detection results
change by rearranging the order of program statements. In
the rearranging the order of program statements, we use an
extended version of program dependency graph. We compared
clone detection results with and without the rearrangement.
As a result, by rearranging the order of program statements,
the number of detected clones is almost the same in most
projects. We classified newly detected or disappeared clones
manually. We showed that there is no newly detected reordered
clone and that most disappeared clones occurred by copy-and-
paste operations. Therefore, we conclude that by rearranging
program statements is not effective to detect reordered clones.
As a future work, we plan to experiment toward more targets
by using different clone detection tools. Moreover, we plan
to discuss similarity and differences between our rearranging
technique and optimization/randomization techniques in com-
pilers.

20

TABLE III
NEWLY DETECTED OR DISAPPEARED CLONE PAIRS BY REARRANGING

Newly detected clone pairs Total Disappeared clone pairs TotalNo rearrangement Rearrangement No rearrangement Rearrangement
Any23 0 0 0 0 0 0
BVal 2 0 2 2 0 2

Flume 0 0 0 0 0 0
Giraph 62 0 62 62 0 62
Gora 0 0 0 0 2 2
Qpid 132 0 132 132 1 133

Subversion 0 0 0 0 1 1
Wookie 0 0 0 0 0 0
Overall 196 0 196 196 4 200

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 25220003.

REFERENCES

[1] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[2] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H. Mei, “Can
I Clone This Piece of Code Here?” in Proc. of the 27th International
Conference on Automated Software Engineering, 2012, pp. 170–179.

[3] J. Islam, M. Mondal, and C. Roy, “Bug Replication in Code Clones:
An Empirical Study,” in Proc. of the 23rd International Conference on
Program Comprehension, 2016, pp. 68–78.

[4] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
Detection Using Abstract Syntax Trees,” in Proc. of the 6th International
Conference on Software Maintenance, 1998, pp. 368–377.

[5] C. K. Roy and J. R. Cordy, “NICAD: Accurate Detection of Near-
Miss Intentional Clones Using Flexible Pretty-Printing and Code Nor-
malization,” in Proc. of the 16th International Conference on Program
Comprehension, 2008, pp. 172–181.

[6] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC: Scaling Code Clone Detection to Big-code,” in Proc.
of the 38th International Conference on Software Engineering, 2016,
pp. 1157–1168.

[7] B. S. Baker, “Parameterized Duplication in Strings: Algorithms and an
Application to Software Maintenance,” SIAM J. Comput., vol. 26, no. 5,
pp. 1343–1362, 1997.

[8] H. A. Basit and S. Jarzabek, “Detecting Higher-level Similarity Patterns
in Programs,” in Proc. of the 10th European Software Engineering
Conference, 2005, pp. 156–165.

[9] H. Murakami, Y. Higo, and S. Kusumoto, “Gapped code clone detection
with lightweight source code analysis.”

[10] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication
in Source Code,” in Proc. of the 8th International Symposium on Static
Analysis, 2001, pp. 40–56.

[11] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Depen-
dence Graph and Its Use in Optimization,” ACM Trans. Program. Lang.
Syst., vol. 9, no. 3, pp. 319–349, 1987.

[12] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and Evaluation of Clone Detection Tools,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[13] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

[14] E. Choi, H. Yoshida, Y. Higo, and K. Inoue, “Proposing and Evaluating
Clone Detection Approaches with Preprocessing Input Source Files,”
IEICE Transactions on Information and Systems, vol. E98.D, no. 2, pp.

325–333, 2015.

21

