
How Often Is Necessary Code Missing?

— A Controlled Experiment —

Tomoya Ishihara, Yoshiki Higo, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University,
1-5, Yamadaoka, Suita, Osaka, Japan

{t-ishihr,higo,kusumoto}@ist.osaka-u.ac.jp

Abstract. Code completion is one of the techniques used for realizing
efficient code implementations. Code completion means adding the lack-
ing code required for finishing a given task. Recently, some researchers
have proposed code completion techniques that are intended to support
code reuse. However, these existing techniques are designed to support
the following programming steps. They cannot add necessary code in
already-implemented code lines. In this research, we first investigate how
often developers forget to write the necessary code in their programming
tasks. We also investigate the extent to which opportunities of code reuse
are increased by considering middle code completion. To investigate mid-
dle code completion, we propose a new technique that leverages type-3
clone detection techniques. We conducted a controlled experiment with
nine research participants. As a result, we found that the participants
had forgotten to write the necessary code in 41 of 51 (80%) programming
tasks. We also found that the proposed technique was able to suggest use-
ful code by middle code completion in 10 of 41 (24%) programming tasks
for which the participants had forgotten to write the necessary code.

Keywords: Code completion, Clone detection, Static analysis.

1 Introduction

Code completion is one of the techniques that promote efficient code implemen-
tation. Code completion adds the code that developers are going to implement
by acting on their triggers. Developers do not need to write all the code they
need if they use the code completion functions in their integrated development
environments (IDEs). Consequently, the cost of code implementation can be re-
duced by using code completion appropriately. Currently, IDEs generally have
their own code completion functions [1,2,3]. Many developers actually use code
completion functions in software development [13].

Recently, several techniques have shown that code completion is useful for pro-
moting code reuse [7,8,14]. If we use existing code completion techniques for code
reuse, we can obtain code following the half-written code that we have. How-
ever, existing techniques do not consider complementing already-implemented
code lines with the necessary code. It often happens that developers forget to

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 156–163, 2014.
c© Springer International Publishing Switzerland 2014



How Often Is Necessary Code Missing? — A Controlled Experiment — 157

(a) Half-written method (b) Code completion for following code

(c) Code completion for middle and fol-
lowing code

(d) Base method for suggesting candi-
date statements to the method

Fig. 1. Examples of code completion

write the necessary code in their tasks. Consequently, if we consider the mid-
dle code in code completion, the opportunities of code completion should be
increased and developers can implement more reliable code more efficiently.

In this research, we examine how often developers forget to write the neces-
sary code in their implementations. We also investigate the extent that comple-
menting with middle code increases code reuse. Then, we propose a new code
completion technique, which can add both the middle and the following code.
The proposed technique leverages type-3 clone detection techniques to identify
code to be used to complement.

The aforementioned items were investigated by conducting a controlled ex-
periment with research participants. In the experiment, all the participants were
given tasks of code implementations, and their PC screens were captured as
video. By using the videos, we found that the developers had forgotten to write
the necessary code in 80% (41/51) tasks. We also found that the proposed tech-
nique was able to suggest reusable code in 63% (32/51) tasks and 31% (10/32)
of them were for the middle code.

The remainder of this paper is organized as follows. Section 2 shows a mo-
tivating example of this research, introduces two research questions (RQs) for
investigation, and explains some terms used in this paper. Section 3 explains our
proposed technique. Section 4 describes the experiment conducted for answering
the RQs. Lastly, Section 5 concludes this paper.

2 Preliminaries

This section plays a preliminary role in this paper. First, we explain the moti-
vation of this research. Then, we introduce some terms used in this paper.

2.1 Motivating Example

Figure 1(a) shows a half-written method. In this case, the developer is writing
code to obtain the X-Y coordinates of the upper left and lower right corners of



158 T. Ishihara, Y. Higo, and S. Kusumoto

a given rectangle and to return them in the determined form. If she/he uses ex-
isting code completion techniques (e.g., [15]), the code following the half-written
code complements it as shown in Fig. 1(b). As a result, she/he can obtain two
program statements that retrieve the lower right corner and another statement
that translates the coordinates into the String form. She/he can avoid writing
all the statements in the method by applying the code completion technique.

However, complementing with code following the half-written code is not suf-
ficient to implement reliable code efficiently because it is possible that developers
occasionally forget to write some necessary code. For example, developers often
notice that they forgot to write error-checking code for the formal parameters
of methods when they see NullPointerException. If code completion techniques
consider not only the code following the half-written code but also the middle
code in the half-written code, developers can implement more reliable code more
efficiently. Figure 1(c) shows an example. If code completion techniques consider
the middle code, too, we obtain null checking code for the formal parameter.

In this research, we investigate the following research questions related to code
completion for the middle code.

RQ1. How often do developers forget to write the necessary code?
RQ2. To what extent is code reuse promoted by middle code completion?

2.2 Terms

In this paper, a half-written method where code completion is performed is
called a target method, program statements suggested as completion candi-
dates are called candidate statements and methods used to identify candidate
statements are called base methods.

If we apply the definitions to Fig. 1, the method getRectCoords is a target
method. In Figs. 1(b) and 1(c), some program statements, which are in the bal-
loons, are suggested to the developers. These are called candidate statements. To
suggest candidate statements to the developers, the proposed technique lever-
ages the information of the other methods. In the example, the method shown
in Fig. 1(d) was used. Thus, this method is called a base method.

As shown in Figs. 1(a) and 1(d), base methods include all the program state-
ments in the half-written method. In other words, half-written code is a type-3
clone1 of the base methods and some extra statements are in the base meth-
ods. In this research, base methods are called the super-clones of the target
method. The proposed technique complements half-written code with both the
middle and following code by detecting its super-clones.

3 Code Completion for Middle Code

In this research, we propose a new code completion technique that complements
with both the middle and the following code. Figure 2 shows an overview of

1 Bellon et al. defined type-3 clones as follows: “type-3 is a copy with further modifi-
cations; statements were changed, added, or removed.” [4]



How Often Is Necessary Code Missing? — A Controlled Experiment — 159

Fig. 2. Overview of the proposed technique

the proposed technique. The proposed technique extracts methods from given
source files and the information obtained by analyzing the methods is stored in a
database. Once the database is created, the proposed technique can suggest can-
didate statements for every completion position in a given half-written method.
When a developer chooses a candidate statement, the statement is added at the
suggested position in the half-written method. The proposed technique continues
to suggest candidate statements as long as not all of the candidate statements
are chosen by the developer.

As shown in Fig. 2, the proposed technique consists of the following three
procedures. PROCEDURE-A extracts methods from a target set of source files
and converts each of the methods into a list of statements. Next, it generates
information such as a hash value from each statement and stores the information
in a database. The information is used to detect super-clones.

PROCEDURE-B first obtains the information of statements included in a given
target method by analyzing it. Second, it detects super-clones from the database.
Third, it finds candidate statements in the super-clones (base methods). State-
ments of a base method are classified into two types: one is a set of statements
that are common to the statements in the target method; the other is a set of
statements that do not correspond to any statement in the target method. The
latter statements are regarded as candidate statements. Finally, these candidate
statements are ranked and suggested to the developers in the order of their rank.

PROCEDURE-C inserts a candidate statement selected by the developer. After
inserting the statement, the proposed technique continues to suggest other can-
didate statements in the target methods. This allows developers to continue to
insert multiple candidate statements as long as they want. If they do operations
other than selecting suggested candidate statements, the proposed technique
stops suggesting candidate statements.

To perform PROCEDURE-B based on the developer’s demands, the database
needs to be created by performing PROCEDURE-A in advance. PROCEDURE-A



160 T. Ishihara, Y. Higo, and S. Kusumoto

is performed only once to create the database. In contrast, PROCEDURE-B is per-
formed every time a developer looks for candidate statements. Similarly,
PROCEDURE-C is performed every time a candidate statement is selected.

4 Experiment

To provide answers to the RQs, we conducted a controlled experiment with nine
research participants. In this experiment, we used UCI source code data set2

for creating a database for code completion. The UCI dataset is a collection
of open source software that is open to the public on the Web. The size of the
UCI dataset is huge: it includes 13,192 projects, 2,127,877 Java source files, and
20,449,896 methods.

We need to identify the code that the research participants forgot to write
to answer the RQs. In this experiment, forgotten code was defined as follows:
a chunk of program statements written into the front or the middle of already-
written program statements.

Research participants were one research associate, two PhD candidates, and
six master’s course students. All of them belonged to the same department as the
authors. All of them had at least a half-year experience in Java programming.
Their Java experiences were gained from their classes and research activities.

Each research participant was provided six tasks and she/he implemented a
Java method to meet the specification. For each task, the participants were given
a method signature and Javadoc comments. The method signature consisted of
modifiers, a return type, a method name, parameters, and a throws clause. The
Javadoc comments contained descriptions on the specification of the method.

4.1 Procedure

Firstly, the authors performed PROCEDURE-A of the proposed technique to
create a database for code completion. It took approximately 2 hours to complete
these operations.

Secondly, the research participants implemented Java methods according to
the specifications of given tasks. They used a workstation equipped with an en-
vironment for recording motion captures. We used CamStudio3 for recording the
participants’ screens. Windows Server 2008 R2 was installed in the workstation,
and each participant logged in by using the Remote Desktop function.

We imposed no restrictions for the participants’ implementations. They im-
plemented Java methods as always. Some test cases had been prepared for each
task. If a participant’s implementation passed all the test cases, we judged that
the implementation met the specification.

Thirdly, we investigated the motion pictures. In the investigation for RQ1,
we watched all of each motion picture to check the order of program statement
implementations. In the investigation of RQ2, we obtained the half-written code

2 http://www.ics.uci.edu/~lopes/datasets/
3 http://camstudio.org

http://www.ics.uci.edu/~lopes/datasets/
http://camstudio.org


How Often Is Necessary Code Missing? — A Controlled Experiment — 161

from the motion pictures. Then, we input the obtained half-written code into our
tool for checking whether the tool was able to suggest any code for completion
and compared the suggested code and the participants’ full-written code. In the
investigation, half-written code was obtained every time that a new program
statement was implemented.

4.2 Investigation for RQ1

Table 1 shows the participants who forgot to write the necessary code on their
tasks. Each circle (“◦”) means there were one or more program statements that
the participant forgot to write, and a hyphen (“-”) means the recording of the
motion picture failed for that the participant’s task. The number of total tasks
was 54 (6 tasks × 9 participants) but the recording motion pictures of three
participant’s tasks failed. We were not able to obtain any data from the failed
tasks.

Table 1 shows that the participants forgot to write the necessary code in 41
out of 51 tasks. Such tasks are approximately 80% of the total number of tasks.
In addition, we found the following phenomena.

– All the participants forgot to write the necessary code on at least two tasks.
– At least four participants forgot to write the necessary code on all the tasks.

Consequently, our answer to RQ1 is as follows: research participants forgot to
write the necessary code in approximately 80% of the implemented methods.

4.3 Investigation for RQ2

Table 2 shows the participants and tasks for which the proposed technique was
able to suggest code equal to each participant’s final implementations. We judged

Table 1. Tasks and participants having
forgotten code (“◦” means one or more
program statements were forgotten, and
“-” means recording of the motion pic-
ture failed)

T1 T2 T3 T4 T5 T6 Total

P1 - ◦ ◦ ◦ 3
P2 ◦ ◦ ◦ ◦ ◦ ◦ 6
P3 - ◦ ◦ ◦ ◦ 4
P4 ◦ ◦ ◦ ◦ ◦ ◦ 6
P5 - ◦ ◦ ◦ ◦ 4
P6 ◦ ◦ ◦ ◦ ◦ ◦ 6
P7 ◦ ◦ ◦ ◦ ◦ ◦ 6
P8 ◦ ◦ ◦ ◦ 4
P9 ◦ ◦ 2

Total 5 8 7 9 4 8 41

Table 2. Tasks and participants for
which the tool was able to suggest cor-
rect candidates (“◦” and “•” mean cor-
rect following code and correct middle
code were suggested, respectively.)

T1 T2 T3 T4 T5 T6 Total

P1 - ◦ ◦ ◦ •◦ 4
P2 •◦ •◦ •◦ ◦ •◦ 5
P3 - ◦ • 2
P4 ◦ ◦ •◦ •◦ 4
P5 - ◦ ◦ 2
P6 ◦ ◦ 2
P7 •◦ •◦ ◦ ◦ ◦ ◦ 6
P8 ◦ ◦ 2
P9 ◦ ◦ ◦ ◦ ◦ 5

Total 6 4 4 5 4 9 32



162 T. Ishihara, Y. Higo, and S. Kusumoto

the semantically equal code to also be correct. “Semantically equal” means sug-
gested code that has different syntax from the participant’s final code but has
the same semantics. For example, if the tool suggests “if(i - 1 > j)” and
the participant’s final code is “if(i > j + 1)”, their semantics are the same.
White circles (“◦”) and black circles (“•”) mean the tool was able to suggest
correct code following the half-written code or correct code in the middle of the
half-written code, respectively.

The table shows that the tool was able to suggest correct code for 32 tasks.
Those tasks are 63% (32/51) of all the participants’ tasks. In addition, the tool
was able to suggest correct code in the middle of the half-written code for 10
participants’ tasks, which are 24% (10/41) of the tasks where participants forgot
to write the necessary code. The tasks where the tool suggested the correct
middle code are 31% (10/32) of the tasks where the tool suggested the correct
code.

We can see that the tool was able to suggest the correct code for at least two
tasks for all of the participants. Especially, for participant P7, correct candidates
were suggested for all tasks. Also, for task T6, the tool was able to suggest the
correct code for all of the participants.

Our answer to RQ2 is as follows: for 24% (10/41) of the users’ tasks, the
proposed method was able to suggest correct code for the forgotten code.

4.4 Discussion

The proposed technique suggests code included in the database, which means
that code completion by the proposed technique makes code clones between
the code in the database and the user’s development system. The presence of
code clones is said to be one of the factors that makes software maintenance
more difficult. Some research studies have shown that code clones are harmless
[6,10,12]. On the other hand, other studies report that only a small part of code
clones are harmful to software maintenance [5,9,11]. In the proposed technique,
the source code used for creating the database is very important. If we make
reliable code that is well tested or executed for a long time for creating the
database, the proposed technique can suggest code based on such reliable code.
Clones of reliable code are not harmful because clones only become harmful when
they require simultaneous modifications. Identifying all the code fragments to
be modified simultaneously is a costly and error-prone task, and unintentional
inconsistencies occur if we forget to modify some of these code fragments [6].

Consequently, we can say that the proposed technique promotes the gener-
ation of code clones without problems if we use reliable code for creating the
database.

5 Conclusion

In this paper, we investigated the following: (RQ1) How often developers forget to
write the necessary code in their implementation tasks and (RQ2) To what extent



How Often Is Necessary Code Missing? — A Controlled Experiment — 163

code completion for such forgotten code is useful. To conduct the investigation,
we developed a new technique that can complement half-written code with the
following code and the middle code. The investigation was conducted with nine
research participants. Each participant performed six implementation tasks and
their PC screens were recorded as motion pictures. By using the motion pictures,
we investigated the RQs. As a result, we provided these answers: participants
forgot to write the necessary code in 80% (41/51) of their tasks and the proposed
technique was able to suggest correct statements in 24% (10/41) of such tasks.

Acknowledgments. This work was supported by JSPS KAKENHI Grant
Numbers 25220003, 24650011, and 24680002.

References

1. Eclipse, http://www.eclipse.org
2. Intellij idea, http://www.jetbrains.com/idea/
3. Intellisense, http://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
4. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and Eval-

uation of Clone Detection Tools. IEEE TSE 33(9), 577–591 (2007)
5. Göde, N., Koschke, R.: Frequency and risks of changes to clones. In: Proc. of ICSE,

pp. 311–320 (2011)
6. Higo, Y., Kusumoto, S.: How Often Do Unintended Inconsistencies Happened? –

Deriving Modification Patterns and Detecting Overlooked Code Fragments–. In:
Proc. of ICSM, pp. 222–231 (2012)

7. Hill, R., Rideout, J.: Automatic method completion. In: Proc. of ASE, pp. 228–235
(2004)

8. Holmes, R., Walker, R.J.: Systematizing pragmatic software reuse. ACM
TOSEM 21(4), 1–44 (2012)

9. Hotta, K., Sano, Y., Higo, Y., Kusumoto, S.: Is duplicate code more frequently
modified than non-duplicate code in software evolution?: An empirical study on
open source software. In: Proc. of ERCIM/IWPSE, pp. 73–82 (2010)

10. Inoue, K., Higo, Y., Yoshida, N., Choi, E., Kusumoto, S., Kim, K., Park, W.,
Lee, E.: Experience of finding inconsistently-changed bugs in code clones of mobile
software. In: Proc. of IWSC, pp. 94–95 (2012)

11. Kapser, C.J., Godfrey, M.W.: “cloning considered harmful” considered harmful:
Patterns of cloning in software. ESE 13(6), 645–692 (2008)

12. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-Miner: Finding Copy-Paste and Related
Bugs in Large-Scale Software Code. IEEE TSE, 176–192 (2006)

13. Murphy, G.C., Kersten, M., Findlater, L.: How Are Java Software Developers Using
the Eclipse IDE? IEEE Software 23(4), 76–83 (2006)

14. Nguyen, A.T., Nguyen, T.T., Nguyen, H.A., Tamrawi, A., Nguyen, H.V., Al-
Kofahi, J., Nguyen, T.N.: Graph-based pattern-oriented, context-sensitive source
code completion. In: Proc. of ICSE, pp. 69–79 (2012)

15. Yamamoto, T., Yoshida, N., Higo, Y.: Seamless Code Reuse Using Source Code
Corpus. In: Proc. of IWESEP, pp. 31–36 (2013)

http://www.eclipse.org
http://www.jetbrains.com/idea/
http://msdn.microsoft.com/en-us/library/hcw1s69b.aspx

