
Toward Developer-like Automated Program Repair
—Modification Comparisons between GenProg and Developers—

Hiroki Nakajima, Yoshiki Higo, Haruki Yokoyama, and Shinji Kusumoto
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka, Japan

Email: {h-nakajm,higo,y-haruki,kusumoto}@ist.osaka-u.ac.jp

Abstract—Automated program repair is a way to reduce
costs on program debugging to a large extent. Repair tech-
niques using genetic programming have been attracting much
attention. They were applied to actual software systems and
they were able to fix several dozen of actual faults. However,
programs generated by such techniques often include some
source code changes not related to fixing a given fault even if
they pass all given test cases. Furthermore, some researchers
found that such techniques occasionally induce new faults
which are not covered by existing test cases. The reason why
those problems arise is that such techniques consider only given
test cases. On the other hand, developers consider program
behaviors not covered by test cases. Thus, those problems
arise less frequently in programs modified by developers.
Consequently, the authors suppose that if we make automated
program modifications close to developers’ ones, we may be
able to relieve those problems. At this moment, there is no
research study investigating differences between automated
modifications and developers’ ones. In this paper, we compare
GenProg’s modifications with developers’ ones for the same
faults. As a result, we found that developers tend to (1) change
more different functions, (2) change control flows in source
code, and (3) add/delete more code lines.

Keywords-Automated program repair; Source code analysis;
Genetic programming;

I. INTRODUCTION

Debugging is an inevitable activity in software develop-
ment. Debugging occasionally requires a large amount of
human resources. There is a report that debugging took
more than half of total software development cost [1].
Besides, in the United States, 300 billion dollars are spent
for debugging every year [2]. Consequently, a variety of
research on debugging support has been conducted.

Automatizing program debugging is a way to reduce its
costs. There are many studies on fault localization [3], [4].
However, to promote more automated debugging, source
code modification need to be conducted automatically. Re-
cently, to conduct debugging in a fully-automatic way,
automated program repair techniques have been attracting
much attention. At present, there are many methodologies
and tools to conduct automated program repair. Those
methodologies can be classified into two types, search-based
and semantic-based approaches. The search-based approach

(also known as generate-and-validate approach) searches
within a defined search space to generate a repair candidate
and validate it with a given set of test cases. GenProg
[5], PAR [6], SPR [7], HDRepair [8], and Prophet [9]
are classified into the search-based approach. The semantic-
based approach synthesizes a repair by leveraging semantic
information of the buggy program. For example, symbolic
execution and constraint solving techniques are usually used
in the semantic-based approach. Angelix [10], DirectFix
[11], SemFix [12], and Nopol [13] are classified into the
semantic-based approach.

GenProg conducts automated program repair by using
genetic programming [5]. GenProg takes a faulty program
and test cases as its input. Its output is a modified program,
which passes all the given test cases. GenProg firstly local-
izes the faults by using each of the given test cases. Then,
GenProg conducts source code changes in the localized
code fragments.

In GenProg, there are three kinds of operations to gen-
erate modified programs.

[Insertion] inserting a program statement to the next line
of the localized code line.

[Deletion] deleting a statement in the localized code line.
[Replace] conducting both insertion and deletion.
Programs generated by the above operations are validated

with the given test cases. If a generated program passes all
the test cases, it is output as a modified program. If there
are no programs passing all the test cases, one of the above
operations is applied to each generated program to generate
programs of the next generation. This procedure is repeated
until a generated program passes all the test cases.

GenProg’s output is a program passing all the test cases.
However, GenProg does not guarantee correct behaviors
that are not covered by the given test cases. In other words,
an output program may include new faults. There is a
report that there were some cases where GenProg’s output
lacked required functionality or included new faults [6], [14].
On the other hand, developers use a broader and deeper
knowledge of what the program is intended to be. They
modify programs with consideration of program behaviors
not covered by test cases [15]. Thus, programs modified by

developers can be considered less including the above issues
than programs modified by GenProg. The authors consider
one of the next steps of automated program repair is making
GenProg’s modifications close to developers’ ones as much
as possible. To do this, we need to know how GenProg’s
modifications are different from developers’ ones.

In this research, we conducted an exploratory study to
investigate where and how GenProg and developers had
changed given faulty programs. Our main findings are as
follows.

• Developers tend to change more different functions than
GenProg.

• Developers tend to change programs’ structure more
than GenProg.

• Developers tend to add/delete more program statements
more than GenProg.

The remainder of this paper is organized as follows:
Section II describes our research purpose; in Section III, we
introduce the control flow graph and explain the procedures
of our experiments; Section IV shows the experimental
results and Section V discusses future research directions
of automatic program repair; lastly, Section VII concludes
this paper.

II. RESEARCH PURPOSE

GenProg was applied to eight open source software and
55 out of 105 faults were fixed [16]. The results show
GenProg’s capability to fix faults is promising. GenProg
regards a generated program passing all the given tests as a
modified program. GenProg does not consider readability,
maintainability or other source code features to generate pro-
grams. GenProg’s modified programs occasionally include
some changes not related to fixing given faults [6]. Besides,
there were some cases where GenProg’s modified programs
included the following issues [14].

• Modified programs lacked required functionality.
• Modified programs included new faults.

Contrary to GenProg, developers consider program be-
haviors that are not covered by its existing test cases when
they modify programs [15]. Thus, programs modified by
developers are considered less likely to include the above
issues than programs modified by GenProg.

In this research, we compare GenProg’s modifications
with developers’ ones. The findings of this research will be
useful to make GenProg’s modifications close to develop-
ers’ ones.

In order to realize more developer-like automated program
repair, we investigate the following research questions.

[RQ1] do GenProg and developers modify the same
functions for the same faults?

[RQ2] do GenProg and developers modify programs in
the same ways for the same faults?

	 1	 int	 main(
	 2	 	 	 	 	 int	 argc,	 	
	 3	 	 	 	 	 char	 *argv[]){	
	 4	
	 5	 	 	 double	 a,	 b,	 c;	
	 6	 	 	 double	 median;	 	
	 7	 	 	 double	 x,	 y;	
	 8	
	 9	 	 	 a	 =	 atoi(argv[1]);	
10  	 	 b	 =	 atoi(argv[2]);	
11  	 	 c	 =	 atoi(argv[3]);	
12  	 	 	 	
13	 	 	 if	 (a	 <	 b){	
14	 	 	 	 	 x	 =	 b;	
15	 	 	 	 	 y	 =	 a;	
16	 	 	 }	
17	 	 	 else	 {	
18	 	 	 	 	 x	 =	 a;	
19  	 	 	 	 y	 =	 b;	
20  	 	 }	
21	 	 	
22	 	 	 if	 (x	 <	 c)	 	
23	 	 	 	 	 median	 =	 x;	 	
24	 	 	 else	 if	 (c	 >	 y)	
25	 	 	 	 	 median	 =	 c;	
26	 	 	 else	 	
27	 	 	 	 	 median	 =	 y;	 	
28	
29	 	 	 return	 (median);	

(a) Source code

start

double a,b,c;

double median;

double x,y;

a = atoi(argv[1]);

b = atoi(argv[2]);

c = atoi(argv[3]);

(a < b)

(c > y)

(x < c)

x = b;
y = a;

x = a;
y = b;

median = x;

median = c; median = y;

return(median);

end

yes

yes

yes

no

no

no

B

C

D

A

(b) CFG

Figure 1: An example of CFG

Qi et al. reported that GenProg and other tools tend to
delete existing program statements to pass given test cases
[17]. However, they did not directly compare the degree of
deletions likelihood of the tools with developers, which we
do in this research. Besides, we conducted direct comparison
on several kinds of program elements such as if-statement
and while-statement.

III. EXPERIMENTAL DESIGN

Herein, we firstly describe control flow graph, which we
use to compare GenProg’s and developers’ modifications.
Then, we explain the experimental procedure.

A. Control Flow Graph

Control flow graph (hereafter, CFG) is a graph represent-
ing control flows in program source code. Every node in
a CFG is a code fragment including neither bifurcations
nor confluences. Control flows between such code fragments
are depicted as direct edges. A CFG is generated for each
function in a given program. If loops or branches in a
given function are changed, the structure of its CFG is also
changed.

Figure 1 shows an example of source code and its CFG.
The source code has functionality to identify the median
value from numerical values specified by the parameter.
Nodes B, C, and D are bifurcation nodes. They correspond
to if-statements in the source code. Each of the bifurcation
nodes is a 1-line code fragment while node A is a 6-line

code fragment. There are 10 code fragments in this source
code.

In this research, we manually investigate how GenProg
and developers modify programs. We leverage UNIX diff
and visual presentations of their CFGs so as to easily and
correctly understand how programs were modified.

B. Target

Our experimental target is ManyBugs benchmarks [18],
which includes nine open source software written in C. Table
I shows an outline of the target software. The column #Faults
shows two numbers. The number outside the parentheses
means the number of all the faults included in the software
and the one inside the parentheses means the number of the
faults that GenProg was able to fix. In this experiment, we
investigate the faults that GenProg was able to fix, which
are totally 83.

ManyBugs benchmarks also include developers’ modified
program for each fault. The developers’ modified programs
include not only modifications to fix faults but also feature
additions. The authors of literature [18] checked the devel-
opers’ modified programs one by one. The followings are
the four most common defect categories:

• instances of incorrect behavior or incorrect output,
• segmentation faults,
• fatal errors (non-segmentation fault crashes of other-

wise unspecified type), and
• instances of feature additions.
In this experiment, we leverage the developers’ modified

programs for the 83 faults that GenProg was able to fix.
Before manually investigating programs for the 83 faults,
we conduct a preprocessing on the faulty programs and the
developers’ modified programs because GenProg’s mod-
ified programs do not include for-statements at all. If a
faulty program includes for-statements, they are transformed
to while-statements in GenProg’s text→AST→text trans-
formation even if GenProg does not apply modifications
on them. Consequently, we use GenProg’s component to
apply the same transformations to the faulty programs and
the developers’ modified programs. After the preprocessing,
all three kinds of programs do not include for-statements at
all.

Table I: Target software
Software kLOC #Faults Description
fbc 97 3 (1) compiler
gmp 145 2 (0) mathematic library
gzip 491 5 (1) data compression
libtiff 77 24 (17) graphics library
lighttpd 62 9 (4) Web server
php 1,099 104 (51) programming language
python 407 15 (2) programming language
valgrind 793 15 (3) debugging tool
wireshark 2,814 8 (4) network analyzer
Sum 5,985 185 (83)

C. Procedure

For each fault, we conduct investigations with the exper-
imental procedure shown in Figure 2. The inputs are three
kinds of programs, a program including a given fault, a
program modified by a developer, and a program modified
by GenProg. The procedure to investigate a given fault
consists of the following four steps.

[STEP1] identifying changed code lines by using UNIX
diff.

[STEP2] generating CFGs.
[STEP3] investigating which code fragments of the faulty

program were changed to fix the given fault.
[STEP4] investigating how the faulty program was

changed to fix the fault.
The remainder of this section describes the steps in detail.
STEP1 is an operation to identify which code lines were

changed by a developer and GenProg. In this step, we
use UNIX diff two times. The first time is to compare the
faulty program and the program modified by a developer.
The second time is to compare the faulty program and
the program modified by GenProg. In this step, we also
manually investigate which functions were modified.

STEP2 is a simple operation. We generate a CFG for each
modified function in the faulty program, the program modi-
fied by developers and the program modified by GenProg.
We used Understand1 to generate CFGs.

In STEP3, we investigate which code fragments2 were
modified by developers and GenProg.

In STEP4, we investigate what kinds of modifications
were conducted by developers and GenProg. In this inves-
tigation, modifications are divided into two categories. The
first one is modifications that changed the structure of the
CFG. The second one is ones that did not change.

Regarding the first category, changing the structure of
the CFG means branches and/or loops in source code were
changed by the modifications. We count the number of added
and deleted if-statements for branch modifications. We also
count the number of added and deleted while-statements for
loop modifications. Please note that the programs do not
include for-statements at all as described in Subsection III-B.

Regarding the second category, we count the number of
CFG nodes whose code fragments were modified. We also
count the number of added and deleted lines of code for
each of the modified code fragments.

After we count all the above numbers, we compare
developers’ modifications and GenProg’s ones with Mann-
Whitney U-test to check whether those modifications have
significant differences. We used 0.01 as significance level.
In this statistical testing, null hypothesis and alternative
hypothesis are as follows.

1https://scitools.com/
2In this experiment, the source code of every CFG node is regarded as

a code fragment.

buggy 	
program	

developer’s
modified program	

GenProg’s 	
modified program	

Δcode1	

Δgraph1	 Δgraph2	

STEP1	

Δcode2	

STEP1	

STEP3	 STEP3	

S
T
E
P

4
	

S
T
E
P

4
	

S
T
E
P

2
	

S
T
E
P

2
	

S
T
E
P

2
	

Figure 2: An overview of the experimental procedure

[Null hypothesis (H0)] there is no difference between
programmers’ modifications and GenProg’s ones.

[Alternative hypothesis (H1)] programmers’ modifica-
tions are different from GenProg’s ones.

IV. EXPERIMENTAL RESULTS

We investigated the 83 faults shown in Table I with the
procedure described in Subsection III-C. Developers and
GenProg modified 143 and 111 functions, respectively.
Only 32 out of the functions were modified by both de-
velopers and GenProg.

Table II shows a summary of the investigation. As shown
in this table, developers tend to change a greater amount
of source code to fix faults than GenProg. Developers also
tend to add/delete branches and loops in source code.

The remainder of this section describe the results of each
evaluation item.

A. The number of added/deleted CFG nodes

Figure 3 is a boxplot showing how many nodes of a CFG
(code fragments in the source code) were added or deleted
by developers and GenProg. Developers added or deleted
nodes on CFGs of 105 out of the 143 modified functions. On
the other hand, GenProg added or deleted nodes on CFGs
of 59 out of the 111 modified functions.

• Regarding the number of added nodes per CFG, the
median value of developers is greater than GenProg’s
one. The p-value of U-test is 3.203 × 10−10, which
means H0 is rejected. Consequently, we cannot say that
the two groups are the same.

• Regarding the number of deleted nodes per CFG, the
p-value of U-test is 0.8823. Consequently, we can say
that the two groups are not different significantly.

developers'
additions

GenProg's
additions

developers'
deletions

GenProg's
deletions

0
2
0

4
0

6
0

8
0
1
0
0
1
2
0

Figure 3: The number of added or deleted CFG nodes.
Regarding developers, the number of data is 105, which is
the number of functions where developers added or deleted
code fragments. Regarding GenProg, the number of data is
59, which is the number of functions where GenProg added
or deleted code fragments.

developers'
additions

GenProg's
additions

developers'
deletions

GenProg's
deletions

0
1
0

2
0

3
0

4
0

Figure 4: Added/deleted if-statements. The number of data
of developers and GenProg is 90 and 33, respectively.

B. Added/Deleted if-statements

Figure 4 shows comparisons between developers and
GenProg from the viewpoints of added/deleted if-
statements. Developers added or deleted if-statements on
90 out of the 143 modified functions. On the other hand,
GenProg did that on 33 out of the 111 modified functions.

• Regarding the number of added if-statements per func-
tion, developers’ median value is greater than Gen-
Prog’s one. Furthermore, the p-value of U-test is 3.742

Table II: Summary of investigation results
(a) Modifications adding/deleting CFG nodes

Evaluation item p-value Results
Structure-changed CFGs not statistical testing Developers > GenProg
Added Nodes 3.203 × 10−10 Developers > GenProg
Deleted Nodes 0.8823 Developers =. . GenProg
Added if-statements 3.742 × 10−7 Developers > GenProg
Deleted if-statements 0.06233 Developers =. . GenProg
Added while-statements 1.871 × 10−3 Developers > GenProg
Deleted while-statements 0.06233 Developers =. . GenProg
Added goto-statements 1.600 × 10−3 Developers > GenProg
Deleted goto-statements 0.3566 Developers =. . GenProg
added switch-statements no value† Developers > GenProg
deleted switch-statements no value† Developers > GenProg

†GenProg neither add nor delete switch-statements at all.

(b) Modifications in changed CFG nodes
Evaluation item p-value Results

Changed Nodes not statistical testing Developers > GenProg
Added code lines 1.854 × 10−10 Developers > GenProg
Deleted code lines 1.373 × 10−4 Developers > GenProg

5
0

1
0

1
5

developers'
additions

GenProg's
additions

developers'
deletions

GenProg's
deletions

Figure 5: Added/deleted while-statements. The number of
data of developers and GenProg is 23 and 9, respectively.

× 10−7. That is, we cannot say that there is no
significant difference between the two groups.

• Regarding the number of deleted if-statements per func-
tion, the median values of the two groups are the same.
The p-value of U-test is 0.06233, which means that null
hypothesis is not rejected. Thus, we can say that the two
groups are not different significantly.

C. Added/Deleted while-statements

In Figure 5, the number of added/deleted while-statements
shown as boxplot representation. The number of functions
where while-statements were added or deleted is smaller
than ones where if-statements were added or deleted. More
concretely, developer added/deleted while-statements on 23

out of the 143 modified functions and GenProg did that on
only 9 out of the 111 modified functions.

• Regarding the number of added while-statements per
function, GenProg did not add while-statements to
fix faults. The p-value of U-test is 1.871 × 10−3.
Consequently, we cannot say that the two groups are
not significantly different.

• Regarding the number of deleted while-statements per
function, GenProg’s median value is greater than de-
velopers’ one, but the p-value of U-test is 0.06233.
Consequently, we can say that the two groups are not
significantly different.

D. Added/Deleted goto-statements

Figure 6 shows the number of added/deleted goto-
statements by developers’ or GenProg’s modifications. Sur-
prisingly, there are many functions where goto-statements
were added or deleted to fix faults. Developers added or
deleted goto-statements on 40 out of the 143 modified
functions. On the other hand, GenProg did that on 30 out
of the 111 modified functions.

• Regarding the number of added goto-statements per
function, the median values of the two groups are the
same. However, the p-value of U-test is 1.600 × 10−3,
which means we reject null hypothesis. Consequently,
we cannot say that the two groups are not significantly
different from each other.

• Regarding the number of deleted goto-statements for
function, developers’ median value is greater than Gen-
Prog’s one. However, null hypothesis is not rejected
because the p-value of U-test is 0.3566. Consequently,
we can say that the two groups are not significantly
different from each other.

developers'
additions

GenProg's
additions

developers'
deletions

GenProg's
deletions

0
5

1
0

1
5

2
0

Figure 6: Added/deleted goto-statements. The number of
data of developers and GenProg is 40 and 30, respectively.

developers'
changes

GenProg's
changes

2
4

6
8

Figure 7: Changed CFG nodes. The number of data of
developers and GenProg is 116 and 60, respectively.

E. Added/Deleted switch-statements

Developers added or deleted switch-statements on 3 out of
the 143 modified functions. On the other hand, GenProg did
not add or delete switch-statements for all the 111 modified
functions.

F. The number of changed CFG nodes

Developers changed existing CFG nodes (code fragments)
on 116 out of the 143 modified functions and GenProg did
that on 60 out of the modified 111 functions. Figure 7 shows
the number of changed nodes in developers’ and GenProg’s
modifications on each of the 116 and 60 functions. GenProg
changed only one or two code fragments in a function

developers'
additions

GenProg's
additions

developers'
deletions

GenProg's
deletions

0
2

4
6

8

Figure 8: Added/deleted code lines. The number of data of
developers and GenProg is 116 and 60, respectively.

while developers occasionally changed three or more code
fragments. The p-value of U-test on the two groups is
1.093 × 10−7. Consequently, we cannot say that there is no
significant difference between developers’ and GenProg’s
modifications.

G. Added/Deleted code lines

Figure 8 shows the number of added or deleted code lines
in the changed nodes (code fragments). The numbers of the
functions where their nodes were changed by developers’ or
GenProg’s modifications are 116 out of 143 and 60 out of
111, respectively.

• Regarding the number of added code lines per function,
the median value of the two groups are the same in
spite that developers’ graph is located the upper area
than GenProg’s one. The p-value of the two groups is
1.854 × 10−10, and so the null hypothesis is rejected.
Consequently, we cannot say that those two groups are
not significantly different from each other.

• Regarding the number of deleted code lines per func-
tion, the median value of the two groups are also
the same. The p-values of U-test is 1.373 × 10−4.
Consequently, we cannot say that those two groups are
not significantly different from each other.

V. DISCUSSION

We answer the two RQs based on the experimental results.
• Our answer to the RQ1 is NO. Developers and Gen-

Prog modified 143 and 111 functions, respectively.
Only 32 out of them were commonly modified func-
tions. That is, GenProg modified only 22.4% of the
functions modified by developers. Besides, developers
tend to modify more different functions than GenProg
per fault.

• Our answer to the RQ2 is NO. Developers tend to add
more branches/loops than GenProg. Besides, develop-
ers tend to add/delete more code lines to existing code
fragments than GenProg.

From the above answers, the followings should be good
research directions to make GenProg’s modifications close
to developers’ ones.

Strategy1: modifying multiple functions: Developers tend
to make multiple functions to fix a given fault. We can
embed this strategy to GenProg. In GenProg’s program
generation, a single statement is different between n-th and
(n+1)-th generation programs. For example, if a function is
modified to generate a n-th program, modifying a statement
in other functions to generate a (n + 1)-th program is a
straightforward way.

Strategy2: adding branches and loops: Developers tend
to change control flows by adding branches and loops. We
can also embed this strategy to GenProg. For example,
in cases where insertion or replacement is performed to
generate next generation programs, selecting if-statements
or while-statements is a reasonable approach.

Strategy3: adding and deleting multiple code lines: De-
velopers tend to add/delete more code lines. To imitate such
modifications, adding/deleting multiple code lines in a single
insertion/deletion operation should be a good approach. This
strategy has already been realized as block insertion [15].

VI. THREATS TO VALIDITY

This experiment includes a large amount of manual works.
The authors may have done mistakes in the manual works.
To avoid such mistakes as much as possible, the authors
investigated each of the modified functions and their CFGs
with fastidious care. The authors took approximately an
hour to investigate every single function involved in the
modifications on the 83 functions. The authors took a break
every two- or three-function investigation to avoid a decrease
in concentration.

In this experiment, the targets are nine software included
in ManyBugs benchmarks. If we conduct the same experi-
ments on other software developed by different developers,
we may have obtained different results.

VII. CONCLUSIONS

In this paper, we reported comparison results between
developers’ modifications and GenProg’s one. As a result,
we obtained some findings: developers tend to modify more
different functions than GenProg; developers tend to add
more branches/loops than GenProg; developers tend to
add/delete a greater amount of code lines than GenProg.
In the future, we are going to propose and implement some
strategies to improve automated program repair based on the
findings.

VIII. ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant
Numbers 25220003.

REFERENCES

[1] J. Baker, “The gpl-violations.org project,” http://goo.gl/
yo8TkT, Feb. 2012, Last accessed 22 July 2016.

[2] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenel-
lenbogen, “Reversible debugging software,” Judge Business
School, University of Cambridge, Tech. Rep., 2013.

[3] J. A. Jones and M. J. Harrold, “Empirical Evaluation of
the Tarantula Automatic Fault-localization Technique,” in
Proceedings of the 20th IEEE/ACM International Conference
on Automated Software Engineering, 2005, pp. 273–282.

[4] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang, “Taming
Coincidental Correctness: Coverage Refinement with Context
Patterns to Improve Fault Localization,” in Proceedings of the
31st International Conference on Software Engineering, 2009,
pp. 45–55.

[5] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Au-
tomatically Finding Patches Using Genetic Programming,” in
Proceedings of the 31st International Conference on Software
Engineering, 2009, pp. 364–374.

[6] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic Patch
Generation Learned from Human-written Patches,” in Pro-
ceedings of the 2013 International Conference on Software
Engineering, 2013, pp. 802–811.

[7] F. Long and M. Rinard, “Staged Program Repair with Condi-
tion Synthesis,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 166–178.

[8] X.-B. D. Le, D. Lo, and C. L. Goues, “History Driven
Program Repair,” in Proceedings of the 23rd International
Conference on Software Analysis, Evolution, and Reengineer-
ing, 2016, pp. 213–224.

[9] F. Long and M. Rinard, “Automatic Patch Generation by
Learning Correct Code,” in Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2016, pp. 298–312.

[10] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis,” in
Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 691–701.

[11] ——, “DirectFix: Looking for Simple Program Repairs,” in
Proceedings of the 37th International Conference on Software
Engineering, 2015, pp. 448–458.

[12] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“SemFix: Program Repair via Semantic Analysis,” in Pro-
ceedings of the 2013 International Conference on Software
Engineering, 2013, pp. 772–781.

[13] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. Lame-
las, T. Durieux, D. L. Berre, and M. Monperrus, “Nopol:
Automatic Repair of Conditional Statement Bugs in Java
Programs,” IEEE Transactions on Software Engineering (to
be published).

[14] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is
the Cure Worse Than the Disease? Overfitting in Automated
Program Repair,” in Proceedings of the 10th Joint Meeting
on Foundations of Software Engineering, 2015, pp. 532–543.

[15] Y. Ke, K. T. Stolee, C. L. Goues, and Y. Brun, “Repairing
Programs with Semantic Code Search,” in Proceedings of
the 30th IEEE/ACM International Conference on Automated
Software Engineering, 2015, pp. 295–306.

[16] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer,
“A Systematic Study of Automated Program Repair: Fixing
55 out of 105 Bugs for $8 Each,” in Proceedings of the 34th
International Conference on Software Engineering, 2012, pp.
3–13.

[17] Z. Qi, F. Long, S. Achour, and M. Rinard, “An Analysis of
Patch Plausibility and Correctness for Generate-and-validate
Patch Generation Systems,” in Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis, 2015,
pp. 24–36.

[18] C. L. Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. De-
vanbu, S. Forrest, and W. Weimer, “The ManyBugs and In-
troClass Benchmarks for Automated Repair of C Programs,”
IEEE Transactions on Software Engineering, vol. 41, no. 12,
pp. 1236–1256, 2015.

