
Formal Verification Technique for Consistency Checking between equals and
hashCode methods in Java

Hiroaki Shimba†, Takafumi Ohta†, Hiroki Onoue†, Kozo Okano†and Shinji Kusumoto†

†Graduate School of Information Science and Technology, Osaka University
{h-shimba, t-ohta, h-onoue, okano, kusumoto}@ist.osaka-u.ac.jp

Abstract - Java objects used with the standard collection
should override both of its equals and hashCode methods.
Both of them need to satisfy the consistency rules, or unex-
pected behaviors may cause faults that are hard to detect. One
of previous studies checks whether an equals method satisfies
part of the consistency rule. In order to avoid the unexpected
behaviors, however, it is necessary to check both equals and
hashCode methods satisfy the rules. This research proposes
a method which checks the consistency between equals and
hashCode methods in Java. We model Java source code and
check whether both methods satisfy the rules using an SMT
solver called Z3. We have applied our proposed method to
some projects in practice. As results, we have detected some
of Java source code violating the rules.

Keywords: Java，equals method，hashCode method，For-
mal Verification，Satisfiability Modulo Theories(SMT)

1 Introduction

In Java, an equals method should be rightly overridden in
a class, if its objects are compared. In order to guarantee
an appropriate behavior of the collection framework, when
a class overrides its equals method, its hashCode method also
be overridden[1]. Therefore, Oracle API document defines
some rules for the methods in an Object class[2]. For ex-
ample, an equals method necessary to satisfy reflexive, sym-
metric and transitive properties. A method violating the rules
may cause faults. It is well known that these faults are hard
to detect [1][3][4]. Rupakheti et al. [5][6][7] presented a
checker called EQ which is designed to automatically de-
tect such an equals method violating the rules. EQ mod-
els an equals method and performs model checking to check
whether the equals method satisfies part of the rules. Since
EQ checks only equals methods, it cannot detect the class may
cause fault when such an object is interacted with the collec-
tion framework. Also, EQ uses a model description language
called Alloy which cannot model the bit operations. Hence,
EQ cannot model equals methods using bit operations. There-
fore, in order to avoid the unexpected behavior, we propose a
new method which checks inconsistency between equals and
hashCode methods. We use an SMT solver called Z3[8] to
manipulate an arithmetic operations and bit operations which
are often used in a hachCode methods. Since implementa-
tion patterns of equals and hashCode method are different, we
propose new implementation patterns of hashCode methods.
Also, we propose a method which converts Java code to an ex-
pression in a model description language called SMT-LIB[9].
We have applied our proposed method to some projects in

practice. As results, we have detected some of Java source
code violating the rules. The rest of this paper is organized
as follows. Section 2, Section 3, Section 4, Section5, Sec-
tion 6 and Section 7 present the consistency rules for equals
and hashCode methods, a details of Z3, a motivation example,
how convert Java code to SMT-LIB, an evaluation of our pro-
posed method and discussion and a conclusion of this paper,
respectively.

2 Consistent rules

This section presents the rules which equals and hashCode
methods must satisfy.

2.1 Java Object class

Java Object class is defined as “root of the class hierarchy.
Every class has Object as a superclass. All objects, including
arrays, implement the methods of this class.” by Oracle API
document[2].

2.2 Consistent rules for equals methods

An equals method for Object class determines whether some
other object supplied through its argument equals to this ob-
ject. An equals method must satisfy the following four rules
except a null object[2].

• reflexive: for any non-null reference valuex, x.equals(x)
should return true.

• symmetric: for any non-null reference valuesx andy,
x.equals(y) should return true if and only ify.equals(x)
returns true.

• transitive: for any non-null reference valuesx, y, andz,
if x.equals(y) returns true and y.equals(z) returns true,
thenx.equals(z) should return true.

• For any non-null reference valuex, x.equals(null) should
return false.

The equals method for Object class is defined as follows[2].
“The equals method for class Object implements the most dis-
criminating possible equivalence relation on objects; that is,
for any non-null reference valuesx andy, this method returns
true if and only ifx andy refer to the same object (x == y has
the value true). Note that it is generally necessary to override
the hashCode method whenever this method is overridden, so
as to maintain the general contract for the hashCode method,
which states that equal objects must have equal hash codes.”

International Workshop on Informatics (IWIN 2014)

59

public class Sample{

private int val;

private String str;

public boolean equals(Object obj){

if (obj == null)

return false;

if (this == obj)

return true;

if (!(obj instanceof Sample))

return false;

Sample that = (Sample) obj;

if (this.str == null){

return that.str == null;

}

return this.val == that.val && this.str.equals(that.str)

}

public int hashCode(){

return val + (this.str == null ? 0 : this.str.hashCode());

}

}

Figure 1: example of correct implementation of equals and
hashCode methods

2.3 Consistent rules for hashCode methods

The hashCode method returns a hash code value for the ob-
ject. This method is supported for the benefit of hash tables
such as those provided by HashMap. The hashCode method
must satisfy the following two rules[2]. In this definition,
information implies the returned value from the method in-
voked by its equals method or a field value used in the equals
method. Thus, if there are some inconsistency between equals
and hashCode methods, rule violation occurs.

• Whenever it is invoked on the same object more than
once during an execution of a Java application, the hash-
Code method must consistently return the same integer,
provided no information used in equals comparisons on
the object is modified. This integer need not remain
consistent from one execution of an application to an-
other execution of the same application.

• If two objects are equal according to the equals(Object)
method, then calling the hashCode method on each of
the two objects must produce the same integer result.

The hashCode method for an Object class returns a different
integer value for each different instances. Figure 1 shows an
example of a correct implementation of equals and hashCode.
The sample class has val and str as the integer and String type
field values. The equals method for sample class determines
whether an argument is the instance of the sample class after
determines whether an object passed as the argument is iden-
tical to itself. Next, if the field value str is null, the equals
method checks whether the str in passed object is also null.
Finally, it determines whether the value of val and the string

of str are identical. The hashCode method for the sample class
concatenates the value of val and hash value of str. The sam-
ple class satisfies the consistent rules for both of equals and
hashCode method.

3 Related works

Researches about implementation and design of method in
Object class proposed the method that automatically generate
the equals and hashCode methods. Rayside et al. have pro-
posed a method which automatically generates the equals and
hashCode methods which match the user demands by using a
annotation of classes and methods [10]. This study performs
dynamic analysis of source code. Grech et al. solved the
problem of Rayside research that it consumes long time veri-
fying cyclic objects by analyzing source codes statically[11].
Also, Jensen et al. proposed an annotation which guides the
user when user copying objects by using clone method[12].
Recently, researches using model checking, SAT solver and
SMT solver gain the attentions. Anastasakis et al. proposed
a conversion method that converts class diagrams of UML
with OCL to Alloy [13]. This research helps the developer
who would like to perform verification about Alloy without
knowledge of Alloy. Liu et al. suggested scalable bounded
model checking by representing object oriented languages as
bit vector of SMT solver[14]. This research supports high
speed verification. Balasubramaniam proposed a constraint
solver MINION that has high scalability and equips many
functions[15]. Also, they proposed a method that automati-
cally generates a constraint solver optimized to each domain[16].
This research helps generating the domain specific constraint
solver. Burdy et al. proposed the method that statically ver-
ifies Java source code[17]. This method specifies the code
location that may cause exceptions such as a NullPointerEx-
ception. Also, it can verify Java source code annotated with
JML. It is able to check whether each method satisfy the its
constraints base on JML.

3.1 EQ

EQ checks whether equals method in Java satisfies the con-
sistency rules. EQ receives a type hierarchy and outputs whether
equals method satisfies the consistency rules. Here after, a
type hierarchy is a structure of classes and interfaces repre-
sented as a DAG (Directed acyclic graph). Except Object
class, classes and interfaces which have an inheritance rela-
tionship are belonged into the same type hierarchy. EQ con-
sists of the following four steps. 1) Perform path analysis for
equals method. 2) Analyze the pattern of equals method. 3)
Convert Java code to a model described as Alloy. 4) Verify the
model by alloy analyzer. EQ has two problems. One problem
is that EQ dose not check whether a hashCode method satis-
fies the consistent rules. The other is that since alloy cannot
model bit operators, alloy cannot model equals methods us-
ing bit operators. In this study, in order to solve those two
problems, we use Z3 not Alloy.

International Workshop on Informatics (IWIN 2014)

60

public class COSString extends COSBase{

public byte[] getBytes(){

…

}

public boolean equals(Object obj){

return (obj instanceof COSString)&&

java.util.Arrays.equals

(((COSString)obj).getBytes(),getBytes())

}

public int hashCode(){

return getBytes().hashCode();

}

}

Figure 2: hashCodemethods violating consistency rules in
PDFBox of Apache

3.2 Z3

SMT（Satisfiability Modulo Theories) problem is a deci-
sion problem for logical formulas expressed in first-order logic.
An SMT solver solves SMT problems automatically. The
SMT solver determines if a given logic formula which combi-
nation of theories expressed in first-order logic is satisfiable.
If theories are satisfied, the SMT solver outputs assignments
for variables that makes given theory satisfied. SAT problems
described as theories that consists of only propositional vari-
ables. On the other hand, SMT problems described as the-
ories that consist of propositional which can be many types
such as Int similar to types in programming language. Also,
SMT problems can define and use functions. In this study,
we determine if both equals and hashCode method satisfy the
consistency rules by using the SMT solver called Z3 exhaus-
tively[3]. Z3 can use the arithmetic operations, bit vectors,
arrays and recode types. Since an SMT solver searches the
answer in bounded space exhaustively, it can verify there are
no assignment which violates the consistency rules.

4 The Motivative example

In this section, we motivate this study by showing an ex-
ample.

EQ[7] detected equals methods violating the consistency
rules by experiments for four open source projects. The class
implemented such equals methods may cause fault that is hard
to detect. If an instance of a class which implements its equals
method violating the consistency rules is used in the standard
collection, unexpected behavior might cause faults. For ex-
ample, if an instance of class which has the equals method
violating reflexive is used in standard collection, a contains
method of standard collection cannot determines correctly whether
collection contains such a instance. Since in order to check
equivalence of instances, a contains method of collection such
a List uses equals methods, an unexpected behavior may oc-
cur. Also, if equals methods judge two instances are equiva-
lent but these two instances return different hash values, hash-

public class ArEntry implements ArConstants{

private String filename;

public String getFilename() {

return this.filename;

}

public boolean equals(Object it) {

if (it == null || getClass() != it.getClass())

return false;

return equals((ArEntry) it);

}

public boolean equals(ArEntry it)

if (this.filename == null)

return (it.getfilename() == null);

else

return

this.getFilename().equals(it.getFilename());

}

public int hashCode() {

return super.hashCode();

}

}

Figure 3: Conversion example of Java source code

Code methods cannot perform correct behavior. For example,
HashMap may contain two instances judged equivalent by
equals methods. Figure 2 shows our motivative example. This
example shows an implementation of the hashCode method
violating the consistency rules in PDFBox of Apache[18].

PDFBox uses java.util.Arrays.equals as equals method of
COSString class. Also, PDFBox uses the hashCode method
of byte array as the hashCode method of COSString class.
Hence, equals method checks if two arrays have the same
number of the elements and all corresponding pairs of the
elements in the two arrays are equal The hashCode method
checks these two arrays have the same memory address. There-
fore, if instances of arrays are different and these array have
the same elements with the same order, the equals method
judges these two objects are equivalent but the hashCode method
returns a different hash value for each other. In this case,
HashMap may contain two instances judged equivalent by the
equals methods. HashMap must not contain many instances
judged equivalent by the equals methods. Since many cases
are can be thought, it is difficult to detect the fault. For exam-
ple, an insert procedure has fault and collection has fault.

In order to avoid such unexpected behavior, we propose
new method that check whether both equals and hashCode
methods satisfy the consistency rules.

5 Our proposed method

Our proposed method analyzes the Java code and models
behavior of both of equals and hashCode methods in a model
description language called SMT-LIB. The model is checked
by Z3. Our proposed method receivesthe type hierarchy of
the code and then outputs whether each of equals method sat-

International Workshop on Informatics (IWIN 2014)

61

;Class information

(declare-datatypes () ((Type ArEntry ArConstants UnderARC Object Null)))

...

(declare-datatypes () ((Ref(Rfield (eqnum Int) (hsnum Int) (pointer Int)))))

(declare-datatypes () ((ArEntry(Arfield (filename Ref)))))

(declare-datatypes () ((Object(Ofield (ar ArEntry)(pointer Int)(class Type)))))

(declare-const this Object)

(declare-const that Object)

(declare-const other Object)

(declare-const nobj Object)

...

;method information

(define-fun equalsRef ((r1 Ref)(r2 Ref)) Bool

(ite (and (and (not (= (pointer r1) 0)) (not (= (pointer r2) 0))) (= (eqnum r1)(eqnum r2))) true false))

(define-fun equalsMain ((o1 Object)(o2 Object)) Bool

(and (=> (or (= (class o1) ArConstants) (or (= (class o1) UnderARC)(= (class o1) Object)))

(= (pointer o1)(pointer o2)))

(=> (= (class o1) ArEntry) (and (and (not(= (pointer o2) 0)) (= (class o1)(class o2)))

(or (and (= (pointer(filename (ar o1))) 0) (= (pointer(filename (aro2))) 0))

(equalsRef (filename (ar o1)) (filename (ar o2))))))

)

)

(define-fun hashCode ((o1 Object)) Int(pointer o1))

;equality check

...

(assert (not (equalsMain this this)))

...

(assert (not(iff (equalsMain this that) (equalsMain that this))))

...

(assert (not(=> (and (equalsMain this that) (equalsMain that other))

(equalsMain this other))))

...

(assert (not(=> (not(= (pointer this) 0)) (not(equalsMain this nobj)))))

...

;hashCode check

(assert (not(=> (equalsMain this that) (= (hashCode this) (hashCode that)))))

...

Figure 4: Conversion example of SMT-LIB

isfies the consistency rules. Our proposed method consists of
the following four steps. 1) It perform path analysis for equals
method. 2) It analyzes the pattern of the equals method. 3) It
converts a given Java code to a model described in SMT-LIB.
4) It verifies the model by the Z3. Path analysis generates
a control flow graph, and performs data flow analysis. Data
flow analysis specifies what class is referred by a reference
variable at each position of the source code and specifies what
methods are called. Then, specified methods are inlinined into
equals or hashCode methods if it is needed. Equals or hash-
Code methods perform some types of procedure. Therefore,
pattern analysis classifies each method into some patterns. It
is difficult to directly convert the hashCode procedures which
contain loops including arithmetic operation or library calls,
we analyze this procedure using heuristics operations. After
pattern analysis, we convert Java code to SMT-LIB based on
information from pattern analysis. Also, in order to check
the violation of the obtained consistency rules, we also give

some constraints to the SMT-LIB model. It is very difficult to
model the first consistency rule of hashCode method. Please
recall that the rule is “Whenever it is invoked on the same ob-
ject more than once during an execution of a Java application,
the hashCode method must consistently return the same inte-
ger, provided no information used in equals comparisons on
the object is modified. This integer need not remain consis-
tent from one execution of an application to another execu-
tion of the same application.” In order to model this rule, it is
necessary to model the concept of the time. However, since
first-order logic cannot represent the concept of the time, an
SMT solver cannot check the first consistency rule of hash-
Code methods. Therefore, in order to resolve this problem,
we introduce more strict consistency rule which replaces the
first hashCode rule. On the other hand, since the second
consistency rule of hashCode methods is representable in the
first-order logic, an SMT solver can check the second con-
sistency rule of hashCode methods directly. The substituted

International Workshop on Informatics (IWIN 2014)

62

consistency ruleof hashCode method is as follows. We define
the first rule below as the Subset rule and second one as the
Equivalence rule.

• Subset rule: Set of the fields used in the hashCode
methods must be subsumed by the set of fields used
in equals methods.

• Equivalence rule: If two objects are equal according to
the equals(Object) method, then calling the hashCode
method on each of the two objects must produce the
same integer result.

Figure 3 and 4 show that an example of convert a Java
source code (Fig.3) to a model written by SMT-LIB (Fig.
4). In this example, there are three classes in a type hierar-
chy. That is, an ArConstants interface, ArEntry class which
implements ArConstants and overrides equals and hashCode
method, and a class implementing ArConstants but do not
override equals and hashCode method (this class represented
as UnderARC in Fig.4). Figure.4 represents the SMT-LIB
model of the source code in the type hierarchy. Figure.4 rep-
resents a declaration of types by the class information, a defi-
nition of the method behavior by the method information and
the constraints used in validation by equality check.

5.1 Path analysis

Path analysis is similar to that of [7]. At first, our method
searches equals and hashCode methods. Our method traces
the inheritance relationship for a class which does not over-
ride its equals and hashCode methods. If we detect the class
which overrides equals and hashCode methods, we regard
equals and hashCode method of its parent class as the equals
and hashCode method of such class. If there are no overrides
of equals and hashCode methods in a inheritance relationship,
we regard equals and hashCode method of Object class as the
equals and hashCode in such class. Next, we analyze Java
byte code using Soot[19] and generate its control flow graph.
This control flow graph is represented by Jimple. Jimple rep-
resents a Java source code as three-address code , each expres-
sion consists of one operator, two operand, and one variable
which stores the result of operation. Hereafter, we analyze a
Jimple code generated by the Soot.

Next, our method performs path analysis. At first, our
method enumerates paths using the obtained control flow graph.
Next, our method performs data flow analysis for each path,
and specifies what class is referred from a reference variable
at each source code location and what methods are called. By
this information, our method performs inlining the method
invocations in equals or hashCode methods. However, since
there are very large number of method invocation, our method
limits the inlining. Our method only inlines the method invo-
cations only in the type hierarchy. Also our method does not
inline a getter method which is modeled as refer directly the
field values. Although, Our method does not inlines outer
methods, it models methods of Object class, wrapper classes,
Array classes and Collections, because our behavior of these
method are already well-known.

Finally, our method trims the path which is unreachable and
not necessary to our model. Since our method models equals

method as returns true，we trim the path which returns false.
Also, in order to avoid modeling the null pointer exception,
our method trims the path which includes uninitialized ref-
erence variables. Our method enhances the performance by
trimming the path which is not necessary to model.

5.2 Analyzing the pattern of methods

In this step, our method analyzes the pattern of the pro-
cedure in equals and hashCode methods. By referring the
modeling rules for each pattern, our method converts Java
source code to SMT-LIB. Also, beside the pattern analysis,
our method checks whether subset rule is violated in this step.

5.2.1 Analyzing patterns of equals methods

EQ introduce the six pattern of procedure in equals methods.
Our method analyzes what pattern matches the equals meth-
ods. Six procedure pattern are equivalence checking of array,
equivalence checking of List, equivalence checking of Set,
equivalence checking of Map, type checking and state check-
ing. Type checking checks whether there are type check-
ing by instance operator in if expression, typecast by cast
operator, type checking by getClass method in Object class.
State checking checks whether there are equivalence check-
ing of field values and checking reference variable is not null.
Equivalence checking of array, List, Set, and Map checks
whether there are comparison of the elements in each struc-
ture by loop.

5.2.2 Analyzing patterns of hashCode methods

We introduce the pattern of procedure of hashCode meth-
ods and defies the rules of each procedure. The hashCode
methods procedure pattern are converting to int, bit operation
and arithmetic operation in loop. Converting to int checks
whether there are type converting by cast operation and type
converting by library method of wrapper class. Arithmetic
operation in loop checks whether there are procedure of add
operation in loop.

5.2.3 Checking of the subset rule

Our method performs checking of subset rule. Our method
collects a set of field variable used in equals and hashCode
method by analyzing the equals method and hashCode method,
and checks whether set of field variable used in hashCode
methods are subsumed by set of field variable used in equals
methods. If hashCode method invoke the method of par-
ent classes and other methods since path analysis inlines the
method of parent classes and other methods in hashCode meth-
ods, set of field variable used in hashCode method contains
field variables used in such method. If values of variables in
method of parent classes and other methods are changed, the
change affects the return value of equals and hashCode meth-
ods. Therefore, since it is necessary to consider such field
values, we substitute subset rule for the first rules of hash-
Code methods. Two cases occur in the consistence rule of
hashCode methods. One is hashCode methods use fields val-
ues used in equals method In this case, if field values used in

International Workshop on Informatics (IWIN 2014)

63

(declare-datatypes () ((Type ArEntry ArConstants UnderARC

Object Null)))

(define-fun subof ((t1 Type) (t2 Type)) Bool

(ite (or (= t1 Null) (= t2 Null)) false

(ite (and (= t1 ArEntry) (= t2 ArConstants)) true

(ite (and (= t1 UnderARC) (= t2 ArConstants)) true

false

)

)

)

)

(declare-fun instanceof (Type Type) Bool)

(assert (forall ((x Type) (y Type))

(=> (subof x y) (instanceof x y))))

(assert (forall ((x Type) (y Type))

(=> (and (instanceof x y) (instanceof y x))

(= x y))))

(assert (forall ((x Type) (y Type) (z Type))

(=> (and (instanceof x y) (instanceof y z))

(instanceof x z))))

(assert (forall ((x Type)) (= (instanceof Null x) false)))

(assert (forall ((x Type)) (=> (not(= x Null)) (instanceof x

Object))))

(assert (forall ((x Type)) (=> (not(= x Null)) (instanceof x x))))

(assert (forall ((x Type)) (=> (not(= x ArEntry)) (not(instanceof x

ArEntry)))))

(assert (forall ((x Type)) (=> (not(= x UnderARC))

(not(instanceof x UnderARC)))))

Figure 5: Modelof the instanceof operation

equals method are not changed, hash values also not change.
The other one is hashCode methods use not only field val-
ues used in equals method but also field values not used in
equals methods. In this case, nevertheless field values used in
equals method not change, hash values possibly change. In
order to check this case, it is necessary to check relationships
of field value used in equals and hashCode methods. Since it
is necessary to check all method which modifies field values,
analyzing it consumes much resource.

5.3 Conversion of Java source code to
SMT-LIB

This step consists of the the following two steps. 1) basic
structure conversion converts methods, inheritance relation-
ships, classes and field values to SMT-LIB. 2) procedure of
method conversion converts the procedure of the method to
SMTLIB by using information obtained from the step of ana-
lyzing the pattern of methods.

5.3.1 Basic structure Conversion

Our method represents classes and fields by records in SMT-
LIB. Our method defines fields used in equals and hashCode
methods. It converts all primitive values to Ints in SMT-
LIB. Since equals methods perform only comparison, Int has
enough power to represent the result of equivalence checking.

Although hashCode methods perform any types of arith-
metic operations, since hashCode methods usually perform
typecast to int type before arithmetic operations, our method

Table 1: Part of simpleµ conversion rules
µ(n1+n2) = + µ(n1) µ(n2)
µ(n1−n2) = - µ(n1) µ(n2)
µ(n1∗n2) = * µ(n1) µ(n2)
µ(n1/n2) = / µ(n1) µ(n2)
µ(a1==a2) = = µ(a1) µ(a2)
µ(n1<n2) = < µ(n1) µ(n2)
µ(n1>n2) = > µ(n1) µ(n2)
µ(n1>=n2) = >= µ(n1) µ(n2)
µ(n1<=n2) = <= µ(n1) µ(n2)
µ(n1! =n2) = not(=µ(n1) µ(n2))
µ(b1||b2) = orµ(b1) µ(b2)

µ(b1&&b 2) = andµ(b1) µ(b2)
µ(!b1) = notµ(b1)

µ(a1instanceofa2) = instanceofµ(a1) µ(a2)
µ(a1.getClass()) = classµ(a1)

µ(T1.class) = µ(T1)
µ(b1?a1:a2) = ite (µ(b1)) (µ(a1)) (µ(a1))
µ(n1|n2) = bvorµ(n1) µ(n2)
µ(n1&n2) = bvandµ(n1) µ(n2)
µ(n1 ˆn 2) = bvxorµ(n1) µ(n2)

always converts primitive types used in hashCode methods to
Ints. Our method converts the enumeration field to the enum
type in SMT-LIB. Since reference variables of enum types
possibly refer null, our method models add NULL value to
the identifier introduced by the enum type. Also, since the
enum type of hashCode methods invokes a hashCode method
of Object class, our methods models the enum type of hash-
Code methods as returning the different values for each iden-
tifier. Our method defines reference type fields by introducing
new record Ref representing a reference type. Ref represents
the object that is out of type hierarchy. Our method models
such an object based on the hypothesis that such a method
satisfies the consistency rules of equals and hashCode meth-
ods. Ref defines a field variable that represents reference of
its object. It is used in equivalence checking as Int type field.
Our method defines the equals methods of Ref when an Ref
object is used. Our method does not define hashCode meth-
ods of Ref. It models this as a reference of the hash values.
Our method models the data structure of Java by arrays and
lists. Our method represents arrays, Sets, Maps using arrays
of SMT-LIB. An array of SMT-LIB is defined by specifying
the type of its index and its type of elements. For example,
specifying the type of index as Int represents the array. Set
is also represented by adding a constraint in which elements
are differ from each other to this array. Our method repre-
sents the inheritance relationship of a class by nest of records.
However, it cannot model the behavior of instanceof which
checks whether a class has a inheritance relationship between
other classes. Hence, our method introduces type named Type
which enumerates the type of adds null to all class in the type
hierarchy. Our method models instanceof operator by repre-
senting the relation ship of Type. Figure 5 shows an example
of an instanceof operation model. Definition of Object class
defines all class as field. Object class represents the runtime
objects and defines pointer as Int type. Type defines a field
representing where the instances comes from.

International Workshop on Informatics (IWIN 2014)

64

5.3.2 Conversion of the procedure of methods

Conversion of the procedure of method converts Java source
code to SMT-LIB based on information obtained from step of
analyzing the pattern of methods. First, our method gener-
ates expression trees for each expression represented as Jim-
ple. Our method specifies the final expression returned by
the return expression by tracing the expression tree and an-
alyzing how valued of variables are calculated. The opera-
tion in expressions are converted by converting rules. Table
1 shows the simple converting rules of Java source code to
SMT-LIB. The convert function converts Java source code to
SMT-LIB, where bm and am represent an subexpression of
boolean type and numerical type, respectively. Tm represents
arbitrary types. Java represents an expression with infix no-
tation while SMT-LIB represents expressions by prefix nota-
tion. Also, our method converts instanceof operator based on
modeling previously described.

5.3.3 Conversion of equals methods

Our method converts equals methods based on six patterns
obtained from the pattern analysis. Operations used in type
checking are converted as shown in Table1. Since verification
by an SMT solver is performed on the object level, cast oper-
ations used in equals method are not converted. Since state-
ment checking compared values, the comparison expression
is converted as Table 1. With regard to equivalence check-
ing of arrays, Lists, Sets and Maps, our method models the
method which performs comparison in the loop as performs
comparison each element of an array. For example, lets’ con-
sider an instance of a class which has the array as the field,
and performs equals method. Our method checks whether
this equals method performs comparison of its field array with
array of its argument by the same index. Next, our method
checks whether a variable used in a loop header is used as in-
dex of array. If those two conditions are satisfied, our method
determines it performs comparison. Most of loop operations
in an equals match this pattern. Since other loop operations
are rarely performed and SMT-LIB cannot evaluates state-
ments dynamically, our method does not model such loop op-
erations.

5.3.4 Conversion of hashCode methods

Our method converts hashCode methods based on the six pat-
terns obtained from pattern analysis. Variables changed its
type by cast operation or a method of Java class library is rep-
resented as Int type of SMT-LIB. Operands of bit operations
are represented as 8bit type vector type,. Conversion results
of the operations to Int types by applying the bv2int functions
to the result. Although Int of Java is 32bit, if it models it as
32bit, modeling takes an enormous amount of time. There-
fore, our method models it as an 8bit integer. Bit operations
of hashCode methods operate two operands and not performs
bit operations on specific one bit. Hence, our method can
performs verification. Arithmetic operations in a loop are an-
alyzed and our method determines what pattern matches the
operations. Arithmetic operations in loop can be represented

unsat

(error "line 74 column 17: model is not available")

unsat

(error "line 80 column 22: model is not available")

unsat

(error "line 86 column 28: model is not available")

unsat

(error "line 92 column 22: model is not available")

sat

((this (Ofield (Arfield (Rfield 8 9 7)) 3 ArEntry))

(that (Ofield (Arfield (Rfield 8 9 10)) 2 ArEntry)))

Figure 6: Resultsof verifying the code of Figure 4

as expression, if the number of iteration is identical to the
length of the array and arithmetic operations performed in
loop do not contain nondeterministic values. However, the
result of this operation is decided after the loop is terminated.
Therefore our method limits the loop iteration. This is well
used in bounded model checking. Our method calculates the
result of the loop after 0 to 10 iterations. Our method cannot
verify all cases but if our method decides a hashCode methods
violate the rule, this decision is absolutely true. Similar rea-
son of the equals method, our method does not model other
loop operations.

5.3.5 Additional Constraints

Our method verifies the four consistency rules of equals meth-
ods and the equivalence rule of hashCode methods by an SMT
solver. SMT solver solves the constraint and show assign-
ments which is a set of values for the variables that satisfies
all constraints. Therefore, in order to achieve an example
of a type hierarchy which violates the consistency rule, our
method introduces the negation of the consistency rules as
the constraints.

5.4 Solving constraint by an SMT solver

Our method verifies the SMT-LIB expression which mod-
els Java source code using an SMT solver called Z3. In gen-
eral, Z3 determines whether a given set of constraints is sat-
isfiable or not. If it is unsatisfiable, it also outputs a counter-
example which is a set of assignments of variables and inter-
pretation of functions.

Since our method uses the negation of the consistency rules
as the constraints in SMT-LIB, if Z3 outputs unsatisfiable,
then we conclude that the source code does not violate the
consistency rules. On the other hand, Z3 outputs satisfiable,
we conclude that the source code violates the consistency
rules In such a case, Z3 can output a set of assignments which
makes the input true.

Figure 6 shows the results of verification by Z3 for the
source code in Figure 4. The bottom line show the result of
verifying the equivalence rule of the hashCode method and
the other four lines are the results of verifying consistency
rules of equals methods. Figure 6 shows that violation of
the equivalence rule is detected. The optional outputs as as-

International Workshop on Informatics (IWIN 2014)

65

public class HCatFieldSchema implements Serializable {

public enum Category {

PRIMITIVE,ARRAY,MAP,STRUCT

};

String fieldName,typeString;

Category category ;

・・・
public boolean equals(Object obj) {

if (this == obj)

return true;

if (obj == null)

return false;

if (!(obj instanceof HCatFieldSchema))

return false;

HCatFieldSchema other = (HCatFieldSchema) obj;

if (category != other.category)

return false;

if (fieldName == null) {

if (other.fieldName != null) {

return false;

}

} else if (!fieldName.equals(other.fieldName)) {

return false;

}

if (this.getTypeString() == null) {

if (other.getTypeString() != null) {

return false;

}

} else if (!this.getTypeString().equals(other.getTypeString())) {

return false;

}

return true;

}

public int hashCode() {

int result = 17;

result = 31 * result + (category == null ? 0 : category.hashCode());

result = 31 * result + (fieldName == null ? 0 : fieldName.hashCode());

result = 31 * result + (getTypeString() == null ? 0 :

getTypeString().hashCode());

return result;

}

}

Figure 7: Afixed HCatFieldSchema class

signments show that two ArEntry objects have the same field
value but their references are differ.

6 Experiments

In this section, we evaluate our proposed method by ex-
periment. We implement the verification function of the sub-
set rule, a part of modeling to SMT-LIB and the verification
function to our tool. We did not implement converting of bit
operations and loops. These are one of the future work. Sub-
section 6.1 shows the results of applying our tool to some
projects. The results show the effect of methods violating the
subset rule. Subsection 6.2 shows the results that whether
out tool can detect the violation of the consistency rules of
equals methods. In the experiments, we firstly converted con-
vert Java source code in practice to SMT-LIB manually. Then,

Table 2: Results of violation to the subset rule

Name NumClass Subset Violation
Lucene 110 106 4

we applied ourtool to that model. Subsection 6.3 shows the
execution time of our tool. Subsection 6.4 shows how often
projects in practice violate the rules.

6.1 Evaluation of the subset rule

We applied our tool to Lucene4.6.0. Table 2 shows the re-
sults. Numclass represents the number of classes in which
thier equals or hashCode methods are overridden. Subset rep-
resents the number of classes satisfying the subset rule. Vi-
olation represents the number of classes violating the subset
rule.

We discuss about four classes which violate the subset rule.
Two of four classes contain a field variable which stores the
length of array and it used in only hashCode methods. The
length of array can be calculated by the fields variable of ar-
ray. Also, array is used in both equals and hashCode meth-
ods. Then, these classes are not completely violate the subset
rule. Although these fields are declared with a keyword “fi-
nal,” it guarantees that the reference variables refer always the
same object, but it does not guarantee that the objects are not
changed. Therefore, if the length of array changes, the field
variable is not renewed and it does not store the correct value.

One of four class contains a field variable which stores the
hash value already calculated for improvement of the perfor-
mance. This class returns the hash value generated by con-
verting memory address of object to integer value. Since this
value does not change at runtime of application, the class does
not completely violate the subset rule.

The last one class does not override its equals method, and
invokes the equals method of Object class. Equals method
of Object class does not use field values. However, this class
overrides its hashCode method and it uses a field value. There-
fore this class violates the subset rule.

6.2 Evaluation of the equivalence rule

We evaluated about the equivalence rule through the project
in practice, HcatFieldSchema class of Apach Hive. This class
receives a bug report which states that the class overrides its
equals method but does not override its hashCode method at
the past revision. This bug is fixed at the later revision. We
manually modeled two revisions of this class. One contains
the bug and the other fixed the bug. We can conclude our tool
correctly work, if the following two conditions are satisfied.
1) Our tool detects that an unfixed class violates the consis-
tency rules. 2) Our tool detects that a fixed class does not vio-
late the consistency rules. Figure 6 shows that the source code
of fixed class. This class does not have its parent class. An
unfixed class does not override its hashCode method. If the
hashCode method of the unfixed class is invoked, the unfixed
class invokes the hashCode method of Object. The equals
method of this class determines the equivalence of two objects
by comparing field values. However, the hashCode method
returns true if two objects are the same. Hence, this class vi-
olates the equivalence rule. Since the hashCode method of
the fixed class returns a hash value by performing arithmetic
operations about a field value used in the equals method, the
fixed class does not violate the equivalence rule. We check

International Workshop on Informatics (IWIN 2014)

66

Table 3: Comparison of executiontimes
Name Path length Path analysis

Pattern
analysis

Execution
procedure time

Lucene 16,970 12s 29s 1s 48s
Tomcat 257,590 38s 240s 2s 285s

JFreeChart 3,538,281 11,181s 11,491s 6s 22,689s

Table 4: The number of violated rules
Name

equals method hashCode method
total

reflexive symmetric transitive null subset equivalence

Lucene 2 0 0 0 4 1 7
Tomcat 11 3 4 3 14 7 35

JFreeChart 1 1 2 0 76 36 113

the violation of the equivalence rule by Z3. Z3 determines
the unfixed class violates the equivalence rule, but the fixed
class does not violates the equivalence rule. This result shows
that our method can detect the implementation which violates
the equivalence rule.

6.3 Execution times

In order to evaluate the cost of checking, we applied our
tool to Lucene4.6.0, Tomcat8.0.1 and JFreeChart1.0.17. We
compared the execution times. Figure 3 shows the results of
this experiment. Path length, name of each step and time rep-
resent the total path length of each project, the execution time
of each step and total execution time, respectively. Time rep-
resents the total execution time.

Theses result show that our proposed method is effective
when checks it small or medium size projects. Our method
can check large projects by limiting and reducing the search
space. Execution time is approximately in proportion to the
total pass length. We do not have an obvious answer to the
cause of this result. Analyzing this cause is a future work.
Also, analyzing procedure of a method and converting Java
source code to SMT-LIB model consume over 50% of the
total execution time. We can reduce the total execution time
by improving the performance of these steps.

6.4 Evaluation of projects in practice

We evaluated how often projects in practice violate the con-
sistency rules. We applied our tool to Lucene4.6.0, Tom-
cat8.0.1 and JFreeChart1.0.17.

Table 4 shows the results of this experiment. Each name
of the rule column represents the number of implementations
violating its rule.

We discuss about the cause of the violations of consistency
rules. The causes of violating the rules of equals methods are
those of [7]. That is, asymmetry null checking, invalid type
checking at type hierarchy and miss typing. Also, we model
the method invocations for fields as a nondeterministic func-
tion, and such modeling may generate wrong models. Three
type hierarchies violating the rules caused by the wrong mod-
els. This problem can be solved by improving out tool. For
example, we can solve this problem by using the information
of method behavior from users for the method which is not
inlined.

Regarding to the subset rule of hashCode methods, some
classes contain a field variable which stores the hash value al-

ready calculated for improving the performance. This method
returns the hash value generated by converting memory ad-
dress of the object to an integer value. Since this value does
not change at runtime of application, the class does not com-
pletely violate the subset rule. Also, regarding to the equiva-
lence rule, there are many classes which override their equals
methods but not override their hashCode methods, and vio-
lating this rule. This violation is only in JFreeChart and the
other two projects do not contain such violation. Therefore,
the policy of implementation of the project may affect this
result. Consequently we claim that projects policy must con-
tain the rule that if a class overrides the equals methods, then
the class must override the hashCode methods. Also, there
are two classes violate the equivalence rule of the hashCode
methods. It is caused by their equals methods which violate
the consistency rules.

7 Conclusion

In this paper, we proposed a method that verifies the con-
sistency between both equals and hashCode methods. Also
we have evaluated our method by experiments. Our method
analyzes Java source code, and converts these code to SMT-
LIB. Our method verifies whether the source code violates the
consistency rules by using Z3. If they violate any of consis-
tency rules, our method is able to output counter examples.
Experimental results show that our method detects that some
of real code includes a wrong method implementation which
violates some of the consistency rules.

We will implement the functions which are not implemented
our tool yet Also, we will evaluate the performance of our tool
by applying our tool to many projects in practice. Experimen-
tal result shows that our method detects the inconsistency of
some project, but does not shows that how many projects can
be checked by our tool. We will apply our method to many
projects and reveal it. These are future works.

Acknowledgments
This work is partially being conducted as Grant-in-Aid for
Scientific Research S (25220003)

REFERENCES
[1] J. Bloch, “Effective Java,” Addison-Wesley, 2008.
[2] Oracle, “Java Platform, Standard Edition 7 API Specifi-

cation,” 2013. http://docs.oracle.com/javase/7/docs/api/.
[3] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”

ACM SIGPLAN Notices Homepage archive, pp.92-106,
2004.

[4] M. Vaziri, F. Tip, S. Fink, and J. Dolby, “Declarative
Ob- ject Identity Using Relation Types,” Proceedings
of the 21st European Conference on Object-Oriented
Program- ming, pp.54-78, 2007.

[5] C.R. Rupakheti and D. Hou, “An Empirical Study of the
Design and Implementation of Object Equality in Java,”
Proceedings of the 2008 conference of the center for
ad- vanced studies on collaborative research: meeting
of minds, pp.111-125, 2008.

International Workshop on Informatics (IWIN 2014)

67

[19] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E.

International Workshop on Informatics (IWIN 2014)

68

[6] C.R. Rupakheti and D. Hou, “An Abstraction-Oriented,
Path-Based Approach for Analyzing Object Equality in
Java,” Proceedings of the 17th Working Conference on
Re- verse Engineering, pp.205-214, 2010.

[7] C.R. Rupakheti and D. Hou, “Finding Errors from
Reverse- Engineered Equality Models using a Con-
straint Solver,” Proceedings of the 28th IEEE Interna-
tional Conference on Software Maintenance, pp.77-86,
2012.

[8] L. deMoura and N. Bjorner, “Z3: An Efficient SMT
Solver,” Proceedings of the 14th international confer-
ence on Tools and algorithms for the construction and
analysis of systems, pp.337-340, 2008.

[9] Clark Barrett, Aaron Stump and Cesare Tinelli, “The
SMT-LIB Standard Version 2.0,” 2010.

[10] D. Rayside, Z. Benjamin, R. Singh, J.P. Near, A.
Milice-vic, and D. Jackson, “Equality and Hashing for
(almost) Free: Generating Implementations from
Abstraction Functions,” Proceedings of the 31st
International Con-ference on Software Engineering,,
pp.342-352, 2009.

[11] N. Grech, J. Rathke, and B. Fischer, “JEqualityGen:
Gen- erating Equality and Hashing Methods,” Proceed-
ings of the ninth international conference on Generative
programming and component engineering, pp.177-186,
2010.

[12] T. Jensen, F. Kirchner, and D. Pichardie, “Secure the
clones: Static enforcement of policies for secure object
copy- ing,” Proceedings of the 20th European confer-
ence on Pro- gramming languages and systems: part of
the joint European conferences on theory and practice
of software, pp.317- 337, 2010.

[13] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray,
“UML2Alloy: A Challenging Model Transformation,”
Proceedings of the ACM/IEEE 10th International Con-
ference on Model Driven Engineering Languages and
Systems, pp.436-450, 2007.

[14] T. Liu, M. Nagel, and M. Taghdiri, “Bounded Program
Verification using an SMT Solver: A Case Study,” Pro-
ceedings of the 5th International Conference on Soft-
ware Testing, Verification and Validation, pp.101-110,
2012.

[15] I.P. Gent, C. Jefferson, and I. Miguel, “Minion: A Fast,
Scalable, Constraint Solver,” Proceedings of the 17th
European Conference on Artificial Intelligence,
pp.98-102, 2006.

[16] D. Balasubramaniam, C. Jefferson, L. Kotthoff, I.
Miguel, and P. Nightingale, ”An Automated Approach
to Generating Efficient Constraint Solvers,“ Proceed-
ings of the 20129oiokpjg International Conference on
Software Engineering, pp.661-671, 2012.

[17] L. Burdy, Y. Cheon, D.R. Cok, M.D. Ernst, J.R. Kiniry,
G.T. Leavens, K.R.M. Leino, and E. Poll, “An overview
of JML tools and applications,” International Journal on
Software Tools for Technology Transfer, pp.212-232,
2005.

[18] Apache, ”Apache PDFBox - A Java PDF Library,”
2012. http://pdfbox.apache.org/.

Gagnon, and P. Co, “Soot a Java Optimization Frame-
work,” Proceedings of the 1999 conference of the Cen-
tre for Advanced Studies on Collaborative research,
pp.125-135, 1999.

	0_表紙
	1_前置き
	1_中表紙
	2_奥付
	3_目次
	4_まえがき
	5_Committees

	2_論文
	1_Session1
	1-1
	1-2
	1-3
	1-4
	2_Session2
	2-5
	2-6
	2-7
	2-8
	2-9
	3_Session3
	3-10
	3-11
	3-12
	3-13
	3-14
	4_Session4
	4-15
	4-16
	4-17
	4-18
	4-19
	Table 1: Characteristics of Error Factors in Pseudorangefactor size obliquity temporal spatial[m] factor correlation correlationsatellite clock bias a few – 15 min. 1satellite position a few – 15 min. 1000 kmionosphere delay 0 to 20 1 to 3 15 min. 100 kmtroposphere delay 2.4 1 to 10 30 min. 100 kmat sea level 30 min. 100 kmmultipath delay a few to more lower angle, a few verythan dozen larger min. narrowreceiver noise less than 1 – none nonegross error. Through an experiment with the measured resultswith real receivers, we will evaluate the accuracy and precisionof positioning with mDGPS.We mention about the position determination of GNSS andrelated work in Sec. 2, the proposed accurate single point positioningmethod for a base station of mDGPS in Sec. 3, theproposed cooperative positioning method in Sec. 4, and theevaluation result in Sec. 5. Finally, we summarize this paperin Sec. 6.2 Position Determination of GNSS andRelatedWork2.1 Factors of Positioning Error of GNSSAs measuring a pseudorange in GNSS, the following factorsmainly cause the measurement error except the clock biasin a receiver, treated as unknown value to be estimated: theclock bias in a satellite, the ionosphere delay, the tropospheredelay and the random noise at a receiver. The position of asatellite is provided in a navigation message, and it also containserror slightly. Moreover, the multipath delay occurs ina pseudorange when the receiver cannot receive the signal directlyand received the signal after reflected by a ground structure,and it will be significant.Table 1 shows the quantitative characteristics of the errorfactors [1], [2]. The obliquity factor is used when a satelliteis at low elevation angle. The ionosphere delay and the tropospheredelay are approximated as a 8-dimensional model andthe part of a navigation message called the ephemeris whichcontains its parameters. Each size of those delays is correctedby the model. The atmospheric delay (the ionosphere delayand the troposphere delay) and the multipath delay are mostsignificant among the above factors.2.2 Positioning Error Reduction2.2.1 Multipath AvoidanceThere are two prominent types of researches to avoid the effectof multipath to the position determination. These basicallywork on the problem before measuring a pseudorange.The first type is to separate the direct wave and the multipathwaves of the signal from a satellite when a receiver receivesboth waves so that the pseudorange is measured by the directwave. The following related works have been studied: designingthe signal tracking module[3]–[6], improving the modulationmethod[7], smoothing the signal carrier[8], and designingthe antenna[9]. The second type is to detect and eliminatea signal that are received via multipath when its direct wavecannot be received due to any obstacle. The positioning accuracyis degraded if the position determination is conductedwith a biased pseudorange which contains a multipath delay.The direct signal cannot be received if there are any obstacleon the line of sight between a receiver and a satellite. It hasbeen proposed to use a 3D-map of ground structures and acamera in order to detect such obstacles[10], [11].Unlike the above related work, we focus on detecting multipathafter measuring pseudoranges. Our proposed methods donot need any extra devices, information and hardware modificationto detect a pseudorange that contains gross errors suchas multipath delay.2.2.2 DGPS: Differential GPSAmong all the error factors in a pseudorange, the clock biasand position error of each satellite can be canceled completelyby using the differential between the measured result of tworeceivers. Since the atmosphere delay is temporary-and-spatiallycorrelated, it can be almost canceled by using the measuredresult by a stationary receiver, called a base station, that knowsits true position. A base station distributes its measured informationcalled the differential corrections so that a neighboringreceiver, called a user station, corrects its delays. It iscalled the differential GPS (DGPS) and has been used in theworld.DGPS is effective to improve the accuracy of GPS. However,the real-time broadcast of differential corrections forcivil receivers has been stopped in 2008 in Japan because theintentional dilution of precision of GPS, called SA (SelectedAvailability), had been released in 2001 and the maintenancecost of the base stations is getting higher. Currently, the differentialcorrections are available via the web site of GEONET(GNSS Earth Observation Network System)[12] in Japan butthey are not provided in real time, and they are just used forlocation surveys. There are 27 DGPS base stations and 1200GEONET base stations in Japan. A DGPS base station isbuilt every 200km on the coast and a GEONET base stationis built every a few km squared patch of land basically. Sincemultipath delays occur locally, it cannot be eliminated by theconventional DGPS.In our proposed methods, a receiver that estimates its positionaccurately acts as a base station. Such a receiver, wecall it a mobile base station, calculates the differential correctionsand distributes them to neighboring receivers via wirelesscommunication networks. Because the distance betweensuch base station and a neighboring receiver is close, it couldfind a correlation between the multipath delays of two nodesthat are at the same distance from a ground structure that mayreflect the signal from a satellite. To utilize the correlation betweenthe multipath delays of neighboring two nodes, Tang etal. improve the accuracy of the relative positioning for the twonodes[13]. Furukawa et al. shows that 89.7% of the multipathdelays is correlated between each receiver at two tandem vehicleson roads through experiments[14]. In our methods, weutilize this correlation to improve the accuracy of the absolutepositioning.As related work, the method called ”simple DGPS” has

	4K-2
	5_Session5
	5-20
	5-21
	5-22
	5-23
	5-24
	5K-3
	P_Panel Discussion
	P-1
	P-2
	P-3
	P-4

	
	1_Session1
	1-1
	1-2
	1-3
	1-4
	2_Session2
	2-5
	2-6
	2-7
	2-8
	2-9
	3_Session3
	3-10
	3-11
	3-12
	3-13
	3-14
	4_Session4
	4-15
	4-16
	4-17
	4-18
	4-19
	Table 1: Characteristics of Error Factors in Pseudorangefactor size obliquity temporal spatial[m] factor correlation correlationsatellite clock bias a few – 15 min. 1satellite position a few – 15 min. 1000 kmionosphere delay 0 to 20 1 to 3 15 min. 100 kmtroposphere delay 2.4 1 to 10 30 min. 100 kmat sea level 30 min. 100 kmmultipath delay a few to more lower angle, a few verythan dozen larger min. narrowreceiver noise less than 1 – none nonegross error. Through an experiment with the measured resultswith real receivers, we will evaluate the accuracy and precisionof positioning with mDGPS.We mention about the position determination of GNSS andrelated work in Sec. 2, the proposed accurate single point positioningmethod for a base station of mDGPS in Sec. 3, theproposed cooperative positioning method in Sec. 4, and theevaluation result in Sec. 5. Finally, we summarize this paperin Sec. 6.2 Position Determination of GNSS andRelatedWork2.1 Factors of Positioning Error of GNSSAs measuring a pseudorange in GNSS, the following factorsmainly cause the measurement error except the clock biasin a receiver, treated as unknown value to be estimated: theclock bias in a satellite, the ionosphere delay, the tropospheredelay and the random noise at a receiver. The position of asatellite is provided in a navigation message, and it also containserror slightly. Moreover, the multipath delay occurs ina pseudorange when the receiver cannot receive the signal directlyand received the signal after reflected by a ground structure,and it will be significant.Table 1 shows the quantitative characteristics of the errorfactors [1], [2]. The obliquity factor is used when a satelliteis at low elevation angle. The ionosphere delay and the tropospheredelay are approximated as a 8-dimensional model andthe part of a navigation message called the ephemeris whichcontains its parameters. Each size of those delays is correctedby the model. The atmospheric delay (the ionosphere delayand the troposphere delay) and the multipath delay are mostsignificant among the above factors.2.2 Positioning Error Reduction2.2.1 Multipath AvoidanceThere are two prominent types of researches to avoid the effectof multipath to the position determination. These basicallywork on the problem before measuring a pseudorange.The first type is to separate the direct wave and the multipathwaves of the signal from a satellite when a receiver receivesboth waves so that the pseudorange is measured by the directwave. The following related works have been studied: designingthe signal tracking module[3]–[6], improving the modulationmethod[7], smoothing the signal carrier[8], and designingthe antenna[9]. The second type is to detect and eliminatea signal that are received via multipath when its direct wavecannot be received due to any obstacle. The positioning accuracyis degraded if the position determination is conductedwith a biased pseudorange which contains a multipath delay.The direct signal cannot be received if there are any obstacleon the line of sight between a receiver and a satellite. It hasbeen proposed to use a 3D-map of ground structures and acamera in order to detect such obstacles[10], [11].Unlike the above related work, we focus on detecting multipathafter measuring pseudoranges. Our proposed methods donot need any extra devices, information and hardware modificationto detect a pseudorange that contains gross errors suchas multipath delay.2.2.2 DGPS: Differential GPSAmong all the error factors in a pseudorange, the clock biasand position error of each satellite can be canceled completelyby using the differential between the measured result of tworeceivers. Since the atmosphere delay is temporary-and-spatiallycorrelated, it can be almost canceled by using the measuredresult by a stationary receiver, called a base station, that knowsits true position. A base station distributes its measured informationcalled the differential corrections so that a neighboringreceiver, called a user station, corrects its delays. It iscalled the differential GPS (DGPS) and has been used in theworld.DGPS is effective to improve the accuracy of GPS. However,the real-time broadcast of differential corrections forcivil receivers has been stopped in 2008 in Japan because theintentional dilution of precision of GPS, called SA (SelectedAvailability), had been released in 2001 and the maintenancecost of the base stations is getting higher. Currently, the differentialcorrections are available via the web site of GEONET(GNSS Earth Observation Network System)[12] in Japan butthey are not provided in real time, and they are just used forlocation surveys. There are 27 DGPS base stations and 1200GEONET base stations in Japan. A DGPS base station isbuilt every 200km on the coast and a GEONET base stationis built every a few km squared patch of land basically. Sincemultipath delays occur locally, it cannot be eliminated by theconventional DGPS.In our proposed methods, a receiver that estimates its positionaccurately acts as a base station. Such a receiver, wecall it a mobile base station, calculates the differential correctionsand distributes them to neighboring receivers via wirelesscommunication networks. Because the distance betweensuch base station and a neighboring receiver is close, it couldfind a correlation between the multipath delays of two nodesthat are at the same distance from a ground structure that mayreflect the signal from a satellite. To utilize the correlation betweenthe multipath delays of neighboring two nodes, Tang etal. improve the accuracy of the relative positioning for the twonodes[13]. Furukawa et al. shows that 89.7% of the multipathdelays is correlated between each receiver at two tandem vehicleson roads through experiments[14]. In our methods, weutilize this correlation to improve the accuracy of the absolutepositioning.As related work, the method called ”simple DGPS” has

	4K-2
	5_Session5
	5-20
	5-21
	5-22
	5-23
	5-24
	5K-3
	P_Panel Discussion
	P-1
	P-2
	P-3
	P-4

