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Abstract. Code clones are similar or identical code fragments to one
another in source code. It is said that code clones decrease maintainabil-
ity of software. On the other hand, all the code clones are not necessarily
harmful to software. In this study, we propose a method to identify risky
code clones out of all the code clones in source code by using machine
learning techniques. Our proposed method learns information about fea-
tures of code clones which existed in the past and whether they were risky
or not. Then, based on these information, we identify risky code clones.
As a result of a pilot study, we confirmed that the proposed method was
able to predict risky code clones with high accuracy.

1 Introduction

It is said that code clones (hereafter, clone) have bad effects on maintainabil-
ity of software. For example, when one code fragment is modified, other code
fragments that are similar or identical to it also require the same modifications
frequently [2]. When multiple code fragments that are similar to one another
require similar modifications, there is a possibility of overlooking some of the
code fragments that should be modified. If overlooking happens, bugs might oc-
cur in the overlooked location. Hence, clones could decrease maintainability of
software [1]. On the other hand, all the clones are not necessarily risky. For ex-
ample, clones are harmless to maintainability of software if they have never been
modified since they had appeared. Moreover, it is not realistic that developers
manage all the clones because there are a huge number of clones.

It is necessary to take care of only risky clones out of all the clones in order
to manage clones efficiently. In this study, we propose a method to identify
risky clones out of all the clones by using machine learning (hereafter, ML). In
our proposed method, we analyze development histories of software to obtain
information about features of clones which existed in the past and whether they
caused bugs or not. Then, based on these information, we construct models to
predict risks of clones, and identify risky clones out of all the clones in current
source code with the models. We have implemented our proposed method, and
conducted a pilot study to evaluate the accuracy of predictions with our proposed
method. As a result, we confirmed that the proposed method was able to predict
risky clones with high accuracy.



2

2 Background and Related Work

All the clones are not necessarily risky. Hence, it is necessary to identify only
risky clones in order to manage clones efficiently. The authors thought that it
might be possible to predict risky clones with ML. ML is a technique to predict
or identify the characteristics of unknown data by learning existing data. Several
research uses ML to predict clones that should be taken care of.

Yang et al. assume that judging whether a clone is useful or not varies from
user to user [4]. They proposed a method to identify useful clones for each user
with ML. Wang et al. proposed a method to predict risks of the clones when
clones are generated by copy and paste operation [3].

In Yang’s proposed method, users have to classify clones manually before-
hand. Wang’s method works only under the limited situations. On the other
hand, our proposed method does not need any advance preparations by users,
and can predict risks of arbitrary clones.

3 Proposed Method

We propose a method to predict risks of clones by using ML. ML learns exist-
ing data, and predict or identify the characteristics of unknown data based on
learned information. In ML, data for learning are called training data, and
a model that is constructed by learning training data to predict characteristics
of unknown data is called learning model. Our method learns information of
clone set (group of code fragments that are similar to one another) as training
data, and constructs a learning model to predict risks of clone sets. Also, our
method intends to identify clone sets that will cause bugs in the future. There-
fore, we define that clone sets which will cause bugs in the future are risky, and
otherwise not risky. Our method takes the development history of the target
software as its input, and provides a learning model to predict risky clone sets
as its output. The proposed method consists of the following four phases.

1. First, we detect all the clone sets that were generated during past devel-
opment process by analyzing the development history. Then, for each de-
tected clone set, we obtain its evolutional data since it was generated. The
evolutional data of clone set is typically called genealogy of clone set
(genealogy). Fig.1 illustrates an example of it.

2. Then, for each genealogy, we judge whether it was risky or not. We regard
a given genealogy as risky if it had undergone one or more bug fixes during
its evolution. For example, the genealogy in Fig.1 is judged as risky because
there was a bug fix between revision r + 1 and r + 2. Note that we get infor-
mation of bug fixes through commit messages. We regard the modifications
at the commit as bug fix if the commit message includes any words that
imply to fix bugs such as bug fix.

3. After judging risks of all the genealogies, our method extracts training data
from each genealogy. In our method, we extract the clone sets at the start
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Fig. 1. An Example of a Genealogy
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Fig. 2. Result

revision of each genealogy as training data. For the genealogy in Fig.1, the
clone set at revision r is extracted as training data. Subsequently, we judge
risks of clone sets extracted as training data. In our method, training data
belonging to risky genealogies are considered risky, and training data be-
longing to not risky genealogies are considered not risky. At the same time,
we investigate the status of training data. The status of training data is,
for example, the number of the elements that compose the clone set, the
similarity between the elements, and so on. In this paper, we call such values
and parameters that describe the status of clone set feature value. Our
method uses 30 kinds of feature values in total.

4. Finally, for each clone set extracted as training data, we learn its feature
values and information about whether it is risky or not together to construct
a learning model. Our method predicts risk of a given clone set when users
give feature values of it to the constructed learning model.

4 Pilot Study

We have conducted a pilot study with an open source project jEdit (the number
of target revision is 5,292, and the development period is about 11 years) to
evaluate our method. As described in the previous section, we detected all the
genealogies and extracted their first clone sets from the jEdit project. We call
the set of the clone sets data set. Note that the data set consists of 1,695 risky
clone sets, and 2,563 not risky clone sets. This pilot study adopts the cross
validation. The cross validation divides the data set into k blocks, and evaluates
the accuracy of prediction by using these blocks. Note that the number of clone
sets in each block is almost the same. In the cross validation, we use k − 1
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blocks as training data, and the remaining one block as test data. Concretely,
we construct a learning model by learning training data. Then, we adopt the
learning model to test data and measure the accuracy. This process is repeated
k times, with each of the k blocks used exactly once as test data. The average
of k results is the entire accuracy. We set k = 10 in this pilot study. This pilot
study uses two indicators below as measure for evaluation.

Precision: the rate of risky clone sets in clone sets that are predicted as risky
by the learning model

Recall: the rate of clone sets that are correctly predicted as risky by the learning
model in all the risky clone sets

Also, we use three algorithms (J48, BayesNet(Bayesian Network), SVM(Support
Vector Machine)) to construct learning models, and evaluate each learning model.
Fig.2 shows the results. As shown in this figure, the proposed method can pre-
dict risky clones with high accuracy, 83–95% Precision and 83–90% Recall. The
accuracy of J48 is very high, both Precision and Recall are almost 90%. For
SVM, Precision is the highest among the three algorithms, 95%, but Recall is
the lowest. For BayesNet, on the contrary, Precision is lower than other algo-
rithms, but Recall is the highest. The result of the pilot study showed that the
proposed method was able to predict risky clones with high accuracy.

5 Conclusions

In this study, we proposed a method to identify risky clones out of all the clones
in source code by using machine learning. As a result of a pilot study, we con-
firmed that the proposed method was able to predict risky clones with 83–95%
Precision and 83–90% Recall. However, at present, our proposed method cannot
rank specified risky clones, which is our future work.
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