Predicting Next Changes at the Fine-Grained Level

Hiroaki Murakami, Keisuke Hotta, Yoshiki Higo, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan
{h-murakm, k-hotta, higo, kusumagt@ist.osaka-u.ac.jp

Abstract—Changing source code is not an easy task. Devel-

Many approaches fix bugs automatically by generating

opers occasionally change source code incorrectly. Such mistakes patches for bug fixes. Perkins et al. develog@earView,

entail additional cost in having to reedit the source code cor-
rectly, and repeated changes themselves can be a vulnerability
to software quality. We are conducting research into realizing
automated code changing as a countermeasure for human errors.
As the first step of this research, we propose a technique to predict
the types of program elements deleted and added in a next change
to Java methods. This technique is designed to support developers
in deciding how to change source code after they have identified
a method to be changed. We evaluated predictions using the
proposed technique with two thresholds, which are sizes of source
code changes. For predictions with the smaller threshold where
only a single type of program element was added or deleted, the
accuracy of the proposed technique was 74%—-85%. However, for
the larger threshold, where 5 or fewer types of program elements
were added or deleted, the accuracy was 44%-48%.

Keywords—Fine-Grained Change Prediction, Automated Code
Evolution, Static Code Analysis

I. INTRODUCTION

which analyzes a target program dynamically and generates
patches that satisfy invariants in the program [15]. Wei et al.
proposed a technique that generates patches that satisfy not
only invariants but also preconditions and postconditions [16].
Because Wei's technique uses preconditions and postcondi-
tions, it is able to fix more bugs than can Perkin’s technique.
However, to be analyzed by Wei's technique, programs must
have descriptions of invariants, preconditions, and postcondi-
tions in their source files. In Perkin’s technique, invariants
are automatically identified by using the toDhaikon [17];

thus, programs do not need to have descriptions of invariants
in their source files. Jin et al. proposed a technique to fix
bugs that violate the atomicity of parallel procedures [18].
Weimer et al. developed a tool callg@enProg that uses
genetic programming to generate patches for fixing bugs [19],
[20] and reported thaBenProg was able to fix 55 out of 105
bugs automatically [21]. Source code changes are performed
not only to fix bugs but also to add new functionalities and
change/enhance existing functions. Of course, we need to take

Changing source code is the most costly activity in soft-into account the requirements for c.hanging/enhancing existing
ware maintenance [1], and it is not an easy task. Develfunctions. On the other hand, historical approaches to guess the
opers occasionally change source code incorrectly or forgdtext change seem promising becaupeorams that people
to change code fragments. Such mistakes require not onMyrite are mostly simple and somewhat repetitif22].

additional human resources to reedit the code correctly, but

In this research, we first investigated the size of source

also they can degrade the software quality [2]. Consequentlyoge changes during software evolution. As a result, we found
facilitating source code changes by introducing automatiGhat most of the changes are small and simple. Then, we

operations would be very beneficial.

developed a new technique to predict how a given method

A variety of techniques for facilitating source code changedVill be modified in the next change. Our technique can
have been proposed. For example, there are some technigU§dict any size of changes in source code, but it works
that construct prediction models to predict those module®articularly well for small changes. Our technique is beneficial
having frequent changes [3], [4], [5]. Another technique isto individual developgrs when he/she negds to c_hange source
tailored to interfaces, which are generally stable component%Ode to complete a given task. O_ur.techmque facilitates source
in software systems [6]. Tsantalis et al. proposed a technique®de changes by showing (predicting) program elements that
to calculate the probability that each class will be changed ifVill be added or deleted in the next version. If the predicted
a future version [7]. By using these techniques, developmentoUrce code satisfies his/her requirements, he/she can obtain a
projects are able to spend human resources on predicted fauRatch to change the current source code in the next version.
prone modules. For example, if we obtain fault-prone modulesBY Using the proposed technique,

we can focus on reviewing them.

e developers do not need to consider how to change code
fragments, and

A hot research topic is identifying pairs or sets of modules
that need to be changed together [8], [9], [10], [11]. After ®
identifying the modules that need to be changed, developers
can use the available techniques to know which modules need
to be changed together. Such a support mechanism prevente
developers from forgetting to change code fragments in a given
task. Facilitating bug fixes is another particularly hot research
topic. Various techniques are available, such as prioritizing
open bugs for fixing [12], identifying code fragments that cause e
specific bugs [13], and validating whether bug fixes have been
performed correctly [14].

they do not need to change source code manually.
This paper makes the following contributions.

We propose a novel technique that predicts the next
changes. Currently, our technique predicts the types of
program elements that will be added and deleted in the
next change.

We evaluate our technique by conducting an experiment
on two open-source software systems. In the experiment,
predictions are performed with two thresholds, which are

the size of the source code changes. The smaller thresh- public i(zt<r=ni;)(> K

old is intended to evaluate predictions where source return x;
code changes are very small. That is, only a single type } else |
return y;

of program elements is added or deleted. The larger ,
threshold is intended to evaluate predictions where one }

program statement is added, deleted, or changed. The (a) Source Code
accuracies of the two predictions are 74%-85% and

44%-48%, respectively.

The remainder of this paper is organized as follows:
Section Il introduces related work and discusses the differences
between them and our technique. Section Il provides an
overview of our technique, and Section IV describes how to
build prediction models. Section V shows how to implement
our technigue. Section VI reports the experiment and the exper-
imental result in detail. Section VIl discusses the experimental
result by using examples of source code. We present our final
goal and paths to the goal in Section VIII. Section IX describes 0, - 3, - 1, ---/1, e b, TZ w2, 5,\ -
the threats to validity. Section X concludes the paper and states [ow | AF'UXP“E“'C’N \ / [PrmImve_Tvee | \\ SIMPLE_NAME (\

(b) AST
x 80

future work. [IF_STATEMENT | [METHOD_DECLARATION | [RETURN_STATEMENT | [MoDIFIER |
(c) PE-Vector
II. RELATED WORK Fig. 1. Example of a PE-Vector

A. n_umber of approaches use source code metrics to train Gethers et al. proposed a technique to enhance impact
prediction models that can lead developers to the change-proggalysis by combining information retrieval, dynamic analysis
and fault-prone modules in a software system [3], [4], [5],and mining software repositories techniques [25], [26]. Their
[6]. Although the experimental results of these approaches afgchnique identified a set of methods that should be fixed in
promising, they do not provide insights into the details of theprder to achieve the given change request (e.g., a bug report).
changes. They showed that their technique provided an improved accu-

Giger et al. explored prediction models for determining"@Cy OVer the previously approaches.

whether a source file will be affected by certain types of
changes, such as condition changes, interface modifications, I1l. OVERVIEW OF OUR TECHNIQUE

inserts or deletions of methods and attributes, or other kinds This paber proposes a techniaue to oredict how to chanae
of statement changes [23]. Their models output a list of po- paper prop 4 P 9

tentially change-prone files ranked according to their change"’—l given Java metho‘g at the program element _Igvel. As an
éample, it tells us “onef statement, two identifiers, and

proneness overall and their change type category. The purpo§ne assign expression will be added by the next change.” It

of their research and ours is the same, which is to provid arns past changes from a historical code repository and builds
insights into details of the changes. However, the method P 9 P y

- o : P diction models. Users of the proposed technique input a
used for gaining such insights are different. Giger’s approac re X
predicts the category of code changes, whereas our curre gva method that needs a change. The proposed technique

; en predicts the next change on the given method with the
gggézcgngrgggﬁj the types of program elements that aprediction models. This section introduces terms that are used

in this paper, followed by an overview of the procedure of the
Goues et al. proposed a technique to repair programgroposed technique.

automatically [19], [20]. Their toolGenProg, uses genetic
programming to repair a wide range of defect types in Ca Terms
software (e.g., infinite loops, buffer overflows, segmentation
faults, and integer overflowsfsenProg searches for a repair Program Element:This paper uses the nodes of an abstract
method that retains the required functionality by generatingyntax tree (AST) as program elements. Each type of node is
variant versions of the program through computational analogeated as a type of program element. We borrow the definitions
of biological processes. They succeeded in creating a repairéd AST nodes from Java Development Tools (JDT). JDT
version of the source code itself. Kim et al. also proposedrovides us with a function to build ASTs from given Java
learning to fix patterns from human-written patches to improvesource files and defines 83 types of AST nodes, including
the quality of generated patches, becaBseProg sometimes three related to commedtsWe use 80 types of program
generates nonsensical patches due to the randomness of @léments because we are not interested in comments. This
mutation operations [24]. Their techniques are tailored tdPaper uses symbolsly,---, A79 to represent the different
repairing bugs. It is difficult to apply their technique to other types of program element.
kinds of changes, such as adding functionalities or enhancing
functions, because it requires test cases that a given bug passeg he types of AST nodes in JDT and this study are defined in the class
and fails. On the other hand, the target of our approach is nﬁg'ec"pse'Jdt'core'dom'ASTNOde' A list of nodes is provided

. . . the Eclipse documentation. The current status is available from “http://help.
only bUg_ fixes bUF any kinds of changes in source code, sUChciipse.org/kepler/index.jsp.” Note that the types of AST nodes might change
as functional addition/enhancement or refactoring. due to an update of Java or JDT.

= proposed technique is the first step of automated source code

— :‘3’2;;23::?2 i ::22‘1’:‘3 changes. Hence, the accuracy of a prediction made with the
Buiding the training et ; proposed technique is important for the final goal. That is, if
Repository an incorrect prediction is made, this would lead to an incorrect
Building the models 1] ovtang e moces change. We believe that an incorrect change must be avoided
oo Prediction result even though we will lose some candidates that might be able
5”’“’” o = to be changed automatically. Therefore, we decided to ignore
- QO """ i T ~*1 large changes currently by such filtering. However, we will
e o] theproposed tchniaue | improve our technique to be able to predlatge changes
rciontage T e e ST Somall changes” This Study congiders a change:

to be small if the number of types of program elements
that were added/deleted by the change is less than a given

. . hreshold. Suppose a methed is changed and becomes/,
PE-Vector: The proposed technique treats each method a nd s = (zo,-..,1m9) is a difference vector fromn to m’

a vector named a Program Element Vec®iE{Vector). A PE- 7 — . — ;). The change ton is regarded asmall if the
i i i i — “m — YmJ: . 2O

Vector is a numerical vector that has 80 dimensions, and ea llowihg condition holds: otherwise, it is regarded lasge.

element of a PE-Vector represents the number of each program

Fig. 2. Overview of Proposed Technique

element in the method. This paper describes the PE-Vector of a |changed (V)| < threshold (1)
methodm asv,, = (xq,--- ,z79). Here,z; in v, denotes the Where

number of the program elemerds in the methodn. Figure 1

shows an example of a PE-Vector. Figure 1(b) shows an AST changed(v) ={i €0...79 | z; # 0} (2)

for the method shown in Fig. 1(a), and the vector shown in
Fig. 1(c) is the PE-Vector created from the method. The vector
has 80 dimensions; however, due to the space limitation, wé
omitted the attributes from the figures whose value is 0, exce
for the head and the tail of the vector.

We use the number of types of program elements instead of
ode churn, which is a common metric for measuring the size
f a change. Code churn is unsuitable for this study because
of the granularity of the prediction. The proposed technique
estimates the number of additions/deletions of program ele-
ments. In other words, it can predict only the type of the
next change, not the content of the change. Specifically, the
Figure 2 provides an overview of the procedure of theproposed technique can predict that ‘i&n statement will be
proposed technique and a prediction made by using it. As thadded,” but it cannot tell the predicate and the body of the
first step in the prediction, the technique generates a trainingj statement. Code churn is measured based on the contents
set from a given historical code repository. The training seof changes, e.g., the number of changed lines or tokens of a
has information about past changes in the historical repositorghange. Therefore, it cannot be measured without the content
Each element of the training set is a pair of PE-Vectgys of a change. We believe that we should measure the size of a
and v,,,, where m was changed ton’. Note that the PE- change by a feature we can predict. In this case, we use the
Vectors before and after a change might be the same vectdypes of changes instead of their contents.
This means that the change did not alter the numbers of any

D S s ek e i ange might be the same vector. Hence, 1 s posse ha

t t% ; i hr?i builds the pr. di tion model Tgthe proposed technique reports the same PE-Vector of a given
set, the proposed technique builds the prediction models. The 425 4 prediction result. Such a prediction result indicates
models tell us what kind of change will occur next in a given, i jhe method needs a change that does not change the num-
method. The proposed technique adopts a two-stage pred|ct|ol5|er of program elements, such as the renaming of variables.
as described below. This result does not indicate that the method does not need any

Prediction for Filtering: the proposed technique predicts changes. This is because the proposed technique assumes that
whether the next change that a given method undergoes wills users will input methods that should be changed. Predicting
be small This stage filters out methods that are predicted asvhether a given method needs any changes is not within the
undergoinglarge changes in their next revisions. scope of the proposed technique.

B. Overview of the Procedure

As mentioned above, the PE-Vectors before and after a

Prediction of Changes:the proposed technique predicts C. Restrictions
the quantity of the next change in terms of AST nodes for a™
given method. That is, the proposed technigue predicts the next The proposed technique has the following restrictions.
PE-Vector of a given methoth. For example, if we suppose o o
that m becomeSm’ in the next Change, then the proposed ° The target Of pred|Ct|0n IS I|m|ted to COde InSIde Java

technique predicts,,, based onv;,. This stage targets only methods. Programming languages other than Java, or
methods that are predicted as undergaingll changes in the code outside Java methods, are outside the scope of the
first-stage prediction. proposed technique.

. . . . e The proposed technique cannot predict changes that are
-Irhde note%or;[jhyfpomt Ofdt.h? prct)posc?{d _'gcetcr:]hnlque IS tgf"tt Itd simultaneously performed on multiple methods. It just

excludes methods from prediction targets if they are predicte : :

as undergoindarge changes in the next revision. The rationale prhedlcts the I:jext VﬁfS'O” of each method. q

behind this filtering is that it is difficult to preditarge changes The proposed technique cannot generate source code.

accurately. It is necessary for the proposed technique to make It just predicts the type of program elements that are

precise predictions for automated source code changes. The added/deleted in the next change.

@ small change Equation (3) states that the value of an attribdites estimated

A large change with those of all the attributesd,,..., A79. However, we
¢ prediction target should not use all the attributes as explanatory variables
o Y ke because some of the attributes are correlated. Hence, we have
L — k=3 to select the variables to be used as explanatory variables
A
k=5 to avoid multicollinearity. Therefore3; will have a nonzero
value if the attributed; is selected as an explanatory variable;
Fig. 3. The k-NN Algorithm otherwise,f; is zero.
Note that each of the regression functions should have
IV. PREDICTION MODELS different explanatory variables because they are built indepen-

This section describes how to build prediction models bydently. In other words, it is possible that; is used as an
using the training set. As mentioned above, the propose@Xplanatory variable in the regression function ferbut is
technique adopts a two-stage prediction. The first stage mak&®t used in the regression function foy.
predictions for excluding methods from the prediction target
if they will undergolarge changes. The second stage predicts V. IMPLEMENTATION
a PE-Vector of the methody’ that a given method. will be-
come by the next change. The following subsections describe We have implemented the proposed technique with Java

each stage in detail. and R?. We assembled a tool to create a PE-Vector from the
source code of a given method and to construct a training set

A. Prediction for Filtering from the given historical code repository in Java, while we
entrusted a static analysis to build prediction models toRhe

The first-stage prediction uses the k-nearest neighbor (
NN) algorithm to predict if the next change in a method

will be small or large. This is a nonparametric algorithm To build training sets, it is necessary to detect which
for classification and regression, and it is the simplest of thenethods were changed in each of the past commits and how
machine learning algorithms. We use this algorithm becausghey were changed. We applied the clone tracking technique
of its high scalability. The k-NN algorithm makes a prediction developed by our research group to this detection [27]. The
for a given object based on the majority vote byitslosest clone tracking technique was originally used to map code
objects in the training data in vector space. In our case, thelones between two consecutive revisions, but it can be used to
objects are PE-Vectors, and the distance between two objeci§ap methods between two consecutive revisions. It is based
is measured by the Euclidean distance between the two P%‘n CRD [28], which is a text representation of the location
Vectors. of a given code fragment. The clone mapping technique links
Figure 3 shows the k-NN algorithm. In the casekof= 1, two code fragments between two consecutive revisions based
the algorithm chooses the nearest object to a given object fro" the similarity of their CRDs, and makes links of code
the training set. In the example in Fig. 3, the nearest object i§lones between the two revisions based on the links of the code
marked assmall and so the prediction result becommmall ~ fragments. The technique can map clones well, even in the case
In the case of = 3, the prediction result is decided based Where files having clones were moved or renamed because it
on the majority vote by the 3 nearest objects. The predictiot!Ses the similarity of CRDs, not their perfect matching. As in
result becomesmall because there are small changes and the clone mapping technique, the proposed technique in this
1 large change in the solid circle. The prediction in the caseStudy calculates CRDs from every method and makes links of
of k = 5 is made in a similar way. In this case, the algorithmthe methods between two consecutive revisions based on the
regards the prediction target &mge because the number of Similarity of their CRDs.
smallchanges is less than thatlafge changes in the outmost
circle.

unctions.

We used theéknn function of R to predictsmall changes,
and thelm function to perform the linear regression analysis.
In addition, we adopted the method of increasing and decreas-
ing the variables of thetep function to select explanatory

The second-stage prediction uses linear regression analysiariables. Thestep function makes prediction models that
to predict the next PE-Vector of a given PE-Vector. This stagéhave the lowest Akaike information criterion (AIC), which
builds a regression function for each of the attributes in the PERelps to avoid the problems of overfitting and multicollinearity.
Vector. In other words, it makes predictions on each program
element independently. Hence, this stage generates the same
number of regression functions as the dimension number of
the PE-Vector, which is 80. The purpose of the experiment is to investigate to what

Let vy, = (zo,--- ,279) be the target of prediction, and €xtent the proposed technique can correctly predict the number
vL = (yo, - ,Y79) be a PE-Vector created by the prediction of types of program elements in the next change. In this
for vy,. The proposed technique builds a regression functiof@xperiment, we usérgoUML and Ant as the target software
for each of the attributed,, .. ., A79. Equation (3) is the form systems. These systems are written in Java and managed by
of each regression function. Subversion . Table | shows the details of the systems. This
section consists of the following two experiments.

B. Prediction of Changes

VI. EXPERIMENT

79
yi=B8+ B 3)

j=0 2http:/Avww.r-project.org/

100% Threshold public void actionPerformed(ActionEvent e) {

90% than 8 System.out.println("making class...");
80% more than - _cmdCreateNode.doIt(null);
“8 + _cmdCreateNode.doIt();
70%
60% o 17
=6 (a) Deleting anull Argument from a Method Invocation
\ | 1

40%
30%

public void setOwner(Object node) {
Object oldOwner = getOwner();

1 =4
20% -3 - if (oldOwner != null && oldOwner instanceof GraphNodeHooks)
42 + if (oldOwner != null && oldOwner instanceof GraphNodeHooks) {
10% 51 ((GraphNodeHooks)oldOwner) . removePropertyChangeListener(this);
0% T d +
Ant ArgoUML "o - if (oldOwner != null && oldOwner instanceof Highlightable)

+ if (oldOwner != null && oldOwner instanceof Highlightable) {
Fig. 4. Rates oSmaIIChanges ((Highlightable)oldOwner).removePropertyChangeListener(this);
- if (node instanceof GraphNodeHooks)

+ 1if (node instanceof GraphNodeHooks) {

Investigation of small changesfirst, we investigated how ((GraphNodeHooks)node) . addPropertyChangeListener (this);

! .
many small changes account for all the changes in the target |+ } . (node instanceof Highlightable)

SOftWare SyStemS. If fewma" Changes are Used fOI‘ bUIldlng + else if (node instanceof Highlightable) {

the prediction models, the proposed technique does not work , ((igniigntablenode). addpropertyChangel istener (this);
' +

well. Therefore, we report the rates simall changes against super. setOuner (node) ;

all changes and introduce some examplesroéll changes.

(b) Adding Braces to Allif Statements
Prediction of program elements:the proposed technique Fig- 5. Examples oBmallChanges when Threshold is 1
predicts whether the next changes amall for the target

software systems. If the next changes are predicteshasl P eomcest Chossthion)) revarno phom i
the proposed technique predicts the types and the number of : o
program elements in the next changes. IF (are LepeC, eauals (sehane)) continues

+ if (aeNameStr.length() == @) continue;

if (namesSeen.contains(aeNameStr)) return PROBLEM_FOUND;
namesSeen.addElement (aeNameStr);

A. Investigation of small changes }

We calculated the rates sfallchanges against all changes y ropRosLEn:
by using various thresholds in Equation (1). Figure 4 shows the (a) Adding anif ~ Statement
rates. As this figure shows, in the caseAsft, the percentage public boolean shouldBeEnabled() {
of small changes is approximately 35% when the threshold §:§§:§§B;°"f§;_g:t;rz;ggjgﬁmwse"-T“eI"Stances
is 0 and approximately 39% when the threshold is 1. When Object target = pb.getDetailsTarget();

return super.shouldBeEnabled() && p != null;

// && (target instanceof ModelElement);

return super.shouldBeEnabled() && p != null &&
(target instanceof ModelElement);

the threshold is 0, the number of AST nodes does not change.
Such changes include modifying variable names and reordering
statements. From Fig. 4, the percentagessiofall changes)
exceed 50% when the threshold is 5. It is interesting that (b) Modifying aretumn _ Statement by Uncommenting

the number ofsmall changes accounts for over half of all Fig. 6. Examples oBmallChanges when Threshold is 5

changes when the threshold is 5. We think 1 is rather strict

as a threshold value. Suppose a statement is changed inngdes: infix expressiofpstanceof operator, parenthesized

method, then the change may affect about 5 types of progra@xpression, variable name, and type name.
elements. However, the prediction model ignores the change

if the threshold is 1. Hence, we decided to use 1 and 5 as
threshold values. B. Prediction of program elements

+ o+ 0

Figure 5 shows two examples of code changes when the In this subsection, we report two types of prediction results.
number of types of changed AST nodes is 1. The exampleghe first is a prediction of whether the next changessanall
were obtained fronArgoUML. In the case of Fig. 5(a), rull The second is a prediction of the types and the number of
argument is deleted from a method invocation. In terms ofrogram elements in the next change. Based on the prediction
the AST, the change decreases the numbenwf literal results, we answer the following two research questions (RQs).
nodes. In Fig. 5(b), braces are added toifll statements,
which increases the number of block nodes in AST. Figure
6 shows two examples of code changes when the number
types of changed AST nodes is 5. Figure 6(a) shows a changS

that adds anf Statemen!:. This Change affeCtS the number RQ2 how accurateiy does the proposed technique predict
of AST nodes of thecontinue Statement,|f Statement, the types and the number of program elements in the next

method invocation, number “teral, and method name. Figur%hanges? (Accuracy of the second_stage prediction)
6(b) shows another change that modifiegturn statement

by uncommenting. It increases the number of five types of AST In preparation for the experiment, the historical code repos-
itories of each target software system were divided into 5 equal

RQ1: how accurately does the proposed technique predict
hether the next change will ksmall? (Accuracy of the first-
age prediction)

TABLE I. TARGET SOFTWARE SYSTEMS i P
Name Start revision (date) End revision (date) # revisions parts based on the number of reV|_S|ons, WhI_Ch we namﬁq
Ant 267,549 (2000/01/13) 1,233,420 (2012/01/20) 8,284 Cy, C3, C4, andCs5. In the rest of this subsection, we describe

ArgoUML 1 (1998/01/27) 19,893 (2012/07/10) 3,918 the steps of the experiment and report the prediction results.

True positive rate
00 02 04 06 08 1.0

00 02 04 06 08 10
False positive rate

Fig. 7. TheROC Curve Obtained fromAnt

1) Prediction whether the next changes are smatie
proposed technique built first-stage prediction models for pre
dicting whether the next changes @mall The models were
built by the training set€’;,...,C,_1(2 < n < 5). Then, the
models predicted whether the change<’in would besmall
We evaluated the accuracies of the prediction results yielde
from the k-NN algorithm by using threevalues k=1, 3, 5).

However, the results were almost the same. Therefore, we u$®). 8. Prediction Results font

k = 1 in this experiment because the k-NN algorithm using
k = 1 can produce results in the shortest time. The outpu*
of the k-NN algorithm was classified into four categories, as
shown in Table Il. We obtained ROC (Receiver Operating
Characteristic) curves from the classification results. R~
curve is created by plotting the fraction of true positives out of
the total actual positives (true positive rate) and the fraction o
false positives out of the total actual negatives (false positive
rate). Figure 7 shows th&OC curve obtained fromAnt in

Cs. Moreover, we obtained adUC' (Area Under the Curve)
from the ROC curve. AUC is a commonly used evaluation
scale for binary prediction models.

2) Prediction of the types and the number of program

806
=1

So4

806
=3

806 ~~
=3

S o4 --

——AUC of the first-stage prediction
- = PPR of the second-stage prediction
1

0.8 S

0.2
0

Thresholds
(@) C2
——AUC of the first-stage prediction

- = PPR of the second-stage prediction
1

08 T ~o

S o4

0.2
0

1 2 3 4 5 6 7 8

Thresholds
(c) Cy

——AUC of the first-stage prediction
- = PPR of the second-stage prediction
1

<

08 S~
SS

0.2
0

1 2 3 4 5 6 7 8

Thresholds
(@) C2
——AUC of the first-stage prediction
- = PPR of the second-stage prediction

0.8 S~

elements in the next changehe proposed technique built £°°

second-stage prediction models for predicting the types an
the number of program elements in the next change. In thi:
experiment, a predicted change is regarded as correct whe
the number of each program element in the predicted chang.

is equal to the actual change. This prediction was conductegly. 9. Pprediction Results foArgoUML

according to the following steps.

STEP1: smallchanges in the target software systems wer
extracted from eacld’, (1 < n < 4).

S o4 s

0.2

1 2 3 4 5 6 7
Thresholds

(c) Cq4

——AUC of the first-stage prediction
- = PPR of the second-stage prediction
1
0.8 S~

$o6 0 TT=—ol___
3 -
So4

0.2

0
1 2 3 4 5 6 7 8
Thresholds

(b) C3
——AUC of the first-stage prediction
- = PPR of the second-stage prediction
1
08 S~

806 -~
=1

So4
02

0
1 2 3 4 5 6 7 8
Thresholds

(d) Cs

——AUC of the first-stage prediction
- = PPR of the second-stage prediction
1
<
0.8 SO

do06 S~

2

So4 ~<
02

Thresholds
(b) C3
——AUC of the first-stage prediction

- = PPR of the second-stage prediction

1 2 3 4 5 6 7 8
Thresholds

(d) Cs

Jvectors represent PE-Vectors whose predicted number of types
of program elements is equal to the actual ones in the next
change. We consider th&PRs are the performances of the

STEP2: the proposed technique built second-stage predicsecond-stage prediction models.

tion models by using themall changes extracted in STEP1.
These changes occurred @4,...,C,—1(2 < n < 5) and

next changes that occurred @,.

3) Experimental ResultsFigures 8 and 9 showAUC's
were used for building models, and the models predicted thend PPRs for the target software systems. In each graph,

the solid lines represeUC's and the dashed lines represent

.) . PPRs. From these graphs, we found thil/C's change little
STEP3: the predicted changes ifi, were compared with 55 the threshold increases aRd Rs decrease as the threshold
the actual changes i@’,. This step yielded two values. The increases. Specifically, when the threshold isAT[C' varies
first was the rate at which the changes were predicted correctlyom 899 to 94% forAnt and from 92% to 94% foArgoUML.
The second was the number of changes predicted correctly. ASpr varies from 83% to 90% foAnt and from 92% to
n was either 2, 3, 4, or 5, we obtained four results from eacly4o4 for ArgoUML When the threshold is 5AUC results

target software system.

In this evaluation, we define@® PR (Perfectly Predicted
Ratio). PPR is the ratio of perfectly predicted PE-Vectors
to all the PE-Vectors in eacty,,. The perfectly predicted PE-

TABLE II. RELATIONSHIP AMONG PREDICTED AND ACTUAL VALUES

Actual
small large
Predicted [small True Positives (TP) | False Positives (FP)
| Targe | False Negatives (FN)| True Negatives (TN)

are 87%—-92% forAnt and 91%—94% forArgoUML. PPR
results are 55%—-62% foAnt and 48%—-58% forArgoUML.
The product ofAUC and PPR is regarded as the performance
of the whole prediction model. Thus, the performance of the
prediction model forAntis 74% (= 89%x 83%), and that for
ArgoUML is 85% (= 92%x 92%) when the threshold is 1.
When the threshold is 5, these percentages are 48%.rior
and 44% forArgoUML. Based on the experimental results, we
answer the research questions as follows.

public void testSendReceiveStartNotifyTyping() throws IOException { because the Change from a |arge number to another |arge
sessl.sendTypingNotification(OTHERUSR, true);
; number (e.g., from 53 to 57) seldom occurs and the proposed
) :izi:g:ﬂzgz::223532%21) technique cannot build correct models. In the experiment, we
+ assertTrue(sne.ison()); found thatSIMPLE_NAMEs the primary cause of prediction
Se.ssl.SendMessage(OTHERUSR, CHATMESSAGE, sess1.getlLoginIdentity()); fa"ure To |ncrease theccuracy of the pred|ct|on modelS, we
as.sertEquals(event.getEvent().getMessage(), CHATMESSAGE) ; need. to tackle the .prObIem G|MPLE_NAMECU|'rent|y, we
¥ consider one solution, which is using the AST that treats the
Fig. 10. Prediction Success variable name or the method name as separate nodes. The AST
provided by JDT treats the variable name or method name as
public void testDuplicatelogins() throws Exception { the same node&SIMPLE_NAMEIf we use the enhanced AST,
+ Jhread sleep(500); ‘ . the number oSIMPLE_NAMEoccurrences in the next change
- inal Session<RosterVl> sessionOne = createSession(); N —
final Session<RosterVl> sessionTwo = createSession(); could be predlcted CorreCtly.
+ final Session<T, U> sessionOne = createSession();
+ final Session<T, U> sessionTwo = createSession();
assertEquals(SessionState.UNSTARTED, sessionOne.getSessionStatus()); VIIl. OUR GOAL
a:sser‘tEquals(SessionState.UNSTARTED, sessionTwo.getSessionStatus()); Our final goal is the realization of automated code Changes
} L. . . ’
_ — , However, at this time, we only achieved predicting the number
Fig. 11. Prediction Failure of added/deleted AST nodes in the next change. To achieve au-

)) tomated code changes, we have to tackle following problems,

RQ1: the proposed technique predicts whether the next1) where the change should be made and (2) what actual

change will besmall with 89%-94% asAUC for Antand code is added, deleted and modified. In order to resolve these

92%—-94% forArgoUML when the threshold is 1. When the proplems, we have to expand the proposed technique. For ex-
threshold is 5, these percentages are 87%-92%Afdrand ample, we will predict the locations of program elements in the
91%-94% forArgoUML next change by using a rich PE-Vector that contains locational
RQ2: the proposed technique predicts the number ofnformation. Moreover, we will convert some elements of the

program elements in the next change, with 83%—90% B% PE-Vector into an actual code (e.g. if oh‘é_STATEMEij
for Antand 92%-94% foArgoUML when the threshold is 1. ©n€SIMPLE_NAMEand oneBLOCKare added, the following

When the threshold is 5, these percentages are 55%—62% fepde would be createq -
Ant and 48%-58% foArgoUML if (var) {}

Another solution is applying the idea of the proposed technique
VIl. DISCUSSION for the existing methodGenProg uses genetic algorithm
. . _ . . to randomly generate bug patches. If it is found that what
In this section, we d.|scu.ss two prediction results. One iSnds of program elements are likely changed by the proposed
success, and the other is failure. technique, the genetic algorithm can focus more program

elements than random generations.
A. Case of Success

Figure 10 shows the success case. In this case, the number IX. THREATS TO VALIDITY

of infix expressions changes from 1 to O, and the number |, his section, we describe some threats to validities.
of number literals changes from 3 to 2. In the training set,
a change in the number of infix expressions from 1 to OA
occurred twice, and that of the number of number literals
from 3 to 2 occurred 62 times. However, these changes did In this experiment, each of the target repositories was
not occur at the same time in the training set. Thus, existinglivided into 5 equal parts based on the number of revisions.
techniques using a fix pattern (e.g., [24]) cannot find this casddowever, if the repositories are divided in different ways (e.g.,
The reason the proposed technique could find this case is thbased on the version upgrade date or development periods) or
the prediction models were built by learning the changes off the number of divided repositories is different from that in
each of the program elements. This is the largest advantage tifis experiment, we might obtain different results. Moreover,

. Target Software Systems

the proposed technique. we used only two software systems for the experiment. When
other software systems are used, the proposed technique may
B. Case of Failure yield different results from that reported in the experiment. In

order to get rid of the threat, we have to evaluate the proposed

Figure 11 shows the failure case. In this case, theiechnique with more than two software systems.
number of SIMPLE_NAMEnodes changes from 53 to 57.

SIMPLE_NAMEepresents a user-defined name (e.g., variabl o
name or method name). The add&tMPLE_NAMEoccur- B Building Models

rences are Thread”, “sleep”, and two “U”". However, such In this experiment, only themall changes (threshold is 1
changes did not occur in the training set. Therefore, ther 5) were used for the training set. If the threshold is changed,
model predicted the number 8IMPLE_NAMEas 56 and not different results will be obtained. If the threshold is decreased,
as 57. The proposed technique occasionally cannot correctly stricter prediction is conducted. However, the number of
detect the next change in a large method. A large methothethods that are targets for prediction would be decreased.
has many occurrences 8fMPLE_NAMEPredicting correctly Conversely, if the threshold is increased, the number of meth-
the number of manysIMPLE_NAMEoccurrences is difficult ods that are targets for prediction are increased; however, the

accuracy of the prediction models would decrease dulatge [3]

changes included in the training set.

C. Large Changes 4
The proposed technique classified all changes gmall

changes ofarge changes. Then, we used ordynall changes (5]

for this experiment. In other words, we ignorkedge changes.

The reason is that we consider thsinall changes make [6]

prediction models more reliable than darge changes. To

achieve a perfect predictiodarge changes should not be [7

ignored. Prediction usintarge changes is our future work.

D. Types of Changes (8]

The proposed technique did not consider a context or a[9]
requirement of the change. For example, if a change causes
bugs, the proposed technique uses the change for buildirigol
the prediction models because the proposed technique did not
consider the context of the change. In that case, the proposid1
technique has a risk of predicting the change that caus &t
bugs. Furthermore, the proposed technique did not consid(fb]
a contributor. In the case of predicting the same or simila
change as in the past, if the contributor of the past change ang]
that of the present change are same, the prediction models are
likely to have high accuracies. On the other hand, if the present
contributor is different from the one of the past change, thdi4]
prediction may result in failure. Therefore, it is difficult for
the proposed technique to predict the change in the softwarfé®]
systems that many people develop within a certain amount of
time. One of the solution for the problem is that the proposed
technique builds prediction models by using only the changeﬁfs]
that the contributor of the changes and the user of the proposed
technique are same.

[17]
X. CONCLUSIONS

In this paper, we proposed a technique to predict the next
change in source code. While existing techniques concentratés]
on changes for fixing bugs, our technique handles all kinds
of changes. As an evaluation of the proposed technique,
conducted an experiment on two open source software systems.
We performed predictions by the proposed technique with Wy
thresholds in this experiment: one was predicting only very
small changes, where only a single type of program element
was added or deleted in the next change; the other was intendgxd]
to predict changes where 1 program statement was added,
deleted, or changed. The accuracies of the predictions were
74%-85% and 44%-48%, respectively. As the next step it
this research, we are planning to predict (generate) the sourfz,e3
code of the next version.]

[24]
ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Num- (23]
bers 25220003, 24650011, and 24680002.
[26]
REFERENCES
[27]

[1] R. C. Seacord, D. Plakosh, and G. A. Lewldodernizing Legacy
Systems: Software Technologies, Engineering Process and Businefs
Practices Addison-Wesley Longman Publishing Co., Inc., 2003. 28]

[2] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy,
“Change Bursts As Defect Predictors,” IS8SRE’10 pp. 309-318.

E. Arisholm, L. C. Briand, and A. Foyen, “Dynamic Coupling Measure-
ment for Object-Oriented SoftwareT'SE vol. 30, no. 8, pp. 491-506,
2004.

M. Dagpinar and J. H. Jahnke, “Predicting Maintainability with Object-
Oriented Metrics - An Empirical Comparison,” WCRE'03 pp. 155—
164.

W. Li and S. Henry, “Object-oriented Metrics That Predict Maintain-
ability,” Journal of Systems and Softwaml. 23, no. 2, pp. 111-122,
1993.

D. Romano and M. Pinzger, “Using Source Code Metrics to Predict
Change-prone Java Interfaces,” lBSM'11, pp. 303-312.

N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “Predicting the
Probability of Change in Object-Oriented Systen&SE vol. 31, no. 7,
pp. 601-614, 2005.

H. Kagdi, “Improving Change Prediction with Fine-grained Source
Code Mining,” inASE’07 pp. 559-562.

R. Robbes, D. Pollet, and M. Lanza, “Logical Coupling Based on Fine-
Grained Change Information,” id/CRE'08 pp. 42-46.

A. T.T.Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting
Source Code Changes by Mining Change HistoR§E vol. 30, no. 9,
pp. 574-586, 2004.

T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining Version
Histories to Guide Software Changes,”l@SE’04 pp. 563-572.

J. Anvik, L. Hiew, and G. C. Murphy, “Who Should Fix This Bug?” in
ICSE’'06 pp. 361-370.

D. Saha, M. G. Nanda, P. Dhoolia, V. K. Nandivada, V. Sinha, and
S. Chandra, “Fault Localization for Data-centric ProgramsF8E’11,
pp. 157-167.

Z.Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How
Do Fixes Become Bugs?” iRSE'1], pp. 26—36.

J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-F.
Wong, Y. Zibin, M. D. Ernst, and M. Rinard, “Automatically Patching
Errors in Deployed Software,” iSOSP’09 pp. 87-102.

Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and
A. Zeller, “Automated Fixing of Programs with Contracts,"IBSTA'10
pp. 61-72.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon System for Dynamic Detection of
Likely Invariants,” Science of Computer Programmingl. 69, no. 1-3,

pp. 3545, 2007.

G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated Atomicity-
violation Fixing,” in PLDI'11, pp. 389—-400.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
Generic Method for Automatic Software Repaif,5E vol. 38, no. 1,
pp. 54-72, 2012.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
Finding Patches Using Genetic Programming,”I@SE’'09 pp. 364—
374.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A System-
atic Study of Automated Program Repair: Fixing 55 out of 105 Bugs
for $8 Each,” inICSE'12 pp. 3-13.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
Naturalness of Software,” itCSE’'12 pp. 837-847.

E. Giger, M. Pinzger, and H. C. Gall, “Can We Predict Types of Code
Changes? An Empirical Analysis,” IMSR'12 pp. 217-226.

D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” [@SE’13 pp. 802-811.

M. Gethers, H. H. Kagdi, B. Dit, and D. Poshyvanyk, “An adaptive
approach to impact analysis from change requests to source code,” in
ASE'1] pp. 540-543.

M. Gethers, B. Dit, H. H. Kagdi, and D. Poshyvanyk, “Integrated impact
analysis for managing software changes,1G@SE’'12 pp. 430-440.

Y. Higo, K. Hotta, and S. Kusumoto, “Enhancement of CRD-based
Clone Tracking,” inlWPSE’13 pp. 28-37.

E. Duala-Ekoko and M. P. Robillard, “Clone Region Descriptors:
Representing and Tracking Duplication in Source CodEQJSEM
vol. 20, no. 1, pp. 3:1-3:31, 2010.

