
Revealing Purity and Side Effects on Functions
for Reusing Java Libraries

Jiachen Yang1, Keisuke Hotta1, Yoshiki Higo1 and Shinji Kusumoto1

1Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan

{jc-yang,k-hotta,higo,kusumoto}@ist.osaka-u.ac.jp

Abstract. Reuse of software components requires the comprehension
of the behavior and possible side effects among APIs of program com-
ponents. Meanwhile, identifying problematic usage of these components
is difficult with conventional static analysis. Purity and side effects are
important properties of methods that often are neglected by the docu-
mentations of the object oriented languages such as Java. In this paper,
we studied these properties by using a static analysis technique to au-
tomatically infer the state dependencies for the return value and side
effects of methods. As a result, the effect information reveals purity of
methods as well as well-defined state interactions between objects. We
have implemented the analyzer targeting Java bytecode and tested it on
some open source Java software libraries with different scale and char-
acteristic. From our experimental results, we found that 24–44% of the
methods in the evaluated open source Java libraries are pure, which in-
dicates that a large percentage of the methods are suitable for high level
refactoring. Our study can help programmers to understand and reuse
these libraries.

Keywords: static analysis · pure function · state boundary · state de-
pendency · object-oriented · design by contract

1 Introduction

It is difficult for programmers to reuse software components without fully under-
standing their behavior. The documentation and naming of these components
usually focuses on intent, i.e., what these functions are required to do, but fails
to illustrate their side effects, i.e., how these functions accomplish their task [4].
For instance, it is rare for API function1 signatures or documentation to include
information about what global and object states will be modified during an invo-
cation. It is hard to reuse the modularized components, because of the possible
side effects in API libraries. For instance, it is usually unclear for programmers

1 We interchange the term function with the term method throughout this paper
referring to the same thing. We use function to refer the ideas that originate from
the functional paradigm, and method to refer the ideas that originate from object-
oriented paradigm such as Java.

whether it is safe to call the APIs across multiple threads. In addition, undocu-
mented API side effects may be changed during software maintenance, making
debugging even more challenging in the future [16].

By understanding of side effects in the software libraries, programmers can
perform high level refactoring on the source code that is using the functional
part of the libraries. For instance, the return value of math functions such as
sin will be the same result if the same parameter is passed, therefore the result
can be cached if the same calculation is performed more than once. Moreover,
the calculation without side effects are good candidates for parallelization [9].
However, the purity information is usually missing in external libraries, therefore
programmers would risk introducing bugs with such refactorings, for example,
caching the result of a function which depends on the mutable internal state.

In this paper, we present an approach to infer a function’s purity from byte
code for later use. Programmers can use effect information to understand a
function’s side effects in order to reuse it. For example, the approach can help to
decide whether it is safe to cache or parallel a time-consuming calculation. The
contributions of this research include:

– An approach to automatically infer purity and side effects,
– A concrete implementation for Java bytecode,
– Experiments on well-known open source software libraries with different scale

and characteristic.

In our experiments,we found that 24–44% of the methods in the evaluated open
source Java libraries are pure. Also, we observed methods that should be pure
in theory but not in the implementation, and revealed tricks or potential bugs
in the implementation by a case study of our approach.

We achieved the same percentage of pure functions with the existing study
without a manually created white-list, and we revealed which side effects these
functions were generating which would not found in the existing studies. We
focused on revealing these side effect information on real world software libraries
to be used by the programmers and tools.

2 Related Work

The idea of verifiable imperative programs has been used in the Euclid lan-
guage [10] and its descendants [6] since the 1970s. However, modern OO lan-
guages such as Java and C# have not implemented these ideas. The proposed
research checks side effects and purity in legacy source codes written in these
modern OO languages.

Many previous efforts on combining pure functional style into an OO paradigm
concentrate on introducing immutable restrictions on existing type systems, as in
functional programming languages. Tschantz, et al. [19] proposed Javari as a new
programming language that adds readonly and other keywords into Java syntax
to indicate the reference immutably of variables. Based their work, Quinonez [8]

proposed an analyzer called Javarifier to automatically infer reference immutabil-
ity in Javari syntax. Huang, et al. [7] proposed a much simpler but more restricted
design, called ReIm and ReImInfer, as they only modified the type system of
Java by adding three extra qualifiers in the type declaration, and their implemen-
tation is more unified in comparing Javari with Javarifier. A similar approach
has been taken by extending the syntax of C# in [5]. All these type-system-
based approaches require syntax modification of the source code. Although they
can be applied in newly developed projects, it is much more difficult for these
approaches to be adopted in legacy libraries, and existing tools such as IDE
support need to be extended to accept their new syntax.

There are studies of automatic purity analyzers on unmodified syntax. Sălcianu,
et al. present a purity analyzer for Java in [18], which uses an inter-procedural
pointer analysis [17] and escape analysis to infer reference immutability. Simi-
lar to our approach, they verify the purity of functions, but their pointer and
escape analysis relies on a whole program analysis starting from a main entry
point, which is not always available for software libraries. We have compared
the purity result of our approach with their study using the same benchmark
in Section 5.2. JPure [14] eliminated the need for reference immutability infer-
ence by introducing pure, fresh and local annotations, which lead to a more
restrictive definition of purity, and loses the exact information for effects. Both
studies focus on analyzing of purity only, and does not expose effects informa-
tions outside their toolchain. Compared with these studies, our approach uses
lexical state accessor analysis, which will hopefully combine the modularity of
JPure by illuminating the need for inter-procedure analysis, and the flexibility of
reference immutability with the availability of effect informations. Also neither
of these two studies further classify the pure functions into Stateless and Stateful
as we do. Further, we provide a heuristic approach to detect cache semantics in
member fields, thus eliminating the need of a manually provided white-list.

Mettler, et al. [13] take a different approach. Instead of extending the syn-
tax of an existing language, they created a subset of Java called Joe-E. As one
application of Joe-E, they proposed [3] to verify the purity of functions by only
permitting immutable objects in the function signature. Kjolstad, et al. [9] pro-
posed a technique to transform a mutable class into an immutable one. They
utilized an escaping and entering analysis similar to [18]. These two studies are
similar to each other as they completely eliminate the mutable states from target
source codes, which is not always acceptable in general programming scenarios,
thus limits their application. Comparing to these two studies, our technique can
be performed on the real world software libraries, even without the source code.
Therefore we are more suitable for comprehension the legacy code bases.

3 Automatic Inference of Purity and Side Effects

In this section, we first define the concepts of purity and side effects on the
functions in Java. Then we present our approach to automatically infer the purity

and side effects. Lastly, we will describe how to utilize our approach during the
reusing of software components.

3.1 Stateless & Stateful Purity of Functions

The notion of purity on functions does not match well with other OO paradigm
concepts. In OO languages such as Java, program states are usually encapsu-
lated within objects, which use well-defined boundary functions called methods
to interact with each other. This is the opposite of a pure functional paradigm
where states of the program are passing through function arguments. Moreover,
we noticed that most objects have a life span pattern of creation, use and de-
stroy. Many objects will not change their states after properly created, and the
methods called on them simply query these internal states. We would like to
distinguish these state-querying methods from those methods that modify the
states. Through our research we have observed that Java libraries can contain
around 24-44% of functional code that does not modify the program’s state.

Based on the above observation, we defined a function as pure if it does
not generate side effects such as modifying the state outside the object. Note
that this definition is slightly different from the traditional definition of pure
functions by return value dependencies [15]. Meanwhile, many existing studies
such as [11, 14, 18] share the same purity definition with us. To illustrate the
difference of two definitions, we divide our definition of a pure function into
stateless and stateful functions:

Definition 1 (Stateless). If the return value of a pure function is only deter-
mined by the state of its arguments.

Definition 2 (Stateful). If the return value of a pure function is also deter-
mined by the states of member fields.

All other non-pure functions generate side effects. Although the notion of a
stateful pure function may seem like a contradiction, we can view the state
of field members as extra arguments, so that they can be converted into the
mathematical form of a pure function. An example of a stateful pure function
is equals method in Java, which compares the value equality of two objects.
Although they depend on an object’s state, well-formed equals methods do not
change the state.

3.2 Lexical State Accessors and Side Effects

The main purpose of this research is to reveal the effects of functions. Therefore
we need to define what is a side effect of a function.

Definition 3 (Effect). We define the effects of a function as the modifications
to the states of the program, including the return value.

Definition 4 (Side Effect). We define the side effects of a function as the
modifications to the states of the objects or performing I/O operations.

Fig. 1. Class Diagram with Call Graph

The effects of a functions are all the side effects plus the return value. Ac-
cording to the single response principle in [12], a function should have exactly
one effect, either calculating a value and return it, or doing one kind of mod-
ification to the state of the program. Disobeying this practice usually leads to
problematic, unmaintainable coding style.

Definition 5 (Lexical State Accessor). We define a lexical state accessor to
be any variable that is directly accessible within a function’s lexical scope before
the execution.

All possible modifications to the state of a program are achieved by accessing
the aforementioned lexical state accessors. There are two forms of modification:
changing the values of these accessors directly, or modifying indirectly though
the use of lexical state accessors. These modifications are considered to be the
side effects of executing the function. Additional side effects include directly or
transitively calling system routines to perform I/O operations.

3.3 Call Graph and Data Analysis

The analyzer identifies method targets by using a class diagram and call graph.
The class diagram records the inheritance relationship of classes (including in-
terfaces) and the overriding relationship between methods in a class hierarchy.
The call graph records the invocation instructions inside the method body, which
points to another method defined in the class diagram. An example class diagram
is shown in Fig. 1.

Our analyzer traverses all of the methods in the class diagram, inferring pos-
sible effects including side effects. We capture only the dependencies of lexical
state accessors, during these three analysis stages:
data flow analysis estimates the return value dependency.
reference alias analysis identifies possible modifications to lexical state ac-
cessors that are side effects.
control flow analysis supports data dependence calculations on conditional
branches.

There are three kinds of lexical state accessors as defined in Section 3.2, which
are the static fields (shortened as S) of a class, the member fields (shortened as
F) of an object, and the arguments (shortened as A) passed to the function.

Definition 6 (Data Dependency Set). We define a data dependency as the
value of a lexical state accessor before a function executes, and a dependency
set (DS) as the set of data dependencies such that DS ⊂ {x|x ∈ S ∪ F ∪A}.

The above definition of dependency set is used in both our data flow analysis
and reference alias analysis. The difference between the dependency sets used
in these two analyses is that we only consider reference type dependencies in
reference alias analysis, and value type dependencies in data flow analysis. All
dependencies suitable in reference alias analysis are also suitable in data flow
analysis, but not vice versa. We define two dependency sets used in these two
stages of analysis as:
reference dependency (rd) is a DS of the possible reference aliases.
value dependency (vd) is a DS that affects the value.

Our analyzer interpret the code, follow the instructions in the given function,
and apply the aforementioned three analysis. The analyzer begins its interpreta-
tion by breaking the code of a given function into statement blocks using control
flow analysis, where we define a block to be a sequence of statements. The block
can be associated with a value of its condition if it is nested in a if or while state-
ment. Next, the analyzer interprets each block ’s instructions to evaluate the value
dependencies and obtain a list of effects. During the interpretation stage, each
value is represented as a triplet of its static type, a reference-dependency set,
and a value dependency set (V = (type, rd, vd)).

At the beginning of the interpretation of the given function, the argument
values are assigned with value and reference dependencies of themselves. Next we
interpret each instructions of the function by following the transfer functions in
Table 1. The input of a transfer function is V before the execution of the instruc-

Table 1. Transfer Functions for Values and Instructions

Type of Instuctions Code Pattern Reference Dependency Value Dependency

new object new τ ∅ ∅
parameter x {x} {x}
local variable y ∅ ∅
member field this.field {field} {field}
static field Class.field {field} {field}
object field V .field Vrd Vvd

unary operation op V ∅ V
binary operation V1 op V2 ∅ V1vd ∪ V2vd

array access V1[V2] V1rd V1vd ∪ V2vd

type cast (τ)V Vrd Vvd

assignment V1 = V2 V1rd V2vd

return value return V ∅ ∅
merge V1rd ∪ V2rd V1vd ∪ V2vd

boolean f(int[] a, int b) {
if(a.length > 0){ // condition depends on arg a

1: int [] local = a; // copy reference
2: a = new int [1]; // overwrite reference
3: a[0] = local [0]; // not modification
4: local [0] = b; // modify arg a
5: b = a[0]; // not modification
6: return true;

}else{
return false; // depend on arg a

}
}

Fig. 2. Example of Data and Control Analysis

tion, and the output is the new V after the execution. Besides the reference and
value dependency sets in this table, the static types of these values should also
be calculated as defined in the language specifications. Note that the “merge”
instruction in this table merges the branches of statements during the interpre-
tation. Besides the instructions listed in the table, there is another important
kind of instructions, the function invocations, described in Section 3.4.

During interpretation, possible function effects are collected when processing
assignment instructions. We initially mark two kinds of dependencies: modifica-
tion behavior for reference dependencies and return statement for value depen-
dencies. Both dependencies are merged with the value dependency set for the
current block.

An example of the interpretation stage is represented in Fig. 2. At the be-
ginning of interpretation, the reference dependency of a is assigned as argument
a, and the value dependency of a and b are assigned as corresponding argument
names. There are two blocks in this code colorized as red (above) and green
(below), which are associated with the branch condition a.length > 0. Since
the value dependency of this condition is argument a, both two blocks depend
on the state of a. Then, during the interpretation of the red block:

1. The reference of a is copied into local, which implies that the reference
dependency of local is {a}

2. The reference dependency of a is now ∅
3. A modification behavior is performed on the reference dependency of a, which

is ∅, and thus has no side effects.
4. A modification behavior is performed on the reference dependency of local,

with a value dependency of {b}. An @Argument effect on a is generated with
a data dependency on b and a control flow dependency on a.

5. A modification behavior is performed on ∅.
6. A return statement generates a Depend effect with a value dependency of ∅

and an value dependency of the constant true, which is then merged with
the control dependency on a.

The analysis on the green block generates the same Depend effect, and these two
Depend effect are then merged.

3.4 Effects from Function Invocations

We refer to the function containing an invocation as a caller, and the function
being called as a callee. When the analyzer sees a function invocation instruc-
tion during interpretation, it generates possible effects by examining the data
flow across the invocation boundaries. Fortunately, this cross-function analysis
is possible with the generated effect information on the callee, so that we do not
need to examine the codes of the caller and callee at the same time.

There are two kinds of invocation instructions in Java: static and dynamic
dispatch. Dynamic dispatch is used to call virtual methods, and static dispatch
is used to call non-virtual methods and special cases such as calling overridden
methods defined in a super class.

All of the invocation instructions share the same form as Vobj.function(Varg).
All side effects on static fields are transferred from callee to caller. If there are ar-
gument effects generated on the callee method, i.e., when the callee is modifying
the state of a passed argument, then the analyzer will generate a modification
behavior on the reference dependencies of corresponding position, as if the mod-
ification occurred inside the caller method.

The Vobj is the object that owns the method, which could be this, ClassName
or a certain dynamically calculated value during the interpretation. Static mem-
ber methods on ClassNames are guaranteed not to generate modification side
effects on member fields. If a reference dependency of Vobj is this, all the mod-
ification side effect information on member fields will be copied, otherwise a
single modification effect on the reference dependency of the current Vobj will
be recorded. This behavior of analyzer follows the definition of lexical state ac-
cessors described in Section 3.2 to distinguish between directly and transitively
accesses of these accessors.

Finally, if the interpreted invocation expression returns a value, we need to
determine the reference and value dependency of its return value. The reference
dependency of the invocation expression is the reference dependency of return
value from callee, and the value-dependency of this expression is the merged
value dependencies of all Varg.

With the effect information on the functions, we can simply determine whether
a function is a pure function, and further, whether it is stateful or stateless. A
function that has no modifications is considered to be a pure function. A pure
function whose return value depends only on arguments is considered to be a
stateless pure function.

3.5 Iteration to a Fix-point of Class Diagram

A function’s effects depend on the effects of its callees as well its overriding func-
tions, potentially causing a function to be analyzed several times. In addition,
recursive functions may also be analyzed multiple times. We continue analyzing
until the effects are inferred. We set a flag in each function on the class diagram
to indicate whether the effects for this function need to be inferred or updated.

We also differentiate two sets of effects: static effects and dynamic effects,
because we differentiate between static and dynamic dispatch invocations.

Firstly, we initialize all methods in the class diagram with both static effects
and dynamic effects as ∅. Next we mark the flags for all of these methods as “need
to be analyzed”. Then, for each method whose flag is marked, the analyzer:

1. Merges the static effects with the result of the data analysis on this method.
2. Sets the dynamic effects to be the merge of static effects and all dynamic

effects of the overridden methods.
3. Clears the flag on this method.
4. If the effects have changed since last analysis, marks the flags of all methods

that depend on this method.

We continue iterating until none of the methods in the class diagram are marked,
which means a fix-point of the analysis is reached. Note that during the execution
of this algorithm, the size of both static effects and dynamic effects only increases
and never decreases. There is an upper limit on the size, which is the sum of
numbers of all possible modifications to the fields and arguments in the program.
With the monotone increasing property and the upper bound of the algorithm,
we can guarantee that it will halt.

3.6 Applications in Reusing Software Components

We have described how our analyzer infer the effect information. Next, we will
briefly introduce how to use our analyzer from a programmer’s point of view.

Suppose a programmer is facing a reusable software component, either in
distributed binary form or in source code form, and the programmer would
like to know whether it is safe to reuse this component in his new code. The
programmer can apply our analyzer on the candidate component, together with
all its dependent libraries, to obtain a list of side effects on each functions from
the component. The programmer can then decide whether it is safe to reuse the
component based on the side effects.

For example, if the programmer is writing a multi-threaded program, and
the candidate component is accessing some global states, then the programmer
may need to introduce a thread lock to synchronize the accesses to these global
states. As another example, if the candidate function is a pure function reported
by our analyzer, then it is usually safe to reuse this function in the new source
code without introducing hidden data dependency.

Moreover, the output of our analyzer can help the debugging and understand-
ing of the behavior of software components. It is reported [1] that some bug will
appear only if the programmer execute the unit test separately. Understanding
the side effects could reveal these bugs even before executing the test cases.

4 Implementation Details

We discuss some of the implementation details of our analyzer in this section.
We chose Java bytecode defined by the Java Runtime Environment (shortened

class String{
/** Cache the hash code for the string */
private int hash; // Default to 0
...
public int hashCode () {

int h = hash;
if (h == 0 && value.length > 0) {

char val[] = value;
for (int i = 0; i < value.length; i++) {

h = 31 * h + val[i];
}
hash = h;

}
return h;

}
}

Fig. 3. Example of Cache Semantic in java.lang.String

as JRE) version 6 as our target language, and implemented the described ana-
lyzer based on the widely used ASM library [2]. There are several advantages in
targeting an intermediate language rather than source code. First, the analyzer
is syntax neutral, so we can automatically analyze all languages targeting the
Java Virtual Machine. Second, the analyzer can be applied on binary libraries
without source code. Finally, the type safety is assured by the JRE’s compiler
and bytecode verifier.

4.1 Detection of Cache Semantics

Although the described analysis works well for identifying modification be-
haviors in theory, we find a difficulty to apply it in practice when member fields
are used solely to cache the calculation results. We refer to the member fields
that are used to cache the calculation results as having cache semantics. We
found that the implementation of HashMap.equals modifies its member field
HashMap.entrySet, and the implementation of String.hashCode caches the
result in its member field String.hash, as shown in Fig. 3. By our definition,
these methods change the state of internal member fields, and thus are no longer
pure functions. As a result of these two methods not being pure, callers of these
methods were also marked as generating side effects.

This caching semantic is not only found by us, but also described in previous
literatures such as [18]. A widely accepted solution to this problem was to accept
a white-list of functions from the user (called special methods in [18]), indicating
that they are proven to be pure by the user manually. For the reason that
the selection of the white-list will impose great impact on the precision of the
analyzing result, and they involve human judgments, we do not consider this as
an ideal solution.

To preciously and automatically analyze this kind of methods that have
caching semantics, we extend our analyzer to detect the cache semantics us-
ing a heuristic approach. More precisely, we consider a member field of a class
having the cache semantic if all the following preconditions are true:

P1 The field is assigned either by a constant value, or in only one member
function.

P2 The non-constant assignment on the field occurs within a branch block.
P3 The right-hand value of the non-constant assignment is only depended on

other fields.
P4 The branch condition of the block checks that the value of the modified

member field is a constant value.

We consider the following values as constant values: constant literals, null point-
ers and values of static final member fields that have a primitive type. The
assignment with a constant value is considered as re-initializing the state of the
cache field. The checking with a constant value is considered as checking the
initialized state. In either cases, the value of the field is determined by other
fields, therefore, it cannot be used to store a mutable state of the object.

In the example of String, the member field hash is assigned by hashCode

with a calculation result and by its constructor with a constant value, therefore
P1 is true. The assignment to hash occurs in a if condition block, therefore
P2 is true. The value of the assignment is depend on the member field value,
therefore P3 is true. Lastly in the condition block, the value of hash is assured
to be zero by the condition check h==0, therefore P4 are true. The member field
hash meets all the preconditions, therefore it is considered to be a caching field
by our analyzer.

The modification behavior on the detected caching fields are suppressed from
the effects, and the return value dependencies on these caching fields are ignored.

5 Experiments

We implemented our analyzer with name purano2, and evaluated it on real world
software components in terms of accuracy, performance, and the distribution of
different kinds of effects in different scale of software components. During the
experimentation, we expected to answer the following research questions:
RQ1 What is the distribution of pure and side effect methods in the software
libraries?
RQ2 How is the accuracy of our analysis comparing with an existing study?
How is the heuristic approach in the detection of cache semantic compared to
the white-list approach?
RQ3 How to utilize the revealed information during reusing the software com-
ponents?

Firstly, we will answer the 2 research questions by experiments. Then we will
demonstrate how would our study help programmers in RQ3 as a case study.

5.1 R1: Distribution of Effects

To show the distribution of purity and side effects of the methods in real world
software libraries, we experimented on 4 target software projects, listed in Ta-

2 We have published purano at https://github.com/farseerfc/purano.

ble 2. These experiments were executed on an octo-core Xeon E5520 with a 2GB
heap size limitation. purano is the implementation of the analyzer of this paper,
which includes a modified version of the ASM library. Both htmlparser, tomcat
and argouml are well-known open source Java projects, and we used their latest
stable binary distributions. Note that all of these software projects were analyzed
together with the JRE standard libraries, because the analyzer need the purity
and side effect information for all functions being called including the ones in
the libraries. This lead to the much greater number of analyzed classes than
the number of the target classes. According to the Javadoc for JRE 7, there are
3,793 public classes altogether, and more private ones in the JRE library. The
analysis time of argouml was around 4 minutes, which is reasonable for large
scale software. The number of analysis passes ranged from 16 to 22, which was
depended on the longest invocation and overriding chain in all analyzed methods.
Based on the analysis times in Table 2, we can conclude that the performance of
our analyzer is reasonable within a daily programming environment, although it
could be further optimized by caching the result of the standard libraries.

The purity of functions of the experimental result is listed in Table 3. From
the output, we find that around 24%–44% of the methods in these software
projects were marked as stateless or stateful pure functions. We manually con-
firmed the generated result for purano to make sure it matched our expectation.
The argouml project contains many non-pure graphical code percentage and the
htmlparser project have more pure functional code percentage.

5.2 R2: Comparison with an Existing Approach

While there are none of existing studies to identify the side effect informations
within our knowledge, there are studies that only infer the purity of the functions
based on different approaches. Therefore, we compare our purity result with one
of the existing studies to examine the accuracy of our analysis. We ran our tool

Table 2. Experiment Target and Analysis Performance

Software Analyzed Classes Target Classes Target Functions Time (sec.) # Passes

purano 2,942 253 2,372 148 16
htmlparser 5,795 156 1,645 112 17

tomcat 7,673 772 8,824 186 18
argouml 11,608 2,545 20,167 233 22

Table 3. Percentage of Effects

Software
Pure Functions

Side Effects
Modifying

Stateless Stateful Member Static Arg.

purano 382 (16.1%) 192 (8.0%) 1,798 (75.9%) 1,548 1,087 485
htmlparser 363 (22.1%) 358 (21.8%) 924 (56.2%) 679 462 143

tomcat 1,260 (14.3%) 1,861 (21.1%) 5,703 (64.6%) 4,346 3,990 1,288
argouml 5,019 (24.9%) 1,744 (8.6%) 13,404 (66.5%) 7,057 11,849 3,255

against the JOlden benchmark used in [18]. The result from the benchmark is
shown in Table 4, comparing with the result from their study. Also we run our
analyzer in two different configurations. One configuration is using a white-list
which is similar to the configuration of [18], with the detection of cache semantic
disabled. Another configuration is using the detection of cache semantics.

Their approach relies on a whole program analysis starting from a main entry
point, and thus they covered fewer functions than our tool. They chose a set of
functions for the white-list by viewing all the source code manually in advance,
a time-consuming task in practice, while our approach automatically identifying
the cache semantics. We were unable to compare precision and recall due to
challenges in executing their tool in our environment. Therefore we compared
with their result from the published literature [18]. As we can see from the result
table, we achieved a similar result on the number of pure functions. In addition
to the number of pure functions shown in the result, we identified all the side
effects and the type of purity, which is the main purpose of our study and cannot
be found in their result.

Comparing our result with different configurations, we can see that the de-
tection of cache semantics result to a slightly lower pure percentage than the
white-list approach. This is excepted, as the heuristic detection approach can-
not find all the fields that are used for caching purpose without increasing the
false positive rate. For example, we cannot detect the cached result within an
entry of a hashmap instead of a single field. We consider the heuristic detection
approach is more applicable for the existing software libraries because the pro-
grammers usually do not have a clue of which API functions are the libraries
using and whether they are pure functions. Revealing this information is the
main purpose of the purity analysis in the first place. An automatic technique
like our approach will break the chicken or the egg dilemma and enable the
purity analysis to be adopt in practice.

Table 4. Comparison on JOlden Benchmark. Function numbers are different because
our approach analyzes all functions while Sălcianu’s approach analyzes only the func-
tions invoked transitively from the main entry point.

Application
Our (White-list) Our (Cache Semantic) Sălcianu’s

Total Stateless Stateful Pure Stateless Stateful Pure Total Pure

BH 73 14 17 31 13 13 26 59 28
BiSort 15 6 0 6 5 0 5 13 5
Em3d 23 7 3 10 5 2 7 20 8
Health 29 8 1 9 8 0 8 27 13
MST 36 8 11 19 5 9 14 31 17
Perimeter 50 28 11 39 28 9 37 37 33
Power 32 2 4 6 2 4 6 29 9
TSP 16 5 1 6 4 1 5 14 5
TreeAdd 12 3 1 4 2 1 3 5 2
Voronoi 73 11 31 42 12 33 45 70 50

package java.io;
public final class FilePermission ... {

public boolean equals(Object obj) {
...
return (this.mask == that.mask) &&

this.cpath.equals(that.cpath) &&
(this.directory == that.directory) &&
(this.recursive == that.recursive);

}
public int hashCode () { return 0; }

}

Fig. 4. A Potential Problem in FilePermission

5.3 RQ3 A Case Study: Purity of equals and hashCode

Different programmers may use our tool for their own usages. Therefore, we
conducted a case study to illustrate one possible usage of our tool. We examined
the inferred effects on two methods, namely equals and hashCode. These two
methods are related with the value equality of objects in Java, and they are
used by collection classes such as HashMap. The programmer must ensure that
the return values of these methods reflect their value equalities, and hence these
return values should depend on the state of the objects. Therefore, we expect
these methods to be stateful pure functions if they contain member fields. The
purity types of these two methods are listed in Table 5.

To further understand the result, firstly we focused on the existence of state-
less pure functions in Table 5 by manually examining their source code. Most
of these methods are defined in interfaces or abstract classes. There were also 2
equals and 6 hashCode methods defined in the classes that do not have member
fields. There were 9 equals that compares referential identities defined in classes,
while these classes have member fields that are not accessed in the equals. These
were used in unusual cases when comparing by referential identity rather than
value identity is desired. An example of this kind of special design can be found in
DefaultCaret.equals, where the author explicitly documented in the Javadoc
as “The superclass behavior of comparing rectangles is not desired, so this is
changed to the Object behavior”. In addition, most of these classes are inner

Table 5. Purity of equals and hashCode

Software All
Pure Functions

Side Effects
Stateless Stateful

purano
equals 518 19 (3.7%) 165 (31.9%) 334 (64.5%)
hashCode 499 14 (2.8%) 176 (35.3%) 306 (61.9%)

htmlparser
equals 359 14 (3.9%) 141 (39.3%) 204 (56.8%)
hashCode 355 10 (2.8%) 147 (41.4%) 198 (55.8%)

tomcat
equals 477 65 (13.6%) 282 (59.1%) 132 (27.7%)
hashCode 473 52 (11.0%) 245 (51.8%) 176 (37.2%)

argouml
equals 426 55 (12.9%) 219 (51.4%) 152 (35.7%)
hashCode 416 55 (12.2%) 214 (51.4%) 162 (28.9%)

classes in Java with their names containing a “$” character. These inner classes
are supposed to be used internally, where programmers control the creation of
all objects. We found 3 hashCode that return a constant, whereas their corre-
sponding equals compared the states of member fields. An example is shown in
Fig. 4, that FilePermission.hashCode will always return 0. The user of these
classes must be aware of their respective behaviors, in order to avoid putting
them in a HashSet or HashMap, or comparing them using equals.

Next we examined the functions in Table 5 that generate side effects. Some
classes such as Date and Calendar normalized their internal representation be-
fore comparing equality or calculating the hash code. Classes used in reflection
at runtime, such as java.lang.reflect.Class, used a lazy loading technique
to optimize general performance, which is similiar to the caching technique but
will change the observable state of the object.

All of these implementation details revealed by our analyzer require special
care in both development and maintenance of the software. We hope our research
can aid the development in the situations like we have studied in this case study.

6 Future Work and Conclusions

The current implementation of our analyzer works on Java bytecode rather than
source code. Besides all the advantages described, this decision is also made
to ease the development, because it is easy to generate bytecode from source
code by a compiler but not vice versa. However, targeting source code format is
still important for integrating as an IDE plugin. We plan to add a source code
analyzer in the future.

Moreover, we plan to further evaluate the usability of the generated effect
information, by programmers as well as by analysis tools. Currently we output
the effect information as annotations. The format of these annotations needs
to be more readable and understandable to be used by programmers. We will
also further investigate the applications of these effect annotations other than
identification of pure functions. We will apply this approach to more software
projects for further evaluation.

To conclude, in this paper we presented a study on the purity and side
effects of the functions in Java, helping programmers to reuse the software li-
braries. We proposed a technique to automatically infer the purity and side
effect informations from Java bytecode. We implemented and experimented the
proposed analyzer on real world Java software libraries, and found that around
24%–44% of all the methods of a Java libraries are made of pure functions. We
compared the accuracy of distribution of pure functions with an existing study.
Also, we demonstrated how programmers will use our technique to understand
the behavior of library APIs by a case study.

Acknowledgment

This work was supported by MEXT/JSPS KAKENHI 25220003, 24650011, and
24680002.

References

1. Bell, J.S., Kaiser, G.E.: Unit test virtualization with vmvm (2013)
2. Bruneton, E., Lenglet, R., Coupaye, T.: Asm: a code manipulation tool to imple-

ment adaptable systems. Adaptable and extensible component systems 30 (2002)
3. Finifter, M., Mettler, A., Sastry, N., Wagner, D.: Verifiable functional purity in

java. In: Proc. of the 15th ACM conference on Computer and communications
security. pp. 161–174. ACM (2008)

4. Goetz, B.: Java theory and practice: I have to document that?
http://www.ibm.com/developerworks/java/library/j-jtp0821/index.html (2002)

5. Gordon, C., Parkinson, M., Parsons, J., Bromfield, A., Duffy, J.: Uniqueness and
reference immutability for safe parallelism (2012)

6. Holt, R.C., Cordy, J.R.: The turing programming language. Communications of
the ACM 31(12), 1410–1423 (1988)

7. Huang, W., Milanova, A., Ernst, W.: Reim & reiminfer: Checking and inference of
reference immutability and method purity. OOPSLA (2012)

8. J., Q.: Javarifier: Inference of reference immutability in Java. Ph.D. thesis, Mas-
sachusetts Institute of Technology (2008)

9. Kjolstad, F., Dig, D., Acevedo, G., Snir, M.: Transformation for class im-
mutability. In: Proceedings of the 33rd International Conference on Soft-
ware Engineering. pp. 61–70. ICSE ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/1985793.1985803

10. Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G., Popek, G.J.: Report
on the programming language euclid. ACM Sigplan Notices 12(2), 1–79 (1977)

11. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of jml. Tech. rep., Tech-
nical Report 96-06p, Iowa State University (2001)

12. Martin, R.C.: Clean code: a handbook of agile software craftsmanship. Prentice
Hall (2008)

13. Mettler, A., Wagner, D., Close, T.: Joe-e: A security-oriented subset of java. In:
Network and Distributed Systems Symposium. Internet Society (2010)

14. Pearce, D.J.: Jpure: a modular purity system for java. In: Compiler Construction.
pp. 104–123. Springer (2011)

15. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. In: Proceed-
ings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages. pp. 71–84. ACM (1993)

16. Raymond, C.: The importance of error code backwards compatibility.
http://blogs.msdn.com/b/oldnewthing/archive/2005/01/18/355177.aspx (2005)

17. Sălcianu, A.: Pointer analysis and its applications for Java programs. Ph.D. thesis,
Citeseer (2001)

18. Sălcianu, A., Rinard, M.: Purity and side effect analysis for java programs. In:
Verification, Model Checking, and Abstract Interpretation. pp. 199–215. Springer
(2005)

19. Tschantz, M., Ernst, M.: Javari: Adding reference immutability to Java, vol. 40.
ACM (2005)

