
Stepwise Approach to Design of Real-Time Systems based UML/OCL
with Formal Verification

Takeshi NAGAOKA†, Eigo NAGAI†, Kozo OKANO†, and Shinji KUSUMOTO†

†Graduate School of Information Science and Technology, Osaka University
Machikane-yama 1–3, Toyonaka City, Osaka, 560–8531 Japan

Abstract - This paper provides a stepwise method for the
design of real-time systems with timeliness QoS guarantees.
In the proposed method, the system components are designed
using UML diagrams and are provided with the timeliness
QoS annotated with OCL. The basis of this technique is to for-
mally ensure that the required timeliness QoS is satisfied un-
der the provided timeliness QoS, given the network property
and the UML diagrams. In order to avoid the state-explosion
problem during performance model checking, which can logi-
cally check the satisfiability, the problem is separated into two
steps. The first step checks the satisfiability using an abstract
model of each of the components derived automatically from
the provided QoS. The second step independently performs
model checking for each of the components using a more de-
tailed version of the behavioral model of a given component.
Such an approach reduces the number of total states to check.
Furthermore, the approach can be extended into hierarchical
design, which leads to good scalability. Experimental results
are also included in this paper.

Keywords: timeliness QoS, UML/OCL, model checking,
component based systems, hierarchical design

1 Introduction

This paper presents a new method to verify consistency of
timeliness QoS of component-based designed real-time sys-
tems. We assume that timeliness QoS is not only given to a
whole system (Required QoS) but also associated with each
component of a given system (Provided QoS).

Timeliness QoS is a time aspect of QoS (Quality of Ser-
vice) features[1]. In the paper, we treat jitter, latency and
throughput as timeliness QoS.

Nowadays, most real-time systems are designed with help
of UML diagrams[7]. Especially components and their re-
lation through signal communication can be represented in
a class diagram of UML. In UML based design, such time-
liness QoS can be annotated in OCL[8]. The annotation is
associated to each of components as a provided QoS and also
to a network link as a network property. Recently, SysML
(System Model Language)[13] also attracts interest. SysML
extends from UML and presents mixed systems consisting of
physical devices and software and network systems. There-
fore, SysML supports diagrams for signal flows and physical
flows. For behavioral diagrams, SysML supports four dia-
grams as same as UML. Among them, state diagram has pow-
erful representation including parallel and hierarchical states.

The proposed method is revised version of paper [15]. The
method in [15] uses Linear Programming (LP) for some of
verification. The approach has a disadvantage that connec-
tion among components has to be acyclic, and it cannot be
applied to hierarchical design. The method of this paper uses
abstract QoS automata instead of using LP; thus it improves
the former disadvantage.

The heart of the technique is formally to ensure that the
required timeliness QoS is satisfied under the provided time-
liness QoS, given network property and the class diagram.

In order to check the satisfiability, there are several ap-
proaches. Formal approaches are very useful. Model check-
ing is one of such an approaches. Notion of Test Automata[3],
[5] and its application is also useful. However, one of disad-
vantage of the method is the state-explosion problem.

In order to avoid state-explosion problem while perform-
ing model checking, we separate the problem into two steps.
The first step checks the satisfiability using abstract model of
each of components derived automatically from the provided
QoS. The second step performs model checking each of com-
ponents independently using more detailed version of behav-
ioral model of a component. Such an approach efficiently
reduces the number of total states to check. Moreover the ap-
proach can be extended into hierarchical design; therefore it
has good scalability.

SaveCCM[14] is a technique for Component based Devel-
opment (CBD). In a description of a component, it allows user
to define ports where signals input or output and to represent
behavior in a timed automaton[2]. An IDE over Eclipse is
available. Therefore, our proposed method has an affinity for
SaveCCM.

The paper organized as follow. Section 2 gives timeliness
QoS. Section 3 shows how to design component based real-
timed systems in UML/OCL. Section 4 demonstrates the pro-
posed method which consists of two steps. Section 5 provides
an experimental example. We conclude the paper in Section
6.

2 Timeliness QoS

Main building blocks of our model are components. Each
component has one or moreinterfacesto the environment,
where all interactions between components is conducted via
the interfaces. Since, we are mostly dealing with real-time
systems and timeliness QoS, we shall assume that the inter-
action of a component with its environment is carried out via

data_flow((a1,b1),(a2,b2))

<< network >>

 A_B
<<QoS>>network_delay

<< component >>

 A

<<QoS>>throughput(a1,100)
<<QoS>>throughput(a2,100)

<< component >>

 B

<<QoS>>jitter(b1,5)
<<QoS>>delay(b2,b3)

Figure 1: A Configuration of Components in UML Class Di-
agram

input andoutputsignals. As a result, interfaces of a compo-
nent specify signals that the component receives or emits.

Each component is associated with a number of input and
output signals. In this paper, signals are denoted byx, y andz.
Time of occurrence of a signal is denoted via a non-negative
sequence of rational numbers. For example, the time of oc-
currence of a signalx is denoted withx1, x2, . . . representing
time of first, second, ... occurrence ofx.

Timeliness QoS expressions [9] such as jitter, throughput
and latency can be expressed via first-order logic formulas on
the set of time of occurrence of signals.

Throughput of at least (most)K within the time periodT,
for signal x can be written as the first order formula∀i ∈
N : xi+K−1 − xi ≤ T (∀i ∈ N : xi+K−1 − xi ≥ T),
respectively.

Notice, paper [5] refers to the above QoS constraint as Non-
Anchored throughput.
Jitter , also called Non-Anchored jitter , of a signalx can be
defined by the expression∀i ∈ N : T − m ≤ xi+1 − xi ≤
T + M, whereT is the period of the jitter andm,M are
constant rational numbers.
Latency of at mostT unit of time between two signalsx and
y as∀i ∈ N : 0 < xi − yKi+K′ ≤ T. A special case of the
above definition (forK = 1 andK ′ = 0) is the well-known
definition of latency∀i ∈ N : 0 < xi − yi ≤ T that applies
to the time difference of thei-th occurrence ofx andy.

3 UML/OCL based design of real-time
systems

A real-time system can be designed as a set of components
where signal communication links exist among pairs of com-
ponents. We can describe such components in a UML class
diagram in Fig. 1.

Type Component can be specified by Stereotyping “com-
ponent,” by which user can easily extend UML specification.
A signal communication can be specified with Association.

Each of components has provided QoS, which can be rep-
resented via OCL annotation. Each of network links (which
has association class with stereotype “network”) also has net-
work properties represented via OCL annotation. The net-
work properties is the same as timeliness QoS. Attribute re-
gion of each class, includes special variables for QoS with
“QoS” stereotype (in Fig. 1).

The following is the syntax of the variables.

Throughput Variable := “throughput(” signal “,” period
“)” ;
Jitter Variable := “jitter(” signal “,” period “)” ;
Latency Variable := “delay(” output “,” input “)” ;

A class with “component” stereotype has three categories
of timeliness QoS (Jitter, throughput and latency), while a
class with “network” has two categories of timeliness QoS
(Jitter and latency).

The OCL description is given as follows[9].
QoS description := “context” className invariant* ;
invariant := “inv: self.” constraint ;
constraint := variable op constant;
variable := Throughput Variable| Jitter Variable| Latency
Variable
op := “>” | “<” | “≥” | “≤” ;

For example, the following are examples for Fig. 1, where
– means a comment line.

context A
inv: self.throughput(a1,100)≥ 20
– signal a1 is emitted at least 20 times in the period 100
units of time
inv: self.throughput(a2,100)≤ 10
– signal a2 is emitted at most 10 times in the period 100
units of time

context B
inv: self.jitter(b1, 5)< 1
– signal b1 has jitter 1 with period 5 units of time
inv: self.delay(b2,b3)< 5
– latency between receiving signal b2 and sending sig-
nal b3 is less than 5 units of times

context AB
inv: delay≤ 100
– latency (network delay) between component A and
component B is less than 100 units of time

4 The Verification Method

The verification consists of two steps; First Step and Sec-
ond Step.

If some of the components are not simple enough, then re-
peat the process again from First Step on each of the compo-
nents.

The following is the abstract level of steps of the proposed
method.
input:

• system required timeliness QoS represented in OCL;

• component level provided timeliness QoS represented
in OCL; and

• network configuration represented in UML/OCL class
diagram.

output:

• component level behavioral specification represented in
UML/OCL state-chart which satisfies required timeli-
ness QoS under the configuration;

• or failure.

1. First step

(a) We generate test automaton form the required time-
liness QoS.

(b) We generate abstract QoS automaton form each
of the provided timeliness QoS.

(c) We generate configuration automaton form the net-
work configuration.

(d) We check the consistency from parallel composi-
tion of the above automata.

(e) If the result is deadlock then return failure. We
have to reconfigure the requirement or provided
conditions.

(f) If the result is not deadlock then go to Second
Step.

2. Second Step

(a) If the component is not small enough to represent
simple state-chart, then refine the component by;

i. renaming provided QoS of the component to
required QoS;

ii. design sub components and provided QoS of
each of them;

iii. design network configuration; and
iv. we repeat the First Step until the component

is enough to small.

(b) If the component is small enough to represent sim-
ple state-chart, then we describe state chart of the
component.

(c) We translate a test automaton from the provided
timeliness QoS.

(d) We design network of timed automata from the
state-chart.

(e) We check the consistency from parallel composi-
tion of the above automata.

(f) If the result is deadlock then return failure. We
have to reconfigure state-chart.

(g) If the result is not deadlock then return success.

4.1 The First Step

Verification inputs are the following.

• Required QoS;

• a set of components with provided QoS; and

• a configuration automaton which represents network prop-
erties.

T>=t

x!

t:=0, c:=0
c<M

x!

c++

c==M

x!

t :=0, c :=0

Figure 2: Abstract QoS automaton for Anchored Throughput

t <= T+d1

t >= T- d0

x!

t:=0

Figure 3: Abstract QoS automaton for Non-Anchored Jitter

The output is whether a given required QoS is satisfied un-
der a given set of components with provided QoS and a given
set of network links with network properties.

In usual methods, designer models behavior of each com-
ponent in a network of timed automata and for the whole net-
work of timed automata. Then the designer performs model
checking, which often results in state explosion.

Here, we give a new method, in which timed automata (We
call each of them anabstract QoS automaton) is derived
automatically from the provided QoS.

The important point is that derived automata are so small
that state-explosion is avoided.

Here, we give a translate rule for each provided QoS.

4.1.1 Throughput

For a component with anchored throughput with parameter
max:M , min:m and period:T , we give an abstract QoS au-
tomaton in Fig. 2.

4.1.2 Jitter

For a component with non-anchored jitter with parameter max:M ,
min:m, we give an abstract QoS automaton in Fig. 3.

4.1.3 Latency

For a component with latency with parameter max:M , min:m,
we give an abstract QoS automaton in Fig. 4.

t<=M

y?

t:=0

t>=m
x!
t:=0

Figure 4: Abstract QoS automaton for Latency

sleep active failurec == i

e ?
t := 0,
c := c + K

t >= T0 && t <= T &&
c == i

e ? t := 0,
c := c + K

t > T

t < T0 && c == i
e ?

Figure 5: Test Automaton for throughput

Unfortunately, the automaton does not accept inputy until
it emits outputx. To avoid the problem, a set of the same
automata is needed. The number of automaton decided from
throughput property of the components.

4.1.4 Configuration Automaton

A configuration automaton models interfaces among compo-
nents. As each component has several inputs and outputs,
such an I/O is represented as a channel in the configuration
automaton. Each channel synchronizes with some I/O of some
components with provided QoS (abstract QoS automaton).
Abstract QoS automata and the configuration automaton com-
municate each other as described above.

4.1.5 Test Automaton

Here, we give each test automaton for throughput, jitter and
latency[10].

Throughput For a non-anchored throughput of which a sig-
nal e occurs at leastk times in a periodT , a network of test
automata consisting ofk processes of timed automata in Fig.5
observes the throughput. In the network of test timed au-
tomata, the variables c is shared among automata globally.
Each of timed automata is activated by turns along the value
of variableK.

Jitter Figure 6 shows a test automaton for anchored jitter. It
observes whether a signale occurs periodically in the period
[nT − delta0, nT + delta1], wheren = 1, 2, 3,

Latency Figure 7 provides a component of test automata
for latency between a signalx andy.

T/D processes of component in Fig. 7 observes latency at
most D unit of times of the latency.

4.1.6 Verification

The behavior of such media with timeliness property also is
modeled in a network of timed automata, we call such an au-
tomaton a configuration automaton.

Parallel composition of an abstract automaton for every
component and the configuration automaton and test automa-
ton for specified timeliness QoS decides whether the whole
system satisfies the specified timeliness QoS.

s1

t0 <= T

s2

t1 <= T

s0

se12

t0 <= T

se21

t1 <= T

sl12

sl21

failure

e ?
t0 >= T - delta0, t0 < T

e ?
t0 := 0, t1 := 0

t0 == T
t1 := 0

t1 := 0
t0 == T

e ?
t0 <= T + delta1

t0 := 0
t1 == T t1 >= T - delta0, t1 < T

e ?

t1 == T
t0 := 0e ?

t1 <= T + delta1

t0 > T + delta1
e ?

t1 >T + delta1
e ?

t0 < T - delta0
e ?

t1 < T - delta1

e ?

e ?

e ?

Figure 6: Test Automaton for jitter

s0 s1
failure

cx == i
x ?
t := 0, cx := cx + K

cy == i && t <= T
y ?
cy := cy + K

cy == i && t > T

y ?

Figure 7: Test Automaton for latency

For the detail of process of the verification, refer [10].

4.1.7 Category Based Model Checking

Verification is performed for every timeliness QoS category
(latency jitter and throughput). The idea and approach is very
simple. When we want to check only latency as the required
QoS, we build an abstract automaton for provided QoS of la-
tency only.

The divided and conquer approach, reduces the size of states.

4.2 The Second Step

For each of components, Second step has the following two
cases depending on the component’s abstraction

• We repeat First step to the given component recursively.

• We design detail behavior of the component and verify
whether provided QoS is ensured by the design.

If the size of the given component is large and designer has
to design the given component from more detail components,
then repeats First step.

Hereafter, we describe the later case.
At Second step (of the later case), verification is indepen-

dently performed for each component.
Before Second step, the designer has to give detailed be-

havior of each component. Such behavior is given in UML
state-chart. In order to give time constraints on events, the
state-chart has clocks.

Verification inputs are the following.

 UML
Statechart

OCL

UPPAAL

Timed
Automata

Test Timed
Automata

Figure 8: Verification on UPPAAL based on Test Automata

• component’s behavior given in UML state-chart with
clocks; and

• component’s provided QoS.

The output is whether provided QoS is satisfied under a
given UML state-chart with clocks.

The verification is performed based on test automaton. We
have to translate a UML state-chart with clocks to a network
of timed automata.

A state-chart can represent hierarchical architectures; while
a network of timed automata is a simple flat structure model.
In general, hierarchical structure can be flatten, but such trans-
lation increases the number of states. There are several trans-
lations, and this paper adapts the one in [4]. The translation it-
self is an algorithm to translate Hierarchical Timed Automata
(HTA) to a network of timed automata used by UPPAAL[11].

Thus, we have to translate state-charts to HTA. Fortunately,
syntax and semantics of state-chart and HTA are both similar,
the translation is simple.

We add the following constraints on the state-chart.

• the state-char diagram has clocks; and

• arcs in the stat-chart has clock constraints in a form of
the one same as Timed automata in UPPAAL.

We also use test automata to check timeliness QoS. Test
automata for jitter, latency and throughput are given in 4.1.5.

The verification can be performed with UPPAAL. Thanks
to test automata, we just check deadlock property for each
QoS. Logical expression for deadlock property in UPPAAL
is “A[] not deadlock.”

5 Experiment

The proposed method is applied to an example.

5.1 The example

Media Server is an application delivering video stream and
audio stream to Digital Television and Audio System[6], [12].
Each of output devices required timeliness QoS (throughput).
Figure 9 shows the class diagram of the application, which
consists of twelve components.

In order to compare the proposed method to the old method,
which uses LP solver to First Step, we merge the twelve com-
ponents to three components (Server 3 components , Audio
client 4 components, and Video clients 5 components).

MS_Storage MS_Controller

MS_Server

Digital_TV

Audio_System

x3?x2?

x1?

c_DTFrame < MAX_FRAME

y3!

c_DTFrame++,
c_AudioFrame := 0

c_AudioFrame < MAX_FRAME
y2!

c_AudioFrame++, c_DTFrame := 0

y1!

x4?

Figure 10: The configuration automaton

5.2 First Step

The following is the provided QoS.

• Throughput of Component MS–Server is equal or greater
than 100 frames/s.

• Processing latency of Component MS-Storage is equal
or less than 5ms.

• Network latency between MS–Server and Digital–TV
is equal or less than 100ms.

• Network latency between MS–Server and Audio–System
is equal or less than 150ms.

For these provided QoS, and a configuration automaton de-
rived from the UML class diagram, and Required QoS for the
whole system, we apply the verification along with First Step.

Here, we performed verification under the condition that
the throughput of Digital Display (DT Display) is over 30
frames/sec as Required QoS.

Figure 10 shows the Configuration automaton for the ex-
periment. The Configuration automaton in Fig.10 represents
connection among the components. It uses channels to com-
municate abstract QoS automata providing the provided QoS
mentioned above. For example channelx is used for commu-
nication to an abstract QoS automaton with throughput 100
frames/sec at a transition between MS–Controller and MS–
Server. In order to avoid unfairness that frame communica-
tion occurs only between MS–Server and Digital–TV (or only
between MS–Server and Audio–System), we use a parame-
ter MAX FRAME, which is used in a condition that the
maximum successive occurrence of signals between the same
components. We use a conditionMAX FRAME = 1 for
the experiment.

Figure 11 shows the test automaton for throughput as Re-
quired QoS. The test automaton observes throughput of 3
frames per 100ms. As required QoS, the required value of
throughput is 30 frame/sec, We have to need 30 processes of
throughput test automata to observe the throughput exactly.

At the First Step, we have performed verification experi-
ments for two configurations: (1) an abstract QoS which out-
puts ten frames per 100 msec, and (2) an abstract QoS which

Media Server

MS-Storage

MS-Controller

MS-Server

MS-DT_network

MS-AS_network

DT-Receiver DT-Controller

DT-L-Speaker DT-display DT-R-Speaker

AS-Receiver AS-Controller

AS-L-Speaker AS-R-Speaker

Digital-TV

Audio-System

Figure 9: Class Diagram of Media Server

Figure 11: The network of test automata for the given re-
quired QoS

Table 1: The result (1) of first step
of P result CPU time Used memories

3 not valid 0.3 ms 23.9MB
6 not valid 1.4 ms 24.4MB
9 valid 28 ms 24.8MB
12 valid 50.6 ms 25.9MB
15 valid 83.6 ms 26.8MB
30 valid 480 ms 34.4MB

outputs 30 frames per 300 msec, respectively, are used for ab-
straction of provided QoS for MS.Server. Each of two experi-
ments is performed with several numbers of test automata: 3,
6, 9, 12, 15 and 30. We have obtained CPU times and sizes
of memory consumed. The experiments are performed in the
following environment: CPU is Intel Core 2 Duo 2.33GHz,
OS is Windows Vista Business and M.M. is 2GB. We used
UPPAAL4.1.0 as a model checker. Table 1 and Table 2 show
the results of (1) and (2), respectively. The column of “# of P”
shows the number of processes (the number of test automata).

Table 2: The result (2) of first step
of P result CPU time Used memories

3 not valid 0.6 ms 23.9MB
6 not valid 0.7 ms 24.4MB
9 not valid 1.2 ms 24.7MB
12 not valid 1.6 ms 25.0MB
15 not valid 2.1 ms 25.1MB
30 valid 957 ms 40.4MB

off

on

on search error

control pack

/T:=0 MS-in[T>2]

/MS-out,T:=0 T<=2
/error

off

Figure 12: A UML Statechart Diagram of Component MS-
Storage

In the previous experiment, we have performed First Step
with Linear Programming solver. In the experiment, we have
performed it in 78 ms (although it has been performed in dif-
ferent environment).

5.3 The Second Step

After First Step, we design inner behavior of each compo-
nent.

In the example, recursive application of First Step is not
performed, because each component is small enough. Be-
havioral specification is described in UML state-chart. The
design must meet the provided QoS. Figure 12 shows behav-
ioral specification of Component MS-Storage.

In order to verify timeliness QoS for each component, State-
chart must to be translated into a network of timed automata

and also timeliness QoS is converted into test automata.
Figure 13 depicts translated result ofon part in Fig.12.
The translating times are summarized as follows.

Translation time : 1153 ms
The number of states(before) : 89
The number of states(after) : 179

entry?
tr:=tr+1

MS-in!
T:=0

T>2

error!

exit?
tr:=tr-1

MS-out!
T:=0

T<=2

Figure 13: An UPPAAL Timed Automaton of Component
MS-Storage

For every component and for every timeliness QoS, verifi-
cation is performed. The total CPU time is about one seconds.

We found that for every component, the verification is per-
formed within a few seconds with UPPAAL, without state ex-
plosion. Also we found that there is no deadlock.

5.4 Discussion

Table 1 shows that when we perform the experiment with
nine test automata, it outputs the correct result. The result of
Tab.2, however, shows that we cannot obtain the correct re-
sult until the number of test automata increases to 30. When
we perform the experiment with 30 test automata, the CPU
time increases exponentially. Therefore, we can conclude
that there is a trade-off between degree of precision and CPU
times. As shown in both tables, the CPU times of the ex-
periments with 30 test automata are too large. Thus, as we
consider the trade-off, in this experiment, the trade-off point
is at which the number of process is 15.

Though we cannot exhibit that our proposed method is bet-
ter than that of linear programming based method with respect
to the CPU time, the performance of the proposed method
is within useful reasonable time. The linear programming
method has many constraints on configuration, while the new
proposed method is flexible and is able to apply recursively
along with component hierarchy, which are the advantage of
the proposed method.

Our proposed method has more acceptable inputs than the
former method. The difference between this and that of gen-
eral class is very small. It is although not faster than the for-
mer method, it is more flexible than the former method.

6 Conclusions

This paper proposed a stepwise verification method for de-
sign of real-time system with UML/OCL focusing on timeli-
ness QoS aspects. The method uses abstract QoS timed au-
tomata in order to reduce the possibility of state explosion.

The method can be applied to a design with complex con-
nection of components.

Future works include simultaneous verification of several
kinds of timeliness QoS, and utilization of feedback informa-
tion such as verification counter-examples.

Acknowledgement
This work is being conducted as a part of Stage Project, the

Development of Next Generation IT Infrastructure, supported
by Ministry of Education, Culture, Sports, Science and Tech-
nology.

REFERENCES

[1] R. Staehli, F. Eliassen, J. Aagedal and G. Blair “Quality
of Service Semantics for Component-Based Systems,”
2nd Int’l Workshop on Reflective and Adaptive Middle-
ware Systems, pp.153-157, 2003

[2] R. Alur and D.L. Dill: “A Theory for Timed Automata,”
In Theoretical Computer Science 125 pp.183-235, 1994.

[3] L. Ageto, P. Bouyer, A. Burguẽno and K. G. Larsen:
“The Power of Reachability Testing for Timed Au-
tomata,” LNCS, Vol.1530, pp.245-256, 1998.

[4] A. David and M. O. M̈oller: “From HUPPAAL to UP-
PAAL: Translation from Hierarchical Timed Automata
to Flat Timed Automata,” BRICS Technical Report Se-
ries, RS-01-11, 2001.

[5] H. Bowman, G. Faconti and M. Massink: “Specification
and verification of media constraints using UPPAAL,”
In Proceedings of Design, Specification and Verification
of Interactive Systems’98, pp.261-277 Springer, 1998.

[6] K. Havelund, A. Skou, K. G. Larsen and K. Lund: ”For-
mal Modelling and Analysis of an Audio/Video Proto-
col: An Industrial Case Study Using UPPAAL,” In Pro-
ceedings of the 18th IEEE Real-Time Systems Sympo-
sium, pp.2-13, 1997.

[7] Object Management Group: Unified Modeing
Language Specification version 2.1, available at
http://www.omg.org/.

[8] B. Bordbar, J. Derrick and A. G. Waters: “A UML
approach to the design of open distributed systems,”
In Chris George and Huaikou Miao, editors, Formal
Methods and Software Engineering, LNCS, Vol.2495,
pp.561-572, 2002.

[9] UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms, Request for
Proposal, available athttp://www.omg.org

[10] B. Bordbar and K. Okano, “Verification of Timeli-
ness QoS Properties in Multimedia Systems,” 5th In-
ternational Conference on Formal Engineering Methods
(ICFEM ’03), LNCS 2885, pp.523-540, 2003

[11] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi: “UPPAAL . a Tool Suite for
Automatic Verification of Real-Time Systems,” LNCS,
Vol.1066, pp.232-243, 1995.

[12] D. Akehurst, J. Derrick, and A. G. Waters: “Design
and Verification of Distributed Multi-media Systems,”
LNCS, Vol.2884, pp.276-292, 2003.

[13] The official OMG SysML site,
http://www.omgsysml.org/

[14] J. Carlson, J. H̊akansson and P. Pettersson: “SaveCCM:
An Analysable Component Model for Real-Time Sys-
tems,” Proc. of FACS’05, Electronic Notes in Theoreti-
cal Computer Science, Vol.160, pp.127-140, 2005.

[15] E. Nagai, A. Makidera, K. Okano, K. Taniguchi: “A
Method to Develop Distributed Real–Time Applications
Based on UML/OCL (in Japanese),” In the IEICE Trans-
actions, Vol.J89-D No.4, pp683-692, 2006.

