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Abstract—Existing techniques have succeeded to help develop-
ers implement new code. However, they are insufficient to help to
change existing code. Previous studies have proposed techniques
to support bug fixes but other kinds of code changes such
as function enhancements and refactorings are not supported
by them. In this paper, we propose a novel system that helps
developers change existing code. Unlike existing techniques, our
system can support any kinds of code changes if similar code
changes occurred in the past. Our research is still on very early
stage and we have not have any implementation or any prototype
yet. This paper introduces our research purpose, an outline of our
system, and how our system is different from existing techniques.
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I. INTRODUCTION

Source code reuse is one of the promising ways to de-
velop software systems efficiently. By bringing code from
other existing software systems, developers do not need to
implement functions required in a new system from scratch.
Moreover, reusing well-tested code realize that a new system
becomes highly reliable with low cost. So far, many techniques
and systems helping code reuse have been proposed and
implemented [1], [2], [3].

Code reuse techniques are very useful when software
systems require new functions. They help developers search
available code and understand how to reuse it. However, they
are not sufficient when a system requires code changes. During
software evolution, source code are repeatedly changed due
to various reasons such as bug fixes, function enhancements
and refactorings. Some investigations revealed that the ratio of
costs required after the first release of software systems are
increasing gradually and over 90% of the total costs are spent
after the first release [4]. Consequently, it is very important to
support source code changes as well as implementations.

In this research, we are envisioning a novel system to
support source code changes by reusing past code changes.
Herein, change reuse means leveraging information of past
code changes on a current code change, which developers
are about to conduct. The purpose of our system is helping
developers change code efficiently.

The following operations are required when a developer
encounters a new bug in her/his software system:

• identifying which code is the cause of the bug,
• considering how to fix the identified code,
• conducting code changes, and
• testing whether the change correctly fixed the bug.

Assume that we are able to know that a similar bug had
occurred in the past and then we are able to obtain the
following information of the similar bug:

Fig. 1. Overview of proposed system

• a patch for fixing the similar bug (code before and
after the bug fix), and

• test cases for checking the correctness of the bug fix.

If we have the code before the bug fix, we do not have to
search the cause of the current bug by ourselves. We are able
to utilize the code to search the cause [5]. We are also able to
reuse the test cases for the current bug.

Code changes can be conducted more efficiently by lever-
aging the past code change information. Existing code reuse
techniques help developers implement code for new functions
meanwhile our novel system helps them change code for
existing functions. Our technique is available when there is
at least a past code change, which is similar to a code change
that a developer is about to conduct. The authors have revealed
that the same code changes are repeatedly conducted in every
software system during its evolution [6]. Consequently, we are
confident that our technique is useful for many code changes.

II. SYSTEM FOR REUSING CODE CHANGES

Figure 1 shows a system that we are envisioning. The
system takes the information of a code change that a developer
is about to conduct as its input. Then, the system suggests
the code to be changed and how to change the code. If
multiple suggestions are available, they are ranked based on
their significances. The system consists of three components.

Change Pattern Database: including information of past
code changes. In order to reuse them easily, they are stored
into the database as patterns.

Change Pattern Search Engine: taking the information of
a code change that a developer wants to conduct as its input,
and searching code changes that are similar to it. Found similar
code are passed to code search engine.

Code Search Engine: taking past code changes as its input,
and searching which code of the developer’s system should be
changed. Identified code is suggested to developers.
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In the reminder of this section, we describe the scheme of
each component. Please note that the details of the components
are still under consideration at this paper submission.

A. Change Pattern Database

Change pattern database includes code changes that were
extracted from existing software repositories such as Git and
Subversion. There should be a huge amount of code changes in
this database because all the code changes are extracted. Some
of them should be similar or identical to one another. If there
are multiple code changes that are available at developer’s
context, ranking them appropriately is very important.

Consequently, we utilize a notion change pattern, which
is a formalized pattern that shows how a code fragment was
changed to another one. In this research, every code change is
regarded as a change pattern, and two or more code changes
are regarded as the same change pattern if they are identical
or enough similar to one another.

We do not regard the whole added/deleted code in a
commit as a code change because multiple code fragments
could be changed in a commit. Some research studies have
reported that there are commits including tangled changed in
code repositories [7], [8]. We define that a code change is a
correspondence between an added code chunk and a deleted
one. Thus, there could be multiple code changes in a commit.

Currently, we are going to regard two code changes, c1 and
c2, as the same pattern if they satisfy the following conditions:

ac(c1) = ac(c2) ∧ pc(c1) = pc(c2)

where ac(c) means the code where code change c is applied,
and pc(c) means the changed code by the code change c.

At present, we have not decided how we represent pre/post-
changed code yet. The simplest way is representing them as
consecutive lines such as Unix diff command. An advantage
of such a line-based representation is its high speed.

However, in such a representation, changes on consecutive
lines are regarded as one code change. If one actual code
change is conducted on multiple lines that are separated on
source files, changes of them are not regarded as the same
code change. Consequently, we are going adopt a graph-based
representation. In this approach, a program dependence graph
(in short, PDG) is constructed from the code before and after
a given change on the changed method. Then, subgraphs
extracted from the before and after PDGs. Extracted subgraphs
consist of changed program elements. Even if multiple pro-
gram elements located in separated lines are changed, they can
be regarded as one code change if the elements are directly
connected to each other in the PDGs.

In order to prioritize code changes when they are suggested
to developers, they are characterized by using some metrics.
At present, we are going to use the number of code changes
belonging to a given change pattern and the number of projects
where a given change pattern appear as metrics.

B. Change Pattern Search Engine

Change pattern search engine takes developers’ query as
its input and identifies change patterns related to it. Developers

specify a code change that they want to conduct as a query.
More concretely, in this research, a query should be a list of
words representing a code change. For example, in cases of bug
fixes, query words should be symptom of the buggy behavior
or variable/method names appearing in the thrown exception.
The system compares words in a given query to words in
each change patterns. In change patterns themselves, user-
defined names such as variable names have been replaced with
special tokens to remove vocabulary differences. However,
each change pattern has vocabulary information used in its
original code. We are going to use vocabulary not only in
changed code but also in signatures of the class and the
method that include the changed code because an existing
study reported that vocabulary in method’s signature is the
most informative [9].

C. Code Search Engine

Code search engine takes a change pattern, which is an
output of Change pattern search engine, as its input, and it
searches code that is identical/similar to the pre-changed code
of the given pattern. Identified code is the locations to be
changed, and the post-changed code of the given pattern is
a suggestion how to change them. Searching a given piece of
code from a large amount of source code is a kind of clone
detections, and there exist some research studies [5], [10].

D. Scenario

Herein, we describe how developers can use our system
on their change tasks. At the beginning of using our system,
developers need to construct a change pattern database. When
constructing a database, developers need to select existing
repositories as resources of change patterns. There is no
constraint for selecting repositories, but the followings should
be reasonable standards to extract useful change patterns.

Same libraries: the first standard is using software repos-
itories where the code uses the same libraries as developers’
software. Existing studies reported that there are many stylized
patterns to use APIs [11], [12], [13], [14]. Consequently, using
such repositories will allow developers to reuse code changes
that are related to API invocations for the libraries.

Same domains: the second standard is using software
repositories that are the same domains as developer’s soft-
ware. Functions included in software systems depend on their
domains, so that kinds of occurred code changes also depend
on their domains. Using the same domains’ software will be
beneficial to extract useful code changes.

Same organization: the third standard is using software
repositories that were developed in the same organizations.
Organizations occasionally have their local rules for program
coding. Using the same organization’s software allows devel-
opers to reuse code changes that depend on such local rules.

Same developers: the fourth standard is using software
repositories of the same developers. Developers learn their own
implementation styles intentionally or unintentionally if they
repeatedly develop the same kinds of functions. Using the same
developers’ software makes it possible to reuse code changes
on such developer-dependent implementations.

Same software: the last standard is using the repository
of the developer’s software itself. This standard will be very
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helpful for bug fixes caused by code clones. In other words,
if a bug occurs in a code fragment that was overlooked by a
developer in the past code change, our system should be able
to detect it. Some existing research reported that developers
occasionally overlook code fragments to be changed [6], [15].
Our system will be helpful to fix such bugs.

After a database is created, developers can use the system
whenever they want. The system has been designed to help
developers identify code fragments to be changed and detemine
how the code fragments are changed. This system can also
be used in other situations. For example, we assume that a
developer has identified a code fragment to be changed by
herself. In this case, if she inputs the identified code fragment
to the system, she will get examples showing how to change
the code fragments. She also will get other locations to be
changed in the same way. Another situation where this system
is useful is cases that a developer has identified and changed
code fragments. In this situation, she can leverage this system
to check if her changes are consistent to the changes that were
conducted on similar code fragments in the past.

We are going to implement the system as a plugin of IDEs
such as Eclipse and IntelliJ IDEA. Our plugin will have a text
field to input queries. After receiving a query from a developer,
the plugin suggests which code and how it should be changed
on IDE’s text editors. Integrating our system to IDEs should
be very helpful for developers because they do not need to
move away from IDEs for searching available past changes.

III. PRELIMINARY STUDY

We have already confirmed that the pattern-based sugges-
tion works well within a project [6]. However, in order for
the proposed system to be useful, the same code changes
must occur cross projects. Consequently, we conducted a
preliminary study to investigate the following questions.

RQ1: How often do the same code changes occur cross
different projects?

RQ2: How often do cross-project code changes1 appear in
a project?

A. Data Collection

Projects in Apache Software Foundation (in short, ASF)
were selected as targets. All the ASF projects are being

1Cross-project code change means a code change belonging to a change
pattern that appears in two or more projects.

TABLE I. DETECTED CHANGE PATTERNS AND CODE CHANGES

Change patterns Code changes
Number Percentage Number Percentage

Within-project 828,616 92.8% 1,845,048 51.5%

C
ro

ss
-p

ro
je

ct

2–10 59,658 6.68% 548,464 15.3%
11–20 2,810 0.32% 172,327 4.81%
21–30 856 0.096% 110,453 3.08%
31–40 384 0.043% 90,026 2.51%
41–50 189 0.021% 80,389 2.24%
51–60 112 0.013% 69,658 1.95%
61–70 71 0.0080% 64,250 1.79%
71–80 50 0.0056% 91,887 2.57%
81–90 28 0.0031% 74,971 2.09%
91–10 22 0.0025% 120,732 3.37%

over 100 13 0.0015% 312,603 8.73%
subtotal 64,193 7.2% 1,735,760 48.5%

Fig. 2. Ratio of cross-project code changes for each project (the projects are
sorted in the descending order of the ratio)

managed in a single repository2. Each project corresponds to a
subdirectory of the root directory of the repository. We mined
code changes in the past five years (from the beginning of
2010 to the end of 2014). In the period, there were 324,992
commits that changed at least one Java source file and 122
projects were changed at least once.

B. Data Analysis

In this preliminary study, we utilized our previous tech-
nique [6] to detect change patterns. It mines code changes
from code repositories. In order to explain change patterns, we
define program statements, code fragments, and code changes.

A program statement is represented as a sequence of
program tokens, which are identified by lightweight source
code analysis. User-defined identifiers are replaced with spe-
cial tokens with parameterized matching technique, which is
sometimes used in clone detection [16]. If two statements have
the same sequences of tokens, they are regarded as identical.

A code fragment is a sequence of program statements.
If two code fragments have the same sequences of program
statements, they are regarded as identical.

A code change is a transformation from a code fragment
to another code fragment. It is represented as a pair of a pre-
changed code fragment and a post-changed code fragment. If
two code changes have the same pre-changed and post-changed
code fragments, they are treated as an identical change pattern.
Even if a code change is not the same as any of the other code
changes, it is treated as a change pattern.

C. Result and Discussion

Table I shows the number of detected change patterns
and code changes. The first row shows within-project change
patterns and code changes. There are about 830K within-
project patterns, and they occupy 92.8% of all the patterns.
The within-project patterns consists of 1.8M code changes,
which occupy 51.5% of all the changes.

The rows from the second to the bottom show cross-project
change patterns and code changes. The cross-project patterns
are grouped based on the number of projects where they were
found. For example, the second row shows change patterns
appeared in at least 2 projects but no more than 10 projects.
The table shows the more projects change patterns appear in,
the less the number of them becomes. However, the number of

2http://svn.apache.org/repos/asf/
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Fig. 3. Change pattern example

code changes does not follow this trend. Each group of cross-
project changes occupies at least 1% of all the changes. The
bottom row shows a surprising result, 0.0015% of the patterns
occupy 8.73% of the changes.

Figure 2 shows the ratio of cross-project code changes
for each project. The minimum value is 15.4% for project
infrastructure (2/13). The maximum is 100% for kafka (1/1)
and phoenix (120/120). Median for the 122 projects is 44.9%.
There is a tendency that the ratio of the projects including a
large number of code changes is close to the median value.

Figure 3 shows an actual cross-project change pattern. Ex-
actly the same changes occurred in 4 projects (directmemory,
incubator, myfaces, and portals); the figure shows original
tokens without special tokenization. This pattern included 8
code changes, the first one occurred at 19/Mar/2010 and
the last one occurred at 8/Nov/2012. These changes were
conducted in code where two objects are compared. The code
before the change checked if the comparison target is null or
not. However, it was insufficient as an object comparison. The
code was changed to perform another comparison by using
equals method if the comparison target was not null. Although
this pattern includes some syntax inconsistencies due to the
lack of pattern refinement, it indicates the existence of useful
patterns in the extracted ones.

Our answer to the RQ1 is as follows: cross-project code
changes occupy only 7.2% of all the change patterns, however
they cover 48.5% of all the code changes.

Our answer to the RQ2 is as follows: all the projects
include cross-project code changes. The median of the ratio
of cross-project changes against all the changes is 44.9%.

The answers mean that a small number of cross-project
change patterns cover about half of the code changes and all
the projects include cross-project code changes. Thus, if the
system can utilize cross-project change patterns appropriately,
it would be able to support code changes for many projects.

IV. RELATED WORK

Several existing studies have found some evidences that
our system will be a promising technique for reducing cost
of code changes. The authors reported that there are the same
change patterns that are applied to source code repeatedly [6].
Nguyen et al. reported there are large number of repetitive code
changes both within-project and across-project [17]. Negara et
al. reported that different developers implemented code with
the same change patterns when they were gave the same tasks
[18]. Barr et al. found that the content of a new code often
can be assembled out from the content of existing code [19].

Wang et al. proposed a technique to help developers
change code fragments at multiple places without missing any

one [20]. Their technique does not require the code change
history of the target software. However, queres to search code
fragments are relatively complex. For example, in literature
[20], the following query is introduced as an example:

function A, function B, variable C, variable D; A contains
”malloc” or contains ”realloc”, B contains ”malloc” or
contains ”realloc”; C dataDepends A, D dataDepends B, C
onestep dataDepends D, C is FieldOf D; want C.

Meng et al. developed a tool named LASE to help de-
velopers locate code fragments to be changed and determine
how to change them [21]. LASE takes two or more code
fragments that developers have already identified and changed.
Then, it identifies other code fragments to be changed and
suggest how to change them. This technique is useful after
developers identified and changed two or more code fragments
by themselves. On the other hand, our technique aim to help
developers identify and change code fragments even if they
have not identified any of the code fragments to be changed
yet. Consequently, the situation for our proposed technique is
different from the one for LASE.

There are some existing techniques that extract code
changes by using abstract syntax trees [22], [23]. In their tech-
niques, code changes are represented as changes on subtrees.
By recognizing patterns of subtree changes, the techniques
identify what a given change means. For example, renaming
variable names and extracting a code fragment as a new
method can be automatically identified.

Some existing research studies succeeded to generate au-
tomatically bug fix patches to a certain extent. GenProg
generates candidates for a fixed program by changing a buggy
program slightly with genetic programing techniques [24]. PAR
uses past patches that humans wrote for fixing bugs [25]. It
identifies bug fix patterns from the human-written patches and
try to fix a current bug. SemFix is a tool that automatically
repairs programs [26]. It derives repair constraints from test
cases and solves the repair constraints to generate a valid
repair. This technique can generate a repair even if its similar or
identical code does not exist in the program. Those techniques
require many test cases to fix target programs. Chandra et al.
proposed a technique for identifying wrong conditions that
cause bugs in program source code [27]. Their technique also
can suggest how it should be changed.

At present, in the field of software engineering, genetic
programming attracts much attention. It is used for not only
bug fixes but also other purposes. For example, Langdon et al.
and White et al. proposed techniques that utilize genetic pro-
gramming to improve performance of human-written programs
[28], [29]. There are also some techniques that automatically
identify refactoring opportunities [30], [31], [32], [33].

V. CONCLUSION

In this paper, we introduced our system that helps de-
velopers change source code. The system utilizes past code
changes in other or same software and it supports any kinds
of code changes such as bug fixes, function enhancements,
and refactorings. The preliminary study shows that cross-
project change patterns occupy about half of code changes.
Consequently, if we are able to utilize them appropriately, our
system will be very helpful for developers.
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