
Identifying Auto-Generated Code by Using
Machine Learning Techniques

Kento Shimonaka∗, Soichi Sumi∗, Yoshiki Higo∗ and Shinji Kusumoto∗
∗Graduate School of Information Science and Technology

Osaka University, Japan
Email: {s-kento, s-sumi, higo, kusumoto} @ist.osaka-u.ac.jp

Abstract—Recently, many researchers have conducted mining
source code repositories to retrieve useful information about
software development. Source code repositories often include
auto-generated code, and auto-generated code is usually removed
in a preprocessing phase because the presence of auto-generated
code is harmful to source code analysis. A usual way to remove
auto-generated code is searching particular comments which exist
among auto-generated code. However, we cannot identify auto-
generated code automatically with such a way if comments have
disappeared. In addition, it takes too much time to identify auto-
generated code manually. Therefore, we propose a technique
to identify auto-generated code automatically by using machine
learning techniques. In our proposed technique, we can identify
whether source code is auto-generated code or not by utilizing
syntactic information of source code. In order to evaluate the
proposed technique, we conducted experiments on source code
generated by four kinds of code generators. As a result, we
confirmed that the proposed technique was able to identify auto-
generated code with high accuracy.

I. INTRODUCTION

Source code analysis is one of the main research fields of
software engineering. For example, a significant amount of
research has been conducted on finding similar parts from
source files and mining code changes in source code reposi-
tories. Source code of software systems often includes auto-
generated code [1] [2], i.e., output of parser generators. The
presence of auto-generated code occasionally hinders source
code analysis. For example, if we detect code clones from
source code including auto-generated code, a large number
of code clones are detected from auto-generated code [3] [4].
Code clones detected from handmade code should not be paid
attention because their amount is much smaller than the code
clones detected from auto-generated code. That may cause
developers miss some important findings by clone detection
tools. Another example is mining source code repositories. In
mining source code repositories, code elements such as classes
and methods are tracked through thousands of revisions. The
presence of auto-generated code requires longer time to track
code elements [5].

In auto-generated code, there are usually code comments
that represent they are auto-generated code. Thus, we can find
auto-generated code by using search tools such as UNIX grep
and remove them. However, such code comments are occa-
sionally deleted by programmers. In order to find and remove
auto-generated code without code comments, all we can do is
checking source files manually one by one. Consequently, in

this paper, we propose a technique to identify auto-generated
code automatically even if they do not have code comments.

In order to identify auto-generated code without code com-
ments, we try to grasp their features that are not common
to manually developed code. However, it is unrealistic to
find such features by hand work, and so we determined
to use machine learning techniques to collect such features
automatically. First we collected auto-generated source files
manually, then we made some machine learning models by
using the auto-generated source files. Besides, we have con-
ducted some experiments with the models. The experimental
results showed that we were able to identify auto-generated
code automatically with very high accuracy.

The remainder of this paper is organized as follows: Section
II explains the proposed technique and Section III describes
the experiments. Sections IV and V describe discussion of the
experiments and some threats to validity, respectively. Finally,
we conclude this paper in Section VI.

II. PROPOSED TECHNIQUE

In this paper, we propose a technique to identify auto-
generated code automatically by using machine learning tech-
niques. Figure 1 illustrates an overview of the proposed
technique. The proposed technique takes learning data (which
consists of auto-generated source files and handmade source
files) and test data as its input, and predicts whether the test
data is auto-generated code or not as its output.

Machine learning techniques learn features of learning data
and construct a learning model to predict unknown classes
of test data. By providing the learning model with syntactic
information of test data, the test data is predicted whether it
is auto-generated code or not. Each feature of learning data is
called explanatory variable, and each class of test data (which
is to be predicted) is called objective variable.

The proposed technique consists of following two steps. In
Step 1, we obtain syntactic information of learning data, then
construct a learning model by using the syntactic information.
In Step 2, we apply the learning model to test data which is
to be predicted whether it is auto-generated code or not. In
the remainder of this section, we describe each step in detail.

A. Step 1: constructing a learning model
In Step 1, we obtain syntactic information of learning

data. As the syntactic information, we use AST (Abstract

O
utput

Test Data

• It is generated code

• It is handmade code

A Set of
Auto-

Generated
Source Files

Step 1: constructing a learning model

A Set of
Handmade
Source Files

Input

Learning Model

Syntactic Information

Input

Step 2: applying a learning model

Output

Fig. 1. Overview of The Proposed Technique

Syntax Tree) nodes of source code. The value that explanatory
variables take is the number of occurrences of each AST node,
or integer value. The objective variable indicates whether given
source code is auto-generated code or not. In Section III, we
give an example of AST of Eclipse JDT, which is a library
we used in our implementation.

After obtaining the syntactic information, we construct a
learning model based on the syntactic information. In con-
structing a learning model, prediction accuracy decreases if
the number of explanatory variables is too large, which is
called over-fitting. Thus, we do not use all of the explanatory
variables, but we conduct a variable selection to leverage only
useful ones. We use four algorithms, Decision Tree [6], Ran-
dom Forest [7], Naive Bayes [8], and SVM [9], to construct
learning models. These algorithms are representative ones on
machine learning techniques. Table I illustrates features of
each algorithm.

TABLE I
ALGORITHM FOR CONSTRUCTING A LEARNING MODEL

Algorithm Description
Decision Tree It generates a conditional branch tree following the

values of the explanatory variables. It is useful for
learning data which contains many missing values
and outliers.

Random Forest It generates some decision trees by using learning
data sampled randomly. It combines them and gen-
erates a more precise decision tree. It takes more
time than Decision Tree.

Naive Bayes It uses conditional probability. It is one of the most
basic algorithms on machine learning techniques,
which takes less time.

SVM It generates a classifier for 2 classes. It is one of the
most precise classification algorithms [10].

B. Step 2: applying a learning model
In Step 2, we apply the learning model to unknown source

files. For this purpose, we prepare source files as test data
which is to be predicted whether it is auto-generated code
or not. We obtain syntactic information of the test data like
Step 1. Furthermore, we conduct a variable selection. Selected
variables are the same as the ones that were selected in Step 1.
After the above process, the learning model predicts whether
the test data is auto-generated code or not.

III. EXPERIMENT

In this section, we describe four experiments that we con-
ducted to evaluate the proposed technique. The followings are
short descriptions for the four experiments.
Experiment 1: We evaluated the learning models as Step

1 of the proposed technique. To evaluate them, cross-
validation was conducted.

Experiment 2: We evaluated the learning models in the same
way as experiment 1, but we used auto-generated source
files and handmade source files that are larger than 10
KBytes.

Experiment 3: We applied learning models made with source
files of a code generator to ones of other code generators.

Experiment 4: We applied a learning model to unknown
source files, and confirmed if auto-generated code was
identified.

A. Experimental Object
We used source files generated by four kinds of code

generators in the experiments. Table II illustrates names of
the four kinds of code generators and the number of files of
auto-generated source files. These code generators are parser
generators for Java. Collected source files are written in Java.
As for test data, we used UCI Source Code Data Sets [11]
(hereafter, we call it UCI datasets).

{1,・・・,2,・・・,0,・・・1,・・・,1,・・・}

CLASS DECLARATION

FOR STATEMENT

IF STATEMENT

METHOD DECLARATION

RETURN STATEMENT

81 kinds of syntactic
information by AST

Hoge.java

public class Hoge{
public int hogehoge(){
int a=0;
int b=0;
for(int i=0; i<10; i++)
a++;
for(int i=0; i<10; i++)
b++;
return a+b;
}
}

Fig. 2. Example of AST Node Generation

/* Generated By: JavaCC
Do not edit this line. */

・
・
・

Fig. 3. Example of Code Comments in Auto-Generated Code

To obtain syntactic information, we used Eclipse JDT
3.10 [12] to generate ASTs. Figure 2 illustrates an example of
generating AST nodes. Eclipse JDT 3.10 defines 84 kinds of
AST nodes, and we used them as explanatory variables, other
than three nodes related to code comments. In other words,
the number of explanatory variables is 81.

In conducting a variable selection, constructing the learning
models and predicting the test data, we used Weka [13],
which is the library developed by Java for machine learning
techniques.

TABLE II
AUTO-GENERATED SOURCE FILES

Code Generator ANTLR JavaCC JFlex SableCC
Number of Files 8,778 21,219 3,789 16,066

B. Data Collection

In order to construct learning models predicting whether
given source code is auto-generated code or not, we collected
auto-generated source files and handmade source files. This
section describes the technique to collect the source files.

First, we collected auto-generated source files. Some auto-
generated source files have code comments that indicate they
are auto-generated code. Figure 3 is an example of such
comments. The auto-generated source files were collected by
text search. More concretely, auto-generated source files were
automatically collected from GitHub [14] by web scraping
using JSoup [15]. In this research, auto-generated source files
changed by developers are regarded as auto-generated source
files.

Second, we collected handmade source files. The handmade
source files were collected from Apache repository [16]. The
auto-generated source files in Apache repository were removed
by text search. The handmade source files were collected as
many as the number of auto-generated source files.

C. Evaluation Measures

We used precision and recall as evaluation measures of
learning models. The following describes the definitions of
the measures.
Precision: the ratio of source files that can be correctly

predicted by a learning model to all source files.
Recall: the ratio of auto-generated source files that can be

correctly predicted by a learning model to all auto-
generated source files.

In experiments 1 and 2, we calculated precision and recall.
In experiment 3, we only calculated recall since experiment 3
did not use handmade source files. In experiment 4, we only
calculated precision.

D. Experiment 1

In experiment 1, five learning models were constructed.
Four of them were constructed from four learning data. Each

learning data is a set of source files generated by one of
the four code generators. The remaining learning model was
constructed from all auto-generated source files which we
collected. To evaluate those learning models, cross-validation
was conducted. In cross-validation, the original data set is
partitioned into N equal size subsets. N − 1 subsets are used
as training data and the remaining one subset is used as test
data. This process is repeated N times, and the output is an
average of precision and recall of each iteration. Each subset
is selected once as the test data.

Table III shows the results of the experiment 1. P and R
indicate precision and recall, respectively. All files indicate
the results when the learning model was constructed from all
of four learning data. In many cases, precision and recall are
larger than 90%. Especially, the results of ANTLR and JFlex
are larger than 99% in most cases. The results of Random
Forest are higher than the others and the results of Naive Bayes
are lower than the others in most cases.

E. Experiment 2

In experiment 2, we investigated whether the performance
of a learning model changes when a file size of the learning
model is limited. Experiment 2 is similar to experiment 1. The
difference between experiment 1 and experiment 2 is whether
only large files are used or not. More concretely, we used
10 KBytes or larger files, which are approximately 400 or
more lines of code. Table IV shows the number of files whose
size is 10 KBytes or larger. Table V shows the results of the
experiment 2. Underlines indicate that the results are higher
than the ones in experiment 1. In most cases, precision and
recall are higher than 90%. The results of Random Forest are

TABLE IV
AUTO-GENERATED SOURCE FILES THAT ARE LARGER THAN 10 KBYTES

Code Generator ANTLR JavaCC JFlex SableCC
Number of Files 8,686 6,661 3,786 860

higher than the others and the results of Naive Bayes are lower
than the others in most cases.

F. Experiment 3

In experiment 3, we investigated whether a learning model
constructed from one learning data can identify source files
generated by other code generators. We applied the learning
models to auto-generated source files. As with the experiment
2, the learning data used for constructing learning models were
restricted to 10 KBytes or more. Table VI shows the results of
the experiment 3. In most cases, the results of the experiment
3 are greatly lower than the results of the experiments 1 and
2. In contrast with the results of learning models generated
by ANTLR, JavaCC and JFlex, are 60 to 90%, the results
of a learning model generated by SableCC are 0 to 40%.
We considered that features of the source files generated by
SableCC totally differ with features of source files generated
by the other three generators.

G. Experiment 4

In experiment 4, we investigated whether the proposed
technique detects auto-generated source files for which the
comments have been removed. Two of the authors manually
validated the source files judged as auto-generated source
files. We applied learning models to a part of UCI datasets
because it would consume much time to validate the output of
the learning models. The learning data used for constructing
learning models were limited to 10 KBytes or more.

Table VII shows the results of the experiment 4. We used
Random Forest to construct a learning model because its
precision and recall was the highest in the experiment 2.
The results show that the proposed technique detects auto-
generated source files with 70% accuracy. We also investigated
source files judged as auto-generated source files by the
proposed technique. We extracted 1% of the source files
judged as handmade source files by the proposed technique,
and manually checked them. The results of the investigation

TABLE III
RESULTS OF EXPERIMENT 1

Algorithm ANTLR JavaCC JFlex SableCC All Files
P R P R P R P R P R

Decision Tree 98.6% 98.6% 93.9% 93.9% 99.7% 99.7% 97.3% 97.2% 96.3% 96.3%
Naive Bayes 97.9% 97.9% 83.4% 76.3% 99.1% 99.1% 85.3% 81.3% 78.5% 72.6%

Random Forest 99.0% 99.0% 94.5% 94.5% 99.8% 99.8% 97.5% 97.4% 97.1% 97.1%
SVM 98.3% 98.3% 84.1% 83.1% 99.5% 99.5% 87.2% 83.5% 81.4% 75.3%

TABLE V
RESULTS OF EXPERIMENT 2

Algorithm ANTLR JavaCC JFlex SableCC All Files
P R P R P R P R P R

Decision Tree 97.4% 97.4% 98.7% 98.7% 99.5% 99.5% 99.3% 99.3% 97.1% 97.2%
Naive Bayes 94.5% 93.8% 92.6% 92.1% 98.9% 98.9% 96.0% 95.3% 91.4% 79.5%

Random Forest 98.3% 98.3% 99.4% 99.4% 99.9% 99.9% 99.7% 99.7% 97.9% 97.9%
SVM 96.8% 96.8% 97.0% 97.0% 98.7% 98.7% 97.3% 97.3% 87.1% 88.9%

show that the proposed technique detects handmade source
files with 98% accuracy.

IV. DISCUSSION

First, we discuss the results of experiments 1 and 2. The
accuracies of experiment 2 are higher than the ones of exper-
iment 1, which implies that the larger the training source files
are the higher the accuracies become. We also investigated
false positives manually and found the followings.

• Many false positives were small files, most of them had
only less than 10 explanatory variables.

• Many case entries and literals were included in most of
the false positives.

The first finding is our motivation of conducting experiment
2. Most of the small source files were interface definitions and
abstract class definitions. We can say that if a target source
file does not include less than several program statements, it
tends to be judged wrongly. However, such small files did not
include many code elements, so that they were not likely to
be obstacles of code clone detection and mining source code
repositories. Many case entries and literals appeared in source
files including functions of program analysis, which look like
auto-generated code.

Second, we discuss the results of experiment 3. In most
cases, models generated from a parser generator did not work
well for auto-generated code of other parser generators. At this
moment, we need to make models for each of parser generators
to high accuracy identification. However, we are going to try

TABLE VII
RESULTS OF EXPERIMENT 4

Number of Files 146,346
Generated source files which were predicted 438

Generated source files which were confirmed manually 304
Precision 69%

to achieve high accuracy with cross parser generator models.
Last, we discuss the results of experiment 4. We investigated

dozens of false positives, which were not auto-generated code
regarded as auto-generated ones. The common feature of them
were:

• they included many case entries and literals, and
• they did not include many other program elements.

In order to avoid such false positives, we need to consider
adding other information than structural information.

V. THREATS TO VALIDITY

In the experiments, we collected many source files from the
Apache repository. In case they did not contain code comments
such as “generated by”, they were treated as manually devel-
oped code. However, some of them might be auto-generated
code in truth. This threat is categorized as a threat to construct
validity.

We used four kinds of Java auto-generated code, which had
been generated by four parser generators. Thus, if we use other
programming languages or other parser generators, we might
have different results. This threat is categorized as a threat to
external validity.

In experiment 4, we manually checked if identified code
was auto-generated one or not. We are not developers of the
target software, so that we may have mistaken to judge them.
However, we investigated with two persons to avoid such
mistaking as much as possible. This threat is categorized as a
threat to reliability.

VI. CONCLUSION

In this paper, we proposed a technique to identify auto-
generated code automatically. The proposed technique utilizes
structural information of program source code and some
machine learning techniques to identify auto-generated code
even if there are no code comments such as “generated by”.

TABLE VI
RESULTS OF EXPERIMENT 3

Code generator Algorithm ANTLR JavaCC JFlex SableCC

ANTLR

Decision Tree - 62.6% 71.4% 38.3%
Naive Bayes - 63.4% 84.5% 32.6%

Random Forest - 64.6% 85.6% 45.3%
SVM - 49.7% 60.6% 23.8%

JavaCC

Decision Tree 75.2% - 86.8% 22.0%
Naive Bayes 85.7% - 99.6% 31.1%

Random Forest 75.3% - 99.2% 24.3%
SVM 71.8% - 99.6% 34.6%

JFlex

Decision Tree 71.0% 75.4% - 18.1%
Naive Bayes 66.6% 92.1% - 18.9%

Random Forest 66.5% 51.6% - 0.1%
SVM 69.3% 88.0% - 4.1%

SableCC

Decision Tree 1.2% 3.6% 0.0% -
Naive Bayes 22.0% 3.2% 0.1% -

Random Forest 0.4% 0.2% 0.0% -
SVM 2.7% 1.6% 0.9% -

In the experiments, we used auto-generated code, which
were generated by four parser generators. As a result, we
confirmed that both recall and precision were over 90% in
most cases. However, if we applied a model created by a parser
generators to other parser generators, the accuracies dropped.
In the future, we are going to conduct research to make robust
models that can be applied to many kinds of auto-generated
code with high accuracy.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers 25220003, 24650011, and 24680002.

REFERENCES

[1] McDonald, Pam, Dan Strickland, and Charles Wildman. ”Estimating
the effective size of autogenerated code in a large software project.”
Proceedings of the 17th International Forum on COCOMO and Software
Cost Modeling. 2002.

[2] Uchida, Shinji, et al. ”Software analysis by code clones in open source
software.” Journal of Computer Information Systems 45.3 (2005): 1-11.

[3] J. Harder and N. Goede, ”Cloned code: stable code”, Jour- nal of Software
Evolution and Process 2013.

[4] Gode, Nils, and Rainer Koschke. ”Frequency and risks of changes to
clones.” Proceedings of the 33rd International Conference on Software
Engineering. ACM, 2011.

[5] MacLean, Alexander C., et al. ”Trends that affect temporal analysis using
sourceforge data.” Proceedings of the 5th International Workshop on
Public Data about Software Development (WoPDaSD ʟ10). 2010.

[6] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.
”Classification and regression trees.”, CRS press 1984.

[7] Leo Breiman, ”Random Forests.”, Machine Learning 2001.
[8] Domingos, Pedro and Pazzani, ”On the optimality of the simple Bayesian

classifier under zero-one loss”, Machine Learning 1997.
[9] V. Vapnik and A. Lerner, ”Pattern recognition using generalized portrait

method.”, Automation and Remote Control, 24, 1963.
[10] Burges, Christopher JC. ”A tutorial on support vector machines for

pattern recognition.” Data mining and knowledge discovery 2.2 (1998):
121-167.

[11] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi, ”Uci source code data
sets”.

[12] Eclipse Java development tools (JDT). http://www.eclipse.org/jdt/.
[13] ”Weka 3: Data Mining Software in Java”, http://www.cs.waikato.ac.nz/

ml/weka/.
[14] ”GitHub”, https://github.com/.
[15] ”jsoup: Java HTML Parser”, http://jsoup.org/.
[16] ”Apache, Source code repository”, http://svn.apache.org/repos/asf/.

