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Abstract—In software evolution, many bugs occur and develop-
ers spend a long time to fix them. Program debugging is a costly
and difficult task. Automated program repair is a promising
way to reduce costs on program debugging dramatically. Several
repair techniques reusing existing code lines have been proposed
in the past. They reuse code lines already existing in the source
code to generate variant source code of a given source code
(if an inserted code line to fix a given bug is identical to any
of the code lines in existing source code, we call the code line
graftable). However, there are many bugs that such techniques
cannot automatically repair. One of the reasons is that many
bugs require code lines not existing in the source code of the
software. In order to mitigate this issue, we are conducting our
research with two ideas. The first idea is using a large dataset of
source code to reuse code lines. The second idea is reusing only
structures of code lines. Vocabularies are obtained from faulty
code regions. In this paper, we report the feasibilities of the two
ideas. More concretely, we found that the first and second ideas
improved graftability of code lines to 43–59% and 56–64% from
34–54%, respectively. If we combine both the ideas, graftability
was improved to 64–69%. In cases where we used the second
idea, 24–49% variables used in reused code lines were able to be
retrieved from the surrounding code of given faulty code regions.

Index Terms—Automated program repair, Source code analy-
sis, Code reuse

I. INTRODUCTION

Program debugging lies in the main activities of software
evolution. Developers generally use a suite of test cases to
check whether the software system works as required. Pro-
gram debugging is a difficult and time-consuming task. Some
researchers have reported that debugging consumes more than
half of all the costs in software development [1].

Automating program debugging is a promising way to
reduce its cost. Debugging consists of two phases: the first
phase is locating the cause of a given bug; the second phase
is changing code to remove the bug. Many research studies
have been dedicated to automating fault localization [6], [16].
On the other hand, automating code changes to remove bugs
(so-called automated program repair) has been attracting
much attention recently. Automated program repair techniques
generate a variant program that passes all the given test cases.
Generating a variant program is a sequence of operations such
as inserting, deleting, and replacing a code line on a given
program. If a variant program passes all the given test cases,
it is regarded as a repaired version of the given program. If
the variant does not, another variant program is generated.

A variety of techniques have been proposed to realize
automated program repair, and ones using genetic program-
ming have shown their capabilities [9], [13]. Such techniques
generate variant programs with insertion, deletion, and re-
placement operations. In cases of deletion, a faulty code line

identified by a fault localization technique is deleted, which
is not a bothering operation. On the other hand, in cases
of insertion and replacement, a code line to be added is
randomly selected from the source code of the given program.
There are two issues on randomly selecting code lines from
existing source code. The first issue is taking a long time to
generate a repaired version of a given program. If a program
includes a huge number of code lines in its source code, it
is difficult to realize efficiently generating a repaired version
with random selections. The second issue is low graftability.
Herein, graftable means bugs can be removed by reusing code
lines existing in the source code. Le Goues et al. reported that
they were able to fix 52% (=55/105) of given bugs with their
tool GenProg [9]. Barr et al. also reported 42% of commits
can be organized with code lines included in existing source
code [2]. In other words, almost half of bugs cannot be fixed
by reusing existing code lines as they are in cases where fixing
these bugs requires some code lines to be inserted or replaced.

In this research, we are tackling the second issue. The aim
of this research is constructing a technique to remove more
bugs. The key ideas of our technique are as follows.

• The first idea is using a large set of source code to select
code lines for insertion and replacement operations.

• The second idea is reusing only the structure of code
lines. Vocabularies are retrieved from surrounding code
of a given faulty code line.

Existing techniques use code lines in the same software as
they are, which should be a reason that the techniques have low
ratios of graftable bugs. In this research, we enlarge targets of
code line selection and reuse only the structure of code lines.

We have conducted an experiment to evaluate the two ideas
to investigate whether every code line in bug-fix commits was
graftable or not. In other words, we checked whether every
code line in bug-fix commits is obtainable from existing source
code or not. Its results include the followings.

• In cases where we use the first idea, the ratio of graftable
code lines was increased from 37–54% to 43–59%.

• If we use the second idea, the ratio of graftable code lines
was increased to 56–64%.

• If we use the both ideas, graftability of code lines was
dynamically increased to 64–69%.

• In case where the second idea is adopted, we need to
collect variable name information in one way or another.
In the experiment, we confirmed that 24–49% variable
names were able to be retrieved from back-and-forth 5
lines of faulty code lines and 36–78% variable names
were obtainable if we consider whole the same file.



II. RELATED WORK

Some techniques have been proposed for automated pro-
gram repair. One of the most cynosure techniques is using
genetic programming to generate a repaired version of a given
program [9], [13]. GenProg takes a faulty program and a suite
of test cases as its inputs and generates a repaired version of
the program with genetic programming [9]. In GenProg, vari-
ant programs are generated with three operations, mutation,
crossover, and selection.

Mutation: this operation makes a variant program from a
given program by applying a small change, which is
inserting, deleting, or replacing a code line.

Crossover: this operation makes two variant programs
from given two programs by randomly exchanging
pieces of the representations of the two parents.

Selection: this operation selects some variant programs
made with mutation and crossover operations. The
number of passed test cases is a standard to se-
lect variant programs. Selected variant programs are
leveraged to make next-generation variant programs.

All n-th generation variant programs made by mutation and
crossover are tested with given test cases. If a variant program
passes all the test cases, it is regarded as a repaired version
of a given faulty program. If none of variant programs pass
all the test cases, some of the variant programs are selected as
targets of mutation and crossover operations to make (n+1)-th
generation variant programs.

GenProg runs all the test cases to test every variant program,
so that runtime of test cases occupies a large portion of
GenProg’s total runtime. Unlike GenProg, RSRepair generates
only a single variant program and running test case for it
[13]. If a variant program does not pass any of the test cases,
RSRepair does not run remaining test cases. This strategy
has both advantages and disadvantages. An advantage is that
RSRepair’s runtime is shorter than GenProg in cases where the
both tools can generate repaired programs. A disadvantage is
that RSRepair can generate repaired programs only if a given
faulty program contains only a single bug. On the other hand,
GenProg is able to generate repaired programs even if there
are multiple bugs in a given program.

Both GenProg and RSRepair perform mutation operations
to generate variant programs. The mutation operation includes
the following three manipulations and one of them is randomly
applied to a given program for each time.

Deletion: this manipulation deletes a faulty code line of a
given program.

Insertion: this manipulation selects a code line from a
given program and inserts it to the next line of a
faulty code line of the program.

Replacement: this manipulation is a combination of dele-
tion and insertion. A faulty code line of a given
program is deleted and then a code line selected from
the given program is inserted to the deleted position.

In insertion and replacement manipulations, code lines
already existing in a given program are reused to generate

variant programs. Barr et al. conducted an experiment to
investigate the capability of such reuse-based approaches on
12 open source software [2]. Their investigation results showed
that 42% of commits were organized with existing code lines.

SemFix is also a repair tool and it is based on programming
semantic theory [11]. The tool generates a repaired version of
a given program by using logical expressions of properties that
the given program must satisfy. SemFix is able to generate re-
paired versions for given faulty programs where GenProg and
RSRepair are not able to. SemFix solves logical expressions
with SMT solver [3]. SMT problems are NP-complete, so that
it is difficult to solve complex logical expressions. DirectFix is
an improvement of SemFix [15]. DirectFix has been designed
to generate simpler patches for given bugs.

PAR is a tool for automated program repair and it uses
human-written patches to remove given bugs [7]. Literature
[7] reported that PAR was able to generate repaired versions
for given faulty programs whether GenProg was not. However,
Monperrus critically discusses PAR’s experimental design [10].

III. RESEARCH MOTIVATION

Le Goues et al. reported that GenProg was able to fix 55 out
of 105 bugs [9]. One reason why there are bugs that GenProg
cannot fix is that bugs occasionally require code lines that do
not exist in the source code of the software to fix them. Barr
et al. investigated how graftable commits are, i.e., how much
commits can be reconstituted from existing code. As a result,
they found that 42% of commits are graftable.

The authors consider that if commits are more graftable,
more bugs will be able to be fixed with automated program
repair techniques. One way to increase graftability is using
a large set of source code to reuse code lines. A large set
of source code, which consists of many software projects,
should include more various code lines than its own software.
Thus, graftabiliy should get increased by using a large dataset.
Consequently, we investigate the following research question.

RQ1: how much does graftability of code lines get in-
creased by using a large set of source code?

However, a concern is that variables in code lines of a large
dataset should be an obstacle to reuse its code lines. Generally,
in automated program repair, code lines are reused as they
are. Consequently, code lines must be fit to the context of
a given faulty code region from the viewpoint of structure
and vocabulary. A large corpus of code provides a larger
variety of structure of code lines compared to using a single
project, which should improve graftability. On the other hand,
it also provides a larger variety of vocabulary, which might
adversely affect graftability. In other words, even if code lines
structurally fit faulty code regions, it depends on vocabulary
used in the code lines whether they are reusable or not.

We conducted a small experiment to reveal how much
variables used in a software project are used in different
projects. In this experiment, we leveraged two sets of software
projects, which were used in our previous research [5]. The
first dataset consists of 83 software projects that have been
developed in Apache Software Foundation. The second one
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Fig. 1. Distributions of v(p1, p2) for the two datasets

consists of 500 software projects extracted from UCI source
code dataset [12]. All the projects included in both the datasets
are written in Java language. Please refer to literature [5] to
see how those datasets were constructed because there is no
space in this paper to describe that.

To illustrate the issue of vocabulary, we calculated the
following value on two-project permutation in each dataset.

v(p1, p2) =
|V (p1)

∩
V (p2)|

|V (p1)|
(1)

where
• p1, p2: projects included in a given dataset. p1 must be

a different project from p2.
• V (p): a set of variable names appearing in project p. Only

variable names are included in this set. Method names,
class names and other identifiers are not included.

• |V |: the number of elements in a given set V .
v(p1, p2) means how much p1’s variable names are also used
in a different project p2.

Figure 1 shows distributions of v(p1, p2) for the two
datasets. We can see that most of the values are low. The upper
quartiles for Apache and UCI datasets are 20.2% and 16.1%,
respectively. Those results show that most of variables used
in a software project are not used in different projects. Thus,
vocabulary differences can be an obstacle that code lines in a
software project is reused in another project. Nevertheless, it
should be possible that more code lines are able to be reused
if variables are normalized. Consequently, we investigate the
following research question.

RQ2: how much does graftability of code lines get in-
creased by normalizing variable names?

If we normalize variables in code lines, we need to retrieve
variable names from other information. A simple way to
obtain variable names is checking surrounding code of the
given faulty code line. Consequently, we also investigate the
following research question.

RQ3: how much do variable names in inserted code lines
appear in the surrounding code of faulty code lines?

IV. EXPERIMENT

We conducted an experiment to answer the three RQs.

A. Data Collection

We used five software projects, which are shown in Table
I. For those projects, we investigated graftability of code
lines included in bug-fix commits. The bug-fix commits were
identified by using JIRA. More concretely, we firstly collected
JIRA’s issues satisfying all the following conditions:

• their status is Closed,
• their issue type is Bug, and
• their resolution is Fixed.

Then we identified commits including the commit IDs of the
collected commits. Besides, in Hadoop-common, we removed
a commit 9a9fcf8 from our targets because the commit had
added 249K lines of code.

As a large set of source code, we used UCI source code
dataset [12]. It includes more than 13,000 Java projects or
more than 300 million lines of code. Its size is much larger
than the source code of the target software projects.

B. Data Analysis

This experiment includes three sub-experiments.
EXP1: investigating whether each code line added by the
target commits is graftable or not. The graftability of code
lines was checked with the following two conditions.

PARENT: a given code line added by a target commit is
identical to any of the code lines included in the
revision just before the commit.

LARGESET: a given code line added by a target commit
is identical to any of the code lines included in the
revision just before the commit or the UCI dataset.

EXP2: investigating whether each code line added by the
target commits is graftable or not in case that every variable
name is normalized. The difference between EXP1 and EXP2
is that only EXP2 checked graftability of code lines on
normalized source code.
EXP3: investigating whether each variable name included in
each code line added by the target commits appears in the
surrounding code region of a given faulty code line.

Figure 2 shows an overview of EXP1 and EXP2. The
investigations consist of the following steps.

TABLE I
TARGET SOFTWARE

Software Start commit ID End commit ID # bug-fix
commits

Camel babdb30 390e6c2 1,625(4/Jun/2007) (26/Mar/2015)

Felix 826b7fc 50d4715 1,472(27/Mar/2006) (15/Apr/2015)

Hadoop-common 84541f6 0a9f2c5 922(23/Jun/2009) (21/Aug/2014)

Hive 011a680 7b49691 2,281(13/Nov/2008) (17/Apr/2015)

OpenJPA eb96e89 bdaf141 1,348(1/Aug/2006) (16/Apr/2015)
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	  3:	  	  *	  @return	  absolute	  value	  
	  4:	  	  */	  
	  5:	  int	  abs(int	  x)	  {	  
	  6:	  	  	  if	  (x	  <	  0)	  {	  
	  7:	  	  	  	  	  x	  *=	  (-‐1);	  
	  8:	  	  	  }	  
	  9:	  
10:	  	  	  return	  x;	  
11:	  }	

	  1:	  int	  abs(int	  x)	  
	  2:	  if	  (x	  <	  0)	  
	  3:	  x	  *=	  (-‐1);	  
	  4:	  return	  x;	  

	  1:	  int	  abs(int	  $)	  
	  2:	  if	  ($	  <	  0)	  
	  3:	  $	  *=	  (-‐1);	  
	  4:	  return	  $;	  

Original source code	 Normalized source code in EXP1 and EXP3	

Normalized source code in EXP2	

(b) Normalization example

Fig. 2. Overview of investigating graftability of code lines

STEP1: obtaining revisions before/after a given commit.
STEP2: extracting inserted code lines.
STEP3: checking graftability for each code line.
In STEP1, by specifying the ID of a given commit, we can

easily obtain its before and after revisions. All the source files
of the revisions are retrieved because they are used in STEP3.
Obtained source files are normalized with the following rules.

• Open and close brackets (“{” and “}”) are removed.
• Comments, blank lines, and indents are removed.
• variable names are normalized (only in EXP2).

Figure 2(b) shows a normalization example. In EXP2, all the
variable names were replaced with the same special token.
This normalization was performed only on variable names.
Other identifiers such as method names were not replaced.

STEP2 is a procedure to identify inserted code lines in
the commit. The identification is operated with UNIX diff
tool. Identified inserted code lines are regarded as code lines
necessary for repaired program.

In STEP3, each of the inserted code lines is checked
whether it is the same as any of the code lines in the previous
revision of the source code or in UCI dataset.

Figure 3 shows an overview of EXP3. Its STEP1 and STEP2
are exactly the same as EXP1. In STEP3, each variable in
the inserted code lines is checked whether it appears in the
surrounding code region (see Figure 3(b)).

C. Result and Discussion

Table II shows the graftability of code lines. The numbers
in the parentheses are the improvement from the original
graftability. This table leads us to the following answers.
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Fig. 3. Overview of investigating graftability of variables

Our answer to the RQ1: by using UCI dataset, graftabil-
ity of code lines rose to 43–59% from 37–54%.

Our answer to the RQ2: by normalizing variable names,
graftability of code lines rose to 56–64%.

We confirmed that there are significant differences be-
tween original graftability and PARENT/LARGESET ones
with Wilcoxon test and the siginificant levels are large with
Cliff’s delta where p-value is 0.05. In case where we combined
the two strategies, graftability of code lines jumped to 64–
69%, which were increased by 16–27% from the original
graftability.

Table III shows the graftability of variables. This table lead
us to the following answer.

Our answer to the RQ3: in cases of taking variables
from a surrounding code region (back-and-forth five

TABLE II
Graftability OF CODE LINES

Software w/o variable normalization w/ variable normalization
PARENT LARGESET PARENT LARGESET

Camel 53.7% 58.8% 63.9% 69.3%
– (+5.1%) (+10.2%) (+15.5%)

Felix 43.4% 51.0% 59.9% 68.8%
– (+7.6%) (+16.5%) (+25.4%)

Hadoop 43.7% 50.0% 59.3% 66.2%
– (+6.3%) (+15.6%) (+22.5%)

Hive 37.3% 42.9% 56.3% 64.1%
– (+5.6%) (+19.0%) (+26.8%)

OpenJPA 42.7% 49.2% 57.6% 65.0%
– (+6.5%) (+14.9%) (+22.3%)



lines), graftability of variables was 24–49%. In cases
of whole the same file, it rose to 36–78%.

Only OpenJPA has much lower graftability of variables than
the other projects. We investigated dozens of OpenJPA’s target
commits and found that many of them include tangled changes.
Variables that were not able to be retrieved were inserted code
lines not for bug-fix but for other purpose such as adding new
functions. If we would have been able to use only the code
lines that were inserted to the source code for fixing bugs,
graftability of variables would have been much better.

D. Threats to Validity

Here, we describe threats to validity in the experiment.
Bug-fix commit: we collected commits related to bugs

managed in JIRA. However, the code lines added by the
commits are not always related to fix bugs. As in the case
for OpenJPA, commits occasionally include tangled changes
[4], [8]. If we would have been able to use code lines that
contributed to fix bugs, graftability of code lines and variables
would have been better.

Target Software: we conducted the experiment on only five
projects, which are written in Java and use JIRA to manage
their issues. We are going to conduct more experiments on
other programming languages because different programming
language have different tendencies on bug occurrences [14].

V. CONCLUSION

In this paper, we reported results of a preliminary experi-
ment on our research to improve automated program repair.
Our research aim is fixing more bugs by reusing code lines
already existing in the source code. We call to what extent we
can reuse existing code lines to fix bugs graftability. We have
two ideas to improve graftability: the first one is reusing code
lines from a large set of source code, not only the source code
of the software; the second one is reusing only the structure of
code lines, variables are retrieved from the surrounding code
of the faulty code line. The results shows that:

• in cases that we use UCI source code dataset, which
includes more than 300 million lines of code, code line
graftability rose to 43–59% from 37–54%;

• in cases that we reuse only the structure of code lines
(variable names are normalized in advance), graftability
rose to 56-64%;

• in cases that we adopt both the two ideas, graftability
jumped to 64–69%.

TABLE III
VARIABLE GRAFTABILITY

Software Threshold of surrounding code region
5 10 20 same file

Camel 49.0% 55.5% 60.6% 67.8%
Felix 46.4% 54.1% 60.5% 72.6%

Hadoop 44.0% 51.1% 58.2% 70.8%
Hive 34.5% 41.0% 47.7% 77.8%

OpenJPA 23.6% 27.4% 30.2% 35.5%

We also investigated how many variable names were able to
be retrieved in cases that normalized code lines are reused:

• in cases that variable names were searched in back-and-
forth five lines, 24–49% variables were obtainable;

• in cases that we search variable names in whole the same
file, variable name graftability rose to 36–78%.

Those results show both our ideas are promising to promote
reusing existing code lines for automated program repair. In
the future, we are going to conduct more experiments to
investigate how much the size of dataset affect graftability
and whether using domain-specific data is advantageous or
not. Besides, we are going to implement those functions on
existing repair tools such as GenProg. However, we have some
issues to use our ideas. The biggest issue is how we get code
lines contributing to fix a given bug from a large dataset. If
we randomly select code lines like existing techniques, a very
long time should be required to finish fixing bugs. We need
to develop a way to efficiently retrieve code lines that can fix
given bugs. Currently, we are going to use code similarity to
retrieve code lines from a large dataset.
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