
Hey! Are You Injecting Side Effect?: A Tool for
Detecting Purity Changes in Java Methods

Naoto Ogura∗, Jiachen Yang∗, Keisuke Hotta∗, Yoshiki Higo∗ and Shinji Kusumoto∗
∗Graduate School of Information Science and Technology, Osaka University, Japan

Email: {n-ogura, jc-yang, k-hotta, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract—Methods not having side effects (pure methods) are
beneficial in some situations. For example, data race does not
occur among pure methods in multi-thread programs. Another
example is that there are some cases where developers expect
methods are pure, such as equals, hashCode, and getter methods
in Java. This paper presents a tool finding code changes where
methods become pure/impure. This tool can prevent developers
from inducing purity-related bugs to methods. The authors have
applied the tool to two open source systems and found (1) a dozen
of methods moved to pure/impure repeatedly and (2) there were
many cases where purity of methods had changed without code
changes.

I. INTRODUCTION

In functional programming languages, purity of function is
an important feature. In this paper, methods not having side
effects in object-oriented programming languages are called
pure methods[1]. Figure 1 shows examples of pure/impure
methods. Pure methods are beneficial in some situations. Data
race, which is a major problem in multi-thread programs, does
not occur among pure methods. There are also some cases
where developers expect methods are pure, such as equals,
hashCode, and getter methods in Java.

The authors assumed, if purity of methods is changed un-
intentionally, it implies bug inducing. In other words, finding
purity changes are useful to find induced bugs and prevent new
bugs from being induced. This paper presents a tool finding
purity changes in revisions of source code repositories. The
authors have applied the tool to two open source systems and
there were many methods whose purity was changed.

The tool is open to the public in the authors’ website1.

II. PRELIMINARIES

A. Side Effect

In the functional programming languages, a function has
side effects when there are states inside or outside of the
function definition that has been changed before and after the
execution of the function. On the contrary, a function without
side effects is called a pure function. For example, if a function
modifies the value of a global variable or performing I/O
operations, the function has side effects because it changes
the state outside the function. If the function modifies a value
of a static variable defined inside that function, the function
also has side effects because it changes the state inside the
function. On the other hand, if the function only modifies the

1http://sdl.ist.osaka-u.ac.jp/∼n-ogura/2016 detecting-purity-changes

int add(int a, int b) {
return a + b;

}

(a) Pure Method

private int counter;
int count() {
return counter++;

}

(b) Impure Method

Fig. 1: Examples of Pure/Impure Methods

value passed to the function as arguments, or only reads the
value from global variables, the function does not have side
effects because it does not change the states.

B. Pure Method

We applied the idea of purity from functional programming
languages to the object oriented programming languages and
call the methods without side effects as pure methods [1].
The return value of a pure method depends on only the
passed arguments, the member fields, and the static fields. A
pure method will not change the state inside or outside the
method. Because pure methods will not affect the execution
of other methods, they are useful in implementing multi-thread
programs.

The return values of pure methods depend on only argument
variables and field variables. In other words, as long as used
field variables are not changed, the return value of pure method
will be the same results when the same parameter is passed.
Yang et al. reported that caching the return values of pure
methods was useful for improvement of the performance at
three Java software projects[2].

III. TOOL OVERVIEW

A. Architectural Design

This tool is a command-line based static analysis tool im-
plemented in Java. This tool employs purano [1] and ECTEC
[3] developed by our research group. This tool takes a software
repository as input and detects purity changes of methods
between every pair of consecutive revisions. If the purity of a
method is changed between a pair of revisions, the information
of the method and the commit are stored into database as
output. The targets of this tool are source code of compilable
Java software.



Repository

rev r rev r+1

MethodA
Pure

Step1: Revealing Purity

Step2: Tracking Methods

MethodA

MethodB

MethodC

MethodA’

MethodB’

MethodC’

rev r rev r+1

MethodB
Impure

MethodC
Pure

MethodA’
Pure

MethodB’
Pure

MethodC’
Impure

MethodA
Pure

Step3: Detecting Purity Changes

MethodB
Impure

MethodC
Pure

MethodA’
Pure

MethodB’
Pure

MethodC’
Impure

Fig. 2: Overview of Detection Algorithm

B. Usage in 2 Scenarios

1) Checking before Committing: in this scenario, devel-
opers use this tool in code implementation. Developers can
know purity changes are included in their code changes by
using this tool before committing. When purity is changed by
the latest developer’s change, this tool notifies the developer.
This notification helps developers to know unintentional side
effect injections before committing. When developers get the
notification, they consider whether the side effect injection will
be appropriate. In other words, the notificatoin will prevent bug
inducing.

2) Checking history: in this scenario, developers apply this
tool to repositories to check development history. For example,
they can know how many times purity of each method has been
changed. Past purity changes might be related to bug inducing.
Investigating past purity changes can be a way to detect latent
bugs, which should improve the quality of the software.

For another example, there is a case where bugs with data
race occur in multi-thread programs. The cause of the bugs
might be inserting operations assigning the same variable into
multiple methods. Purity changes sometimes occur by such
insertions. This tool is useful for developers to enumerate past
changes to investigate.

TABLE I: Overview of Target Software

Software Start Date End Date #Revision LOC
jEdit 2/Sep/2001 17/Aug/2012 5,302 183,093

JFreeChart 19/Jun/2007 28/Jan/2013 1,606 323,497

TABLE II: # of Methods Whose Purity was Changed

Software (a) #Targets (b) #Changed Ratio (b) against (a)
jEdit 6,271 331 0.0527

JFreeChart 7,790 55 0.0070

C. Detection Algorithm

This tool detects purity changes by applying the following
three steps to a target repository. An overview of those steps
is shown in Figure 2.

1) Step1 (Revealing purity of each method in Java byte-
code): purano [1] analyzes Java bytecode and reveals purity
of each method. This tool employs purano and applies it to
adjacent revisions.

Purano extracts all methods and variables used in each
method. Methods calling impure methods or assigning to field
variables are classified into impure method. If an overriding
method in a subclass is impure, its overridden method in a
superclass is impure.

2) Step2 (Tracking methods): by tracking methods from
their births to their removals, this tool identifies same methods
even if their signatures were changed. This tool employs
ECTEC [3] to track methods.

3) Step3 (Extracting information methods and commits
where purity is changed): purity information is attached to
all revisions of each method by using the results of step1
and step2. Then, this tool detects commits and methods where
purity was changed.

IV. APPLICATION TO OSS REPOSITORIES

A. Target Software

We conducted experiments on two well-known software
projects, jEdit and JFreeChart. Table I shows an overview of
the target projects. #Revision means the number of revisions
where at least a source file was added, removed, or changed.
LOC means the number of lines in source code at End Date.

The target projects are written in Java and managed with
Subversion. They are compilable with Ant and Maven.

B. Findings

Table II shows the number of methods whose purity was
changed. We found that there were methods whose purity
had been changed in software development process. Table
III shows the number of methods whose purity was changed
to pure or impure only once, or changed multiple times.
There are many methods whose purity changes repeatedly,
and the frequent purity changes might confuse developers. We
investigated whether purity had been changed with or without
source code changes. Table IV shows the number of purity
changes where source code was changed at the same time.
We confirmed many purity changes did not have source code

TABLE III: The Frequency of Purity Changes

Software Only Once Multiple Times
To Pure To Inpure

jEdit 59 115 157
JFreeChart 37 18 0

TABLE IV: # of Purity Changes Where Code Was Changed

Software Changed Not Changed
jEdit 258 443

JFreeChart 18 37



org/gjt/sp/jedit/search/HyperSearchResult.java
74 int start = o.startPos.getOffset();
75 int end = o.endPos.getOffset();
76 + System.err.println("#" + i + ": startPos=" +...
77 Selection.Range s = new Selection.Range(
78 start,
79 end

Fig. 3: A Part of Changes on r19698 in jEdit

changes. A purity change in a method propagates to other
methods. In other words, method purity can change even if
its source code is not changed. The results imply developers
might change purity of other methods unintentionally.

C. Bug Detection

We manually investigated changes where purity was
changed to impure. We investigated 122 methods whose purity
changes to impure with source code changes. Those changes
were occurred in different methods. An error output statement
was inserted to the 76th line in HyperSearchResult.java on
r19698 in jEdit. Figure 3 shows a part of changes on r19698.
The change injects a side effect and the statement was re-
moved by r19701, which is two days after. Consequently we
concluded the change induced a bug by commit messages or
future changes. There are many cases that methods having
only a comment “TODO” changed to impure method by
implementing its function.

V. CONCLUSION

In this paper, we presented a tool to find purity changes
in source code repositories. By using this tool, developers
can find bugs related to unintentional purity changes. We
have applied the tool to two open source systems and there
are many methods whose purity was changed repeatedly.
In the applications, most of purity changed were not bug
inducing, but we found a few problematic purity changes. In
the future, we plan to develop an Eclipse plugin and conduct
more experiments with developers of open source systems.
In addition, we are going to conduct research to make better
understanding of whether detected purity changes relate to bug
introducing.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers 25220003.

REFERENCES

[1] J. Yang, K. Hotta, Y. Higo, and S. Kusumoto, “Revealing purity and
side effects on functions for reusing java libraries,” in Proc. of the 14th
International Conference on Software Reuse, Jan. 2015, pp. 314–329.

[2] ——, “Towards purity-guided refactoring in java,” in Proc. of the 31st
International Conference on Software Maintenance and Evolution, Oct.
2015, pp. 521–525.

[3] Y. Higo, K. Hotta, and S. Kusumoto, “Enhancement of crd-based clone
tracking,” in Proc. of the 13th International Workshop on Principles of
Software Evolution, Aug. 2013, pp. 28–37.


