
ClonePacker: A Tool for Clone Set Visualization

Hiroaki Murakami, Yoshiki Higo, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan

{h-murakm, higo, kusumoto}@ist.osaka-u.ac.jp
Abstract—Programmers often copy and paste code fragments

when they would like to reuse them. Although copy-and-paste
operations enable programmers to realize rapid developments of
software systems, it makes code clones. Some clones have negative
impacts on software developments. For example, if we modify a
code fragment, we have to check whether its clones need the same
modification. In this case, programmers often use tools that take
a code fragment as input and take its clones as output. However,
when programmers use such existing tools, programmers have
to open a number of source code and move up/down a scroll
bar for browsing the detected clones. In order to reduce the
cost of browsing the detected clones, we developed a tool that
visualizes clones by using Circle Packing, named ClonePacker.
As a result of an experiment with participants, we confirmed that
participants using ClonePacker reported the locations of clones
faster than an existing tool.

Keywords—Software maintenance, Code clone, Visualization.

I. INTRODUCTION

A code clone (in short, clone) is a code fragment that has
identical or similar code fragments in source code. It is gen-
erated by various reasons such as copy-and-paste operations.
Recent research has revealed that some clones make software
maintenances more difficult [1]. For example, if we modify a
code fragment for fixing a bug or adding a new function, we
have to check whether its clones need the same modification
or not. In order to find clones of a given code fragment, some
researchers have developed tools that took a code fragment
as input and took its code clones as output. Libra [2] is one
of such tools. Libra receives a code fragment from a user,
and uses CCFinder [3] to detect clones of the input code
fragment. Libra has two views when the user browses the
detected clones. One is a tree view representing all files that
are targeted for the clone detection, and the other is a source
code view representing source code that is selected by the user.
The detected clones are highlighted in the source code view.
However, we consider that Libra has an issue. Programmers
using Libra cannot browse detected clones efficiently because
programmers have to open a number of source code and move
up/down a scroll bar for browsing all detected clones. We
consider that the source code of detected clones should be
viewable easily. It is necessary to understand detected clones
to a certain extent (e.g. which types of clones are detected?)
without browsing source code.

In order to resolve this issue, we developed a clone set
visualization tool, named ClonePacker. ClonePacker uses
Circle Packing [4] for visualizing detected clones. We evalu-
ated ClonePacker by comparing with Libra through an ex-
periment with participants. In the experiment, the participants
reported the locations of clones by using ClonePacker and
Libra, then we compared the reporting time between the tools.
Consequently, the contributions of this paper are followings.

a-1

b-1

A

C

B

c-1
c-2 Root A

a-2

b-2

b-3

c-1-1
c-1-2

c-2-1

c-2-2

B

C c-1

c-2

a-1

a-2

b-1

b-2

b-3
c-1-1

c-1-2
c-2-1

c-2-2 Root

Fig. 1. Example of Circle Packing

• We proposed a technique to visualize detected clones
and developed the proposed technique as a tool, named
ClonePacker. Programmers using ClonePacker can
understand detected clones to a certain extent without
browsing source code.

• We confirmed that programmers using ClonePacker
reported the locations of clones faster than Libra and
the accuracy was unchanged.

The remainder of this paper is organized as follows:
Section II describes types of clones and Circle Packing.
Sections III and IV show the proposed technique and de-
tails of ClonePacker. Section V reports the evaluations of
ClonePacker by comparing with Libra. Sections VI and VII
describe some threats to validity and some related works.
Finally, we conclude this paper in Section VIII.

II. PREPARATIONS

We explain the types of clones and Circle Packing.

A. Types of Clones

Bellon et al. categorized clones into the following three
types [5].

Type-1 is an exact copy without modifications (except
for white space and comments).

Type-2 is a syntactically identical copy; only variable,
type, or function identifiers were changed.

Type-3 is a copy with further modifications; statements
were changed, added, or removed.

We used above terms in this paper.

B. Circle Packing

Circle Packing is one of the enclosure diagrams. Figure
1 shows an example of Circle Packing. In the figure, Circle
Packing represents three categories A, B and C. Each of the
categories has some elements. For example, category A has two
elements a-1 and a-2 and category C has two sub-categories,

978-1-4799-8468-8/15/$31.00 c© 2015 IEEE SANER 2015, Montréal, Canada474

a location of
the method

to be modified

parameters of
the clone detection

source files
Step-1

Detecting
Clones

Step-2

Visualizing
the Clone Set

detected
clones

a html file for
visualizing

the detected clones

locations and types of
the detected clones

Fig. 2. Overview of the proposed technique

c-1 and c-2. Circle Packing is useful for representing hierar-
chical data structures. In Fig. 1, it is clear that elements a-1
and a-2 are in the same category. On the other hand, elements
a-1 and b-1 are in different categories. Furthermore, both of
elements c-1-1 and c-2-1 are in category C, however, they are
in different sub-categories, c-1 and c-2.

We use Circle Packing for visualizing detected clones
with file hierarchies. In this paper, we assume that the in-
nermost circles represent methods, and the circles covering
the innermost circles represent files. Moreover, the circles
covering file circles represent directories. For example, in Fig.
1, the outermost circle represents directory Root. The directory
contains two files A and B, and one directory C. File A has
two methods a-1 and a-2. Directory C has two files c-1 and
c-2, and file c-1 has two methods c-1-1 and c-1-2.

III. PROPOSED TECHNIQUE

Figure 2 shows an overview of the proposed technique. The
proposed technique consists of two steps.

Step-1: Detecting Clones
Step-2: Visualizing the Clone Set

First, users prepare a set of source files that is targeted for the
clone detection (in short, target source files). Second, users
specify a method to be modified (in short, a target method).
Then, the proposed technique detects clones of the target
method from the target source files. Lastly, detected clones
are visualized by using Circle Packing.

The inputs of the proposed technique are followings:

• target source files,
• a file name and a start line of a target method, and
• parameters of the clone detection (minimum token

length and the number of allowed gapped statements).

The outputs are followings:

• file names, start lines, end lines and types of the
detected clones, and

• a html file for visualizing the detected clones with
Circle Packing.

In the rest of this section, we describe each step.

A. Step-1: Detecting Clones

The proposed technique detects clones of the target method
from the target source files by considering the input minimum
token length and the number of allowed gapped statements. In

this step, the proposed technique uses a version of customized
our previous technique [6] to detect method clones1. The
technique can detect all types of clones in a short time. The
technique detects clones as a clone set2.

B. Step-2: Visualizing the Clone Set

The proposed technique visualizes the clone set obtained
in Step-1. The clone set is visualized as Circle Packing.
Furthermore, locations and types of the detected clones are
also reported.

IV. TOOL: CLONEPACKER

A. Implementation

We have implemented the proposed technique as a tool,
ClonePacker. ClonePacker has been developed as an Eclipse
plugin. It is downloadable from our website3. We used
JavaScript library D34 for visualizing the clone set. The
proposed technique creates a html file representing the clone
set. Then, the proposed technique visualizes the clone set by
giving the html file to D3.

B. How to Use ClonePacker

Figure 5 shows a screenshot of ClonePacker at a startup
time. First, users select a target method by setting a caret
position on the method. In Fig. 5, the caret position exists
at 116th line. In this case, method draw (111th - 129th lines)
is selected as the target method. After the users push the button
A, ClonePacker finds clones of the target method.

After ClonePacker finishes detecting clones, the users
can see the detection results. Figure 6 shows a screenshot of
ClonePacker for viewing the detected clones. The right view
B shows the detected clones with Circle Packing. The yellow
circle represents the target method that the users selected. The
red one is Type-1 clone, the blue one is Type-2 clone and the
green one is Type-3 clone. In this case, four Type-1 clones,
three Type-2 clones and one Type-3 clone were detected.
One of Type-1 clones locates in the same directory with the
target method and the others locate in different directories. The
size of each innermost circle represents LOC of the method.
Location and type of each clone are showed in the bottom table
by clicking each circle. The location of the clone is represented
as a combination of its file path, its method name, its start line
1Method clones are methods that have identical or similar methods in source

code.
2Clone set is a set of clones that are identical or similar to each other.
3http:// sdl.ist.osaka-u.ac.jp/∼h-murakm/clonepacker/
4http://d3js.org/

475

 604: protected void setFixedRangeAxisSpaceForSubplots(AxisSpace space) {
 605: Iterator iterator = this.subplots.iterator();
 606: while (iterator.hasNext()) {
 607: XYPlot plot = (XYPlot) iterator.next();
- 608: plot.setFixedRangeAxisSpace(space);
+ plot.setFixedRangeAxisSpace(space, false);
 609: }
 700: }

 465: protected void setFixedRangeAxisSpaceForSubplots(AxisSpace space) {
 466: Iterator iterator = this.subplots.iterator();
 467: while (iterator.hasNext()) {
 468: CategoryPlot plot = (CategoryPlot) iterator.next();
- 469: plot.setFixedRangeAxisSpace(space);
+ plot.setFixedRangeAxisSpace(space, false);
 470: }
 471: }

trunk/source/org/jfree/chart/plot/CombinedDomainXYPlot.java

trunk/source/org/jfree/chart/plot/CombinedDomainCategoryPlot.java

This modification was occurred in 04/Dec./2007

This modification was occurred in 28/Mar./2008

Fig. 3. Modifications in JFreeChart

and its end line. The users can also browse the source code of
the clones at the bottom view C.

C. Example of Supporting Scenario

Figure 3 shows two code fragments in JFreeChart. The
608th line of CombinedDomainXYPlot.java and the 469th
line of CombinedDomainCategoryPlot.java include the
same method invocations. One was modified in 04/Dec./2007
and the other was modified in 28/Mar./2008. From the com-
mit log of 28/Mar./2008, the modification in CombinedDo-
mainCategoryPlot.java was for a bug fix. Thus, the two
method invocations must have been modified simultaneously.
However, the programmers overlooked the modification in
CombinedDomainCategoryPlot.java. In Fig 3, the two code
fragments are clones. By using ClonePacker in 04/Dec./2007,
the programmers would have understood that the two method
invocations must have been modified simultaneously. There-
fore, ClonePacker is useful for preventing code fragments that
should be modified simultaneously from being overlooked.

V. EXPERIMENT

A. Methodology

In order to evaluate ClonePacker, we conducted an exper-
iment with participants. The participants performed some tasks
with ClonePacker and Libra. Then, we compared task com-
pletion time of ClonePacker and Libra. In this experiment,
ten participants took part in the experiment. Eight participants
were master’s course students, and the other two participants
were undergraduate students at Osaka University.

First, we divided the participants into two groups, called
GA and GB . Since the number of the participants was ten,
each group had five participants.

Second, each group worked on the tasks. All of the tasks
were very simple, ”Please report locations of all clones of the
given method”. In each task, the participants were given one
target method, then they found its clones by using the tools and

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7

(sec.) completion time for completion time for

 Task-1 Task-2 Task-3 Task-4 Task-5 Task-6

Fig. 4. Results of the task completion time

reported the locations of detected clones. In this experiment,
we set minimum token length as 30 and the number of allowed
gapped statements as 2. We made the participants measure
their task completion time from the beginning to the end in
each task. Table I shows details of the tasks. All of the target
methods were found in JHotDraw 6.0 beta 1. For example, in
Task-2, ClonePacker found three clones (two Type-2 clones
and one Type-3 clone). However, Libra found only two Type-
2 clones because Libra used CCFinder for detecting clones
and CCFinder did not have a capability of detecting Type-3
clones.

Although ClonePacker reported types of the detected
clone, the participants had to report only the locations of
the detected clones. The reason is that Libra did not report
types of detected clones and we would like to provide a fair
comparison between ClonePacker and Libra. Furthermore, in
order to achieve a fair comparison, both the groups changed
the tools at the timing of finishing a half of the tasks. GA

used ClonePacker and GB used Libra for working on Task-
1, Task-2 and Task-3. Then, GA used Libra and GB used
ClonePacker for working on Task-4, Task-5 and Task-6.

B. Experimental Results

Figure 4 shows results of the task completion time. Its
horizontal axis represents each task and the vertical axis
represents time. Each dot represents the reporting time per
clone. For example, in Task-1, the fastest participant using
ClonePacker took about 20 seconds per clone to report
locations of detected clones. From Fig. 4, it was likely that
the participants using ClonePacker reported the locations of
clones faster than Libra.

In order to show that there was a significant difference
between the completion time for ClonePacker and Libra, we
introduced the following null and alternative hypotheses.

TABLE I. DETAILS OF THE EXPERIMENTAL TASKS

Target project Tasks Target method Locations of the target method (start line - end line) # Type-1 # Type-2 # Type-3
Task-1 suite src/org/jhotdraw/test/samples/minimap/MinimapSuite.java (37 - 57) 0 2 0
Task-2 handles src/org/jhotdraw/figures/GroupFigure.java (67 - 74) 0 2 1

JHotDraw Task-3 draw src/org/jhotdraw/contrib/PolygonScaleHandle.java (111 - 129) 4 3 1
(6.0 beta 1) Task-4 store src/org/jhotdraw/util/SerializationStorageFormat.java (62 - 68) 0 1 0

Task-5 fillRoundRect src/org/jhotdraw/contrib/zoom/ScalingGraphics.java (212 - 217) 0 2 2
Task-6 handles src/org/jhotdraw/contrib/TextAreaFigure.java (299 - 303) 5 0 1

476

H0: The null hypothesis is that there is no significant dif-
ference between the completion time for ClonePacker
and Libra.

H1: The alternative hypothesis is that there is a sig-
nificant difference between the completion time for
ClonePacker and Libra.

We confirmed that completion time for ClonePacker and
Libra have equal variances and do not follow a normal
distribution at 0.05 level of a significance by using F-test and
Shapiro-Wilk test, respectively. Thus, we conducted Wilcoxon
test. The p-value obtained from Wilcoxon test was 6.724e-05.
Since p-value was less than 0.05, we rejected H0 and adopted
H1. Therefore, there was a significant difference between the
completion time for ClonePacker and Libra. From the result
of Wilcoxon test and Fig.4, we confirmed that the participants
using ClonePacker reported the locations of clones faster than
Libra.

VI. THREATS TO VALIDITY

A. Configurations of Clone Detection

In this experiment, we set minimum token length as 30 and
the number of allowed gapped statements as 2. In general,
configurations of a clone detection strongly affect the detection
results. Wang et al. proposed a technique to find suitable
configurations of a clone detection automatically [7]. If we
use their technique for finding suitable configurations, we may
obtain different results from this experiment.

B. Target Software System

We used only one target software system in this study. If we
use other software systems, the results might be different. In
order to minimize this threat, we should apply ClonePacker
to many other systems. Furthermore, ClonePacker visualizes
many circles for large software systems including many clones.
In such a case, in order to visualize all detected clones, each
circle is likely to be small. Thus, the user may not be able to
browse detected clones efficiently. In the future, we are going
to tackle this problem.

C. Participants

Ten participants used ClonePacker and Libra for conduct-
ing the given tasks. All of the participants had experiences of
Java programming more than one year. If their programming
skills are differed widely, the differences would affect their
completion time of the given tasks. However, we tried our best
to allocate the participants by considering their programming
experiences. Moreover, the participants changed the tools at the
timing of finishing a half of the tasks. Hence, we considered
that we were able to minimize the differences of skills in GA

and GB .

VII. RELATED WORKS

Asaduzzaman et al. developed a clone analysis support tool,
named VisCad [8]. Inputs of VisCad are the target source
files and the clones obtained from one of some clone detectors
(e.g. NiCad [9], CCFinder [3] and so on). Then, users can
analyze the clones with a scatter plot, a tree map and a
hierarchical dependency graph. The biggest difference between

ClonePacker and VisCad is its usage. VisCad was designed
to be used when programmers would like to investigate all
clones in a software system. On the other hand, ClonePacker
was designed to be used when programmers modify a code
fragment and check its clones.

Hauptmann et al. proposed a technique that shows clone
detection results by using edge bundles [10]. The characteristic
of their technique is that it associates the clone detection results
with a file hierarchy. Both of their and our technique focus on a
file hierarchy. However, granularities of clone results presented
by these techniques are different. The technique of Hauptmann
et al. shows file-based clone results. On the other hand, our
technique shows method-based clone results.

VIII. CONCLUSIONS

In this paper, we introduced our Eclipse plugin, named
ClonePacker. It helps programmers when they modify a
code fragment and check its clones. ClonePacker receives
a set of source files and a method that is to be modified
from programmers. Then, ClonePacker detects clones of the
method from the source files. Finally, ClonePacker visualizes
the detection results by using Circle Packing.

We conducted an experiment with participants to compare
task completion time of ClonePacker and Libra. As a result,
we confirmed that programmers using ClonePacker reported
the locations of clones faster than Libra. In the future, we are
going to apply ClonePacker to many systems.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers 25220003, 24650011, and 24680002.

REFERENCES
[1] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams, Y. Zou, and A. E.

Hassan, “An empirical study on inconsistent changes to code clones at
the release level,” Science of Computer Programming, vol. 77, no. 6,
pp. 760–776, 2012.

[2] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue, “Simultaneous modi-
fication support based on code clone analysis,” in APSEC, 2007, pp.
262–269.

[3] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multi-linguistic
token-based code clone detection system for large scale source code,”
TSE, vol. 28, no. 7, pp. 654–670, 2002.

[4] “Circle packing - blocks,” http://bl.ocks.org/mbostock/4063530.
[5] S. Bellon, R. Koschke, G. Antniol, J. Krinke, and E. Merlo, “Compar-

ison and evaluation of clone detection tools,” TSE, vol. 33, no. 9, pp.
577–591, 2007.

[6] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Gapped
code clone detection with lightweight source code analysis,” in ICPC,
2013, pp. 93–102.

[7] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better
configurations: A rigorous approach to clone evaluation,” in FSE, 2013,
pp. 455–465.

[8] M. Asaduzzaman, C. K. Roy, and K. A. Schneider, “Viscad: Flexible
code clone analysis support for nicad,” in IWSC, 2011, pp. 77–78.

[9] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in ICPC, 2008, pp. 172–181.

[10] B. Hauptmann, V. Bauer, and M. Junker, “Using edge bundle views for
clone visualization,” in IWSC, 2012, pp. 86–87.

477

Fig. 5. Screenshot of ClonePacker at a startup time

Fig. 6. Screenshot of ClonePacker for viewing the detected clones

478

