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Abstract—Changing source code is not an easy task. Devel-
opers occasionally change source code incorrectly. Such mistakes
entail additional cost in having to reedit the source code cor-
rectly, and repeated changes themselves can be a vulnerability
to software quality. We are conducting research into realizing
automated code changing as a countermeasure for human errors.
As the first step of this research, we propose a technique to predict
the types of program elements deleted and added in a next change
to Java methods. This technique is designed to support developers
in deciding how to change source code after they have identified
a method to be changed. We evaluated predictions using the
proposed technique with two thresholds, which are sizes of source
code changes. For predictions with the smaller threshold where
only a single type of program element was added or deleted, the
accuracy of the proposed technique was 74%–85%. However, for
the larger threshold, where 5 or fewer types of program elements
were added or deleted, the accuracy was 44%–48%.

Keywords—Fine-Grained Change Prediction, Automated Code
Evolution, Static Code Analysis

I. I NTRODUCTION

Changing source code is the most costly activity in soft-
ware maintenance [1], and it is not an easy task. Devel-
opers occasionally change source code incorrectly or forget
to change code fragments. Such mistakes require not only
additional human resources to reedit the code correctly, but
also they can degrade the software quality [2]. Consequently,
facilitating source code changes by introducing automatic
operations would be very beneficial.

A variety of techniques for facilitating source code changes
have been proposed. For example, there are some techniques
that construct prediction models to predict those modules
having frequent changes [3], [4], [5]. Another technique is
tailored to interfaces, which are generally stable components
in software systems [6]. Tsantalis et al. proposed a technique
to calculate the probability that each class will be changed in
a future version [7]. By using these techniques, development
projects are able to spend human resources on predicted fault-
prone modules. For example, if we obtain fault-prone modules,
we can focus on reviewing them.

A hot research topic is identifying pairs or sets of modules
that need to be changed together [8], [9], [10], [11]. After
identifying the modules that need to be changed, developers
can use the available techniques to know which modules need
to be changed together. Such a support mechanism prevents
developers from forgetting to change code fragments in a given
task. Facilitating bug fixes is another particularly hot research
topic. Various techniques are available, such as prioritizing
open bugs for fixing [12], identifying code fragments that cause
specific bugs [13], and validating whether bug fixes have been
performed correctly [14].

Many approaches fix bugs automatically by generating
patches for bug fixes. Perkins et al. developedClearView,
which analyzes a target program dynamically and generates
patches that satisfy invariants in the program [15]. Wei et al.
proposed a technique that generates patches that satisfy not
only invariants but also preconditions and postconditions [16].
Because Wei’s technique uses preconditions and postcondi-
tions, it is able to fix more bugs than can Perkin’s technique.
However, to be analyzed by Wei’s technique, programs must
have descriptions of invariants, preconditions, and postcondi-
tions in their source files. In Perkin’s technique, invariants
are automatically identified by using the toolDaikon [17];
thus, programs do not need to have descriptions of invariants
in their source files. Jin et al. proposed a technique to fix
bugs that violate the atomicity of parallel procedures [18].
Weimer et al. developed a tool calledGenProg that uses
genetic programming to generate patches for fixing bugs [19],
[20] and reported thatGenProg was able to fix 55 out of 105
bugs automatically [21]. Source code changes are performed
not only to fix bugs but also to add new functionalities and
change/enhance existing functions. Of course, we need to take
into account the requirements for changing/enhancing existing
functions. On the other hand, historical approaches to guess the
next change seem promising because “programs that people
write are mostly simple and somewhat repetitive” [22].

In this research, we first investigated the size of source
code changes during software evolution. As a result, we found
that most of the changes are small and simple. Then, we
developed a new technique to predict how a given method
will be modified in the next change. Our technique can
predict any size of changes in source code, but it works
particularly well for small changes. Our technique is beneficial
to individual developers when he/she needs to change source
code to complete a given task. Our technique facilitates source
code changes by showing (predicting) program elements that
will be added or deleted in the next version. If the predicted
source code satisfies his/her requirements, he/she can obtain a
patch to change the current source code in the next version.
By using the proposed technique,

• developers do not need to consider how to change code
fragments, and

• they do not need to change source code manually.

This paper makes the following contributions.

• We propose a novel technique that predicts the next
changes. Currently, our technique predicts the types of
program elements that will be added and deleted in the
next change.

• We evaluate our technique by conducting an experiment
on two open-source software systems. In the experiment,
predictions are performed with two thresholds, which are



the size of the source code changes. The smaller thresh-
old is intended to evaluate predictions where source
code changes are very small. That is, only a single type
of program elements is added or deleted. The larger
threshold is intended to evaluate predictions where one
program statement is added, deleted, or changed. The
accuracies of the two predictions are 74%–85% and
44%–48%, respectively.

The remainder of this paper is organized as follows:
Section II introduces related work and discusses the differences
between them and our technique. Section III provides an
overview of our technique, and Section IV describes how to
build prediction models. Section V shows how to implement
our technique. Section VI reports the experiment and the exper-
imental result in detail. Section VII discusses the experimental
result by using examples of source code. We present our final
goal and paths to the goal in Section VIII. Section IX describes
the threats to validity. Section X concludes the paper and states
future work.

II. RELATED WORK

A number of approaches use source code metrics to train
prediction models that can lead developers to the change-prone
and fault-prone modules in a software system [3], [4], [5],
[6]. Although the experimental results of these approaches are
promising, they do not provide insights into the details of the
changes.

Giger et al. explored prediction models for determining
whether a source file will be affected by certain types of
changes, such as condition changes, interface modifications,
inserts or deletions of methods and attributes, or other kinds
of statement changes [23]. Their models output a list of po-
tentially change-prone files ranked according to their change-
proneness overall and their change type category. The purpose
of their research and ours is the same, which is to provide
insights into details of the changes. However, the methods
used for gaining such insights are different. Giger’s approach
predicts the category of code changes, whereas our current
approach predicts the types of program elements that are
deleted and added.

Goues et al. proposed a technique to repair programs
automatically [19], [20]. Their tool,GenProg, uses genetic
programming to repair a wide range of defect types in C
software (e.g., infinite loops, buffer overflows, segmentation
faults, and integer overflows).GenProg searches for a repair
method that retains the required functionality by generating
variant versions of the program through computational analogs
of biological processes. They succeeded in creating a repaired
version of the source code itself. Kim et al. also proposed
learning to fix patterns from human-written patches to improve
the quality of generated patches, becauseGenProg sometimes
generates nonsensical patches due to the randomness of its
mutation operations [24]. Their techniques are tailored to
repairing bugs. It is difficult to apply their technique to other
kinds of changes, such as adding functionalities or enhancing
functions, because it requires test cases that a given bug passes
and fails. On the other hand, the target of our approach is not
only bug fixes but any kinds of changes in source code, such
as functional addition/enhancement or refactoring.

public int min() {

if (x <= y) {

return x;

} else {

return y;

}

}
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Fig. 1. Example of a PE-Vector

Gethers et al. proposed a technique to enhance impact
analysis by combining information retrieval, dynamic analysis
and mining software repositories techniques [25], [26]. Their
technique identified a set of methods that should be fixed in
order to achieve the given change request (e.g., a bug report).
They showed that their technique provided an improved accu-
racy over the previously approaches.

III. OVERVIEW OF OUR TECHNIQUE

This paper proposes a technique to predict how to change
a given Java method at the program element level. As an
example, it tells us “oneif statement, two identifiers, and
one assign expression will be added by the next change.” It
learns past changes from a historical code repository and builds
prediction models. Users of the proposed technique input a
Java method that needs a change. The proposed technique
then predicts the next change on the given method with the
prediction models. This section introduces terms that are used
in this paper, followed by an overview of the procedure of the
proposed technique.

A. Terms

Program Element:This paper uses the nodes of an abstract
syntax tree (AST) as program elements. Each type of node is
treated as a type of program element. We borrow the definitions
of AST nodes from Java Development Tools (JDT). JDT
provides us with a function to build ASTs from given Java
source files and defines 83 types of AST nodes, including
three related to comments1. We use 80 types of program
elements because we are not interested in comments. This
paper uses symbolsA0, · · · , A79 to represent the different
types of program element.

1The types of AST nodes in JDT and this study are defined in the class
org.eclipse.jdt.core.dom.ASTNode. A list of nodes is provided
in the Eclipse documentation. The current status is available from “http://help.
eclipse.org/kepler/index.jsp.” Note that the types of AST nodes might change
due to an update of Java or JDT.
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Fig. 2. Overview of Proposed Technique

PE-Vector: The proposed technique treats each method as
a vector named a Program Element Vector (PE-Vector). A PE-
Vector is a numerical vector that has 80 dimensions, and each
element of a PE-Vector represents the number of each program
element in the method. This paper describes the PE-Vector of a
methodm as v⃗m = (x0, · · · , x79). Here,xi in v⃗m denotes the
number of the program elementsAi in the methodm. Figure 1
shows an example of a PE-Vector. Figure 1(b) shows an AST
for the method shown in Fig. 1(a), and the vector shown in
Fig. 1(c) is the PE-Vector created from the method. The vector
has 80 dimensions; however, due to the space limitation, we
omitted the attributes from the figures whose value is 0, except
for the head and the tail of the vector.

B. Overview of the Procedure

Figure 2 provides an overview of the procedure of the
proposed technique and a prediction made by using it. As the
first step in the prediction, the technique generates a training
set from a given historical code repository. The training set
has information about past changes in the historical repository.
Each element of the training set is a pair of PE-Vectorsvm
and vm′ , where m was changed tom′. Note that the PE-
Vectors before and after a change might be the same vector.
This means that the change did not alter the numbers of any
program elements. For example, this case occurs when the
change is the renaming of local variables. With the training
set, the proposed technique builds the prediction models. The
models tell us what kind of change will occur next in a given
method. The proposed technique adopts a two-stage prediction,
as described below.

Prediction for Filtering: the proposed technique predicts
whether the next change that a given method undergoes will
be small. This stage filters out methods that are predicted as
undergoinglarge changes in their next revisions.

Prediction of Changes: the proposed technique predicts
the quantity of the next change in terms of AST nodes for a
given method. That is, the proposed technique predicts the next
PE-Vector of a given methodm. For example, if we suppose
that m becomesm′ in the next change, then the proposed
technique predicts⃗vm′ based onv⃗m. This stage targets only
methods that are predicted as undergoingsmallchanges in the
first-stage prediction.

The noteworthy point of the proposed technique is that it
excludes methods from prediction targets if they are predicted
as undergoinglarge changes in the next revision. The rationale
behind this filtering is that it is difficult to predictlargechanges
accurately. It is necessary for the proposed technique to make
precise predictions for automated source code changes. The

proposed technique is the first step of automated source code
changes. Hence, the accuracy of a prediction made with the
proposed technique is important for the final goal. That is, if
an incorrect prediction is made, this would lead to an incorrect
change. We believe that an incorrect change must be avoided
even though we will lose some candidates that might be able
to be changed automatically. Therefore, we decided to ignore
large changes currently by such filtering. However, we will
improve our technique to be able to predictlarge changes
correctly as a future task. The above leads to the question,
“What is a small change?” This study considers a change
to be small if the number of types of program elements
that were added/deleted by the change is less than a given
threshold. Suppose a methodm is changed and becomesm′,
and v⃗ = (x0, . . . , x79) is a difference vector fromm to m′

(v⃗ = v⃗′m − v⃗m). The change tom is regarded assmall if the
following condition holds; otherwise, it is regarded aslarge.

|changed(v⃗)| ≤ threshold (1)

where

changed(v⃗) = {i ∈ 0 . . . 79 | xi ̸= 0} (2)

We use the number of types of program elements instead of
code churn, which is a common metric for measuring the size
of a change. Code churn is unsuitable for this study because
of the granularity of the prediction. The proposed technique
estimates the number of additions/deletions of program ele-
ments. In other words, it can predict only the type of the
next change, not the content of the change. Specifically, the
proposed technique can predict that “anif statement will be
added,” but it cannot tell the predicate and the body of the
if statement. Code churn is measured based on the contents
of changes, e.g., the number of changed lines or tokens of a
change. Therefore, it cannot be measured without the content
of a change. We believe that we should measure the size of a
change by a feature we can predict. In this case, we use the
types of changes instead of their contents.

As mentioned above, the PE-Vectors before and after a
change might be the same vector. Hence, it is possible that
the proposed technique reports the same PE-Vector of a given
method as a prediction result. Such a prediction result indicates
that the method needs a change that does not change the num-
ber of program elements, such as the renaming of variables.
This result does not indicate that the method does not need any
changes. This is because the proposed technique assumes that
its users will input methods that should be changed. Predicting
whether a given method needs any changes is not within the
scope of the proposed technique.

C. Restrictions

The proposed technique has the following restrictions.

• The target of prediction is limited to code inside Java
methods. Programming languages other than Java, or
code outside Java methods, are outside the scope of the
proposed technique.

• The proposed technique cannot predict changes that are
simultaneously performed on multiple methods. It just
predicts the next version of each method.

• The proposed technique cannot generate source code.
It just predicts the type of program elements that are
added/deleted in the next change.
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IV. PREDICTION MODELS

This section describes how to build prediction models by
using the training set. As mentioned above, the proposed
technique adopts a two-stage prediction. The first stage makes
predictions for excluding methods from the prediction target
if they will undergolarge changes. The second stage predicts
a PE-Vector of the methodm′ that a given methodm will be-
come by the next change. The following subsections describe
each stage in detail.

A. Prediction for Filtering

The first-stage prediction uses the k-nearest neighbor (k-
NN) algorithm to predict if the next change in a method
will be small or large. This is a nonparametric algorithm
for classification and regression, and it is the simplest of the
machine learning algorithms. We use this algorithm because
of its high scalability. The k-NN algorithm makes a prediction
for a given object based on the majority vote by itsk closest
objects in the training data in vector space. In our case, the
objects are PE-Vectors, and the distance between two objects
is measured by the Euclidean distance between the two PE-
Vectors.

Figure 3 shows the k-NN algorithm. In the case ofk = 1,
the algorithm chooses the nearest object to a given object from
the training set. In the example in Fig. 3, the nearest object is
marked assmall, and so the prediction result becomessmall.
In the case ofk = 3, the prediction result is decided based
on the majority vote by the 3 nearest objects. The prediction
result becomessmall because there are 2small changes and
1 large change in the solid circle. The prediction in the case
of k = 5 is made in a similar way. In this case, the algorithm
regards the prediction target aslarge because the number of
smallchanges is less than that oflarge changes in the outmost
circle.

B. Prediction of Changes

The second-stage prediction uses linear regression analysis
to predict the next PE-Vector of a given PE-Vector. This stage
builds a regression function for each of the attributes in the PE-
Vector. In other words, it makes predictions on each program
element independently. Hence, this stage generates the same
number of regression functions as the dimension number of
the PE-Vector, which is 80.

Let v⃗m = (x0, · · · , x79) be the target of prediction, and
v⃗′m = (y0, · · · , y79) be a PE-Vector created by the prediction
for v⃗m. The proposed technique builds a regression function
for each of the attributesA0, . . . , A79. Equation (3) is the form
of each regression function.

yi = β +

79∑
j=0

βj xj (3)

Equation (3) states that the value of an attributeAi is estimated
with those of all the attributesA0, . . . , A79. However, we
should not use all the attributes as explanatory variables
because some of the attributes are correlated. Hence, we have
to select the variables to be used as explanatory variables
to avoid multicollinearity. Therefore,βj will have a nonzero
value if the attributeAj is selected as an explanatory variable;
otherwise,βj is zero.

Note that each of the regression functions should have
different explanatory variables because they are built indepen-
dently. In other words, it is possible thatxj is used as an
explanatory variable in the regression function foryi but is
not used in the regression function foryk.

V. I MPLEMENTATION

We have implemented the proposed technique with Java
and R2. We assembled a tool to create a PE-Vector from the
source code of a given method and to construct a training set
from the given historical code repository in Java, while we
entrusted a static analysis to build prediction models to theR
functions.

To build training sets, it is necessary to detect which
methods were changed in each of the past commits and how
they were changed. We applied the clone tracking technique
developed by our research group to this detection [27]. The
clone tracking technique was originally used to map code
clones between two consecutive revisions, but it can be used to
map methods between two consecutive revisions. It is based
on CRD [28], which is a text representation of the location
of a given code fragment. The clone mapping technique links
two code fragments between two consecutive revisions based
on the similarity of their CRDs, and makes links of code
clones between the two revisions based on the links of the code
fragments. The technique can map clones well, even in the case
where files having clones were moved or renamed because it
uses the similarity of CRDs, not their perfect matching. As in
the clone mapping technique, the proposed technique in this
study calculates CRDs from every method and makes links of
the methods between two consecutive revisions based on the
similarity of their CRDs.

We used theknn function of R to predictsmall changes,
and thelm function to perform the linear regression analysis.
In addition, we adopted the method of increasing and decreas-
ing the variables of thestep function to select explanatory
variables. Thestep function makes prediction models that
have the lowest Akaike information criterion (AIC), which
helps to avoid the problems of overfitting and multicollinearity.

VI. EXPERIMENT

The purpose of the experiment is to investigate to what
extent the proposed technique can correctly predict the number
of types of program elements in the next change. In this
experiment, we useArgoUML and Ant as the target software
systems. These systems are written in Java and managed by
Subversion . Table I shows the details of the systems. This
section consists of the following two experiments.

2http://www.r-project.org/
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Investigation of small changes:first, we investigated how
many small changes account for all the changes in the target
software systems. If fewsmall changes are used for building
the prediction models, the proposed technique does not work
well. Therefore, we report the rates ofsmall changes against
all changes and introduce some examples ofsmall changes.

Prediction of program elements: the proposed technique
predicts whether the next changes aresmall for the target
software systems. If the next changes are predicted assmall,
the proposed technique predicts the types and the number of
program elements in the next changes.

A. Investigation of small changes

We calculated the rates ofsmallchanges against all changes
by using various thresholds in Equation (1). Figure 4 shows the
rates. As this figure shows, in the case ofAnt, the percentage
of small changes is approximately 35% when the threshold
is 0 and approximately 39% when the threshold is 1. When
the threshold is 0, the number of AST nodes does not change.
Such changes include modifying variable names and reordering
statements. From Fig. 4, the percentages ofsmall changes
exceed 50% when the threshold is 5. It is interesting that
the number ofsmall changes accounts for over half of all
changes when the threshold is 5. We think 1 is rather strict
as a threshold value. Suppose a statement is changed in a
method, then the change may affect about 5 types of program
elements. However, the prediction model ignores the change
if the threshold is 1. Hence, we decided to use 1 and 5 as
threshold values.

Figure 5 shows two examples of code changes when the
number of types of changed AST nodes is 1. The examples
were obtained fromArgoUML. In the case of Fig. 5(a), anull
argument is deleted from a method invocation. In terms of
the AST, the change decreases the number ofnull literal
nodes. In Fig. 5(b), braces are added to allif statements,
which increases the number of block nodes in AST. Figure
6 shows two examples of code changes when the number of
types of changed AST nodes is 5. Figure 6(a) shows a change
that adds anif statement. This change affects the number
of AST nodes of thecontinue statement,if statement,
method invocation, number literal, and method name. Figure
6(b) shows another change that modifies areturn statement
by uncommenting. It increases the number of five types of AST

TABLE I. TARGET SOFTWARE SYSTEMS
Name Start revision (date) End revision (date) # revisions
Ant 267,549 (2000/01/13) 1,233,420 (2012/01/20) 8,284

ArgoUML 1 (1998/01/27) 19,893 (2012/07/10) 3,918

 public void actionPerformed(ActionEvent e) { 
    System.out.println("making class..."); 
-   _cmdCreateNode.doIt(null); 
+   _cmdCreateNode.doIt(); 
  } 

(a) Deleting anull Argument from a Method Invocation

 public void setOwner(Object node) { 
   Object oldOwner = getOwner(); 
-  if (oldOwner != null && oldOwner instanceof GraphNodeHooks)  
+  if (oldOwner != null && oldOwner instanceof GraphNodeHooks) { 
     ((GraphNodeHooks)oldOwner).removePropertyChangeListener(this); 
+  } 
-  if (oldOwner != null && oldOwner instanceof Highlightable) 
+  if (oldOwner != null && oldOwner instanceof Highlightable) { 
     ((Highlightable)oldOwner).removePropertyChangeListener(this); 
+  } 
-  if (node instanceof GraphNodeHooks)  
+  if (node instanceof GraphNodeHooks) { 
     ((GraphNodeHooks)node).addPropertyChangeListener(this); 
+  } 
-  else if (node instanceof Highlightable)  
+  else if (node instanceof Highlightable) { 
     ((Highlightable)node).addPropertyChangeListener(this); 
+  } 
   super.setOwner(node); 
 } 

(b) Adding Braces to Allif Statements
Fig. 5. Examples ofSmallChanges when Threshold is 1

 public boolean predicate2(Object dm, Designer dsgr) { 
   if (!(dm instanceof Classifier)) return NO_PROBLEM; 
  
     if (Name.UNSPEC.equals(aeName)) continue; 
       String aeNameStr = aeName.getBody(); 
+      if (aeNameStr.length() == 0) continue; 
       if (namesSeen.contains(aeNameStr)) return PROBLEM_FOUND; 
       namesSeen.addElement(aeNameStr); 
     } 
   } 
   return NO_PROBLEM; 
 } 

... 

(a) Adding anif Statement

 public boolean shouldBeEnabled() { 
   ProjectBrowser pb = ProjectBrowser.TheInstance; 
   Project p = pb.getProject(); 
   Object target = pb.getDetailsTarget(); 
-  return super.shouldBeEnabled() && p != null; 
-  // && (target instanceof ModelElement); 
+  return super.shouldBeEnabled() && p != null &&  
+        (target instanceof ModelElement); 
  } 

(b) Modifying a return Statement by Uncommenting
Fig. 6. Examples ofSmallChanges when Threshold is 5

nodes: infix expression,instanceof operator, parenthesized
expression, variable name, and type name.

B. Prediction of program elements

In this subsection, we report two types of prediction results.
The first is a prediction of whether the next changes aresmall.
The second is a prediction of the types and the number of
program elements in the next change. Based on the prediction
results, we answer the following two research questions (RQs).

RQ1: how accurately does the proposed technique predict
whether the next change will besmall? (Accuracy of the first-
stage prediction)

RQ2: how accurately does the proposed technique predict
the types and the number of program elements in the next
changes? (Accuracy of the second-stage prediction)

In preparation for the experiment, the historical code repos-
itories of each target software system were divided into 5 equal
parts based on the number of revisions, which we namedC1,
C2, C3, C4, andC5. In the rest of this subsection, we describe
the steps of the experiment and report the prediction results.



Fig. 7. TheROC Curve Obtained fromAnt

1) Prediction whether the next changes are small:the
proposed technique built first-stage prediction models for pre-
dicting whether the next changes aresmall. The models were
built by the training setsC1, . . . , Cn−1(2 ≤ n ≤ 5). Then, the
models predicted whether the changes inCn would besmall.
We evaluated the accuracies of the prediction results yielded
from the k-NN algorithm by using threek values (k = 1, 3, 5).
However, the results were almost the same. Therefore, we use
k = 1 in this experiment because the k-NN algorithm using
k = 1 can produce results in the shortest time. The output
of the k-NN algorithm was classified into four categories, as
shown in Table II. We obtained aROC (Receiver Operating
Characteristic) curves from the classification results. TheROC
curve is created by plotting the fraction of true positives out of
the total actual positives (true positive rate) and the fraction of
false positives out of the total actual negatives (false positive
rate). Figure 7 shows theROC curve obtained fromAnt in
C2. Moreover, we obtained anAUC (Area Under the Curve)
from theROC curve.AUC is a commonly used evaluation
scale for binary prediction models.

2) Prediction of the types and the number of program
elements in the next change:the proposed technique built
second-stage prediction models for predicting the types and
the number of program elements in the next change. In this
experiment, a predicted change is regarded as correct when
the number of each program element in the predicted change
is equal to the actual change. This prediction was conducted
according to the following steps.

STEP1: smallchanges in the target software systems were
extracted from eachCn(1 ≤ n ≤ 4).

STEP2: the proposed technique built second-stage predic-
tion models by using thesmall changes extracted in STEP1.
These changes occurred inC1, . . . , Cn−1(2 ≤ n ≤ 5) and
were used for building models, and the models predicted the
next changes that occurred inCn.

STEP3: the predicted changes inCn were compared with
the actual changes inCn. This step yielded two values. The
first was the rate at which the changes were predicted correctly.
The second was the number of changes predicted correctly. As
n was either 2, 3, 4, or 5, we obtained four results from each
target software system.

In this evaluation, we definedPPR (Perfectly Predicted
Ratio). PPR is the ratio of perfectly predicted PE-Vectors
to all the PE-Vectors in eachCn. The perfectly predicted PE-

TABLE II. R ELATIONSHIP AMONG PREDICTED AND ACTUAL VALUES
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Fig. 8. Prediction Results forAnt
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Fig. 9. Prediction Results forArgoUML

Vectors represent PE-Vectors whose predicted number of types
of program elements is equal to the actual ones in the next
change. We consider thatPPRs are the performances of the
second-stage prediction models.

3) Experimental Results:Figures 8 and 9 showAUCs
and PPRs for the target software systems. In each graph,
the solid lines representAUCs and the dashed lines represent
PPRs. From these graphs, we found thatAUCs change little
as the threshold increases andPPRs decrease as the threshold
increases. Specifically, when the threshold is 1,AUC varies
from 89% to 94% forAnt and from 92% to 94% forArgoUML.
PPR varies from 83% to 90% forAnt and from 92% to
94% for ArgoUML. When the threshold is 5,AUC results
are 87%–92% forAnt and 91%–94% forArgoUML. PPR
results are 55%–62% forAnt and 48%–58% forArgoUML.
The product ofAUC andPPR is regarded as the performance
of the whole prediction model. Thus, the performance of the
prediction model forAnt is 74% (= 89%× 83%), and that for
ArgoUML is 85% (= 92%× 92%) when the threshold is 1.
When the threshold is 5, these percentages are 48% forAnt
and 44% forArgoUML. Based on the experimental results, we
answer the research questions as follows.



  public void testSendReceiveStartNotifyTyping() throws IOException { 
    sess1.sendTypingNotification(OTHERUSR, true); 
     
    assertTrue(sne.isTyping()); 
-   assertTrue(sne.getMode()==1); 
+   assertTrue(sne.isOn()); 
    sess1.sendMessage(OTHERUSR, CHATMESSAGE,sess1.getLoginIdentity()); 
 
    assertEquals(event.getEvent().getMessage(), CHATMESSAGE); 
  } 

... 
... 

Fig. 10. Prediction Success

  public void testDuplicateLogins() throws Exception { 
+   Thread.sleep(500); 
-   final Session<RosterV1> sessionOne = createSession(); 
-   final Session<RosterV1> sessionTwo = createSession(); 
+   final Session<T, U> sessionOne = createSession(); 
+   final Session<T, U> sessionTwo = createSession(); 
    assertEquals(SessionState.UNSTARTED, sessionOne.getSessionStatus()); 
     
    assertEquals(SessionState.UNSTARTED, sessionTwo.getSessionStatus()); 
  } 

... 

Fig. 11. Prediction Failure

RQ1: the proposed technique predicts whether the next
change will besmall with 89%–94% asAUC for Ant and
92%–94% forArgoUML when the threshold is 1. When the
threshold is 5, these percentages are 87%–92% forAnt and
91%–94% forArgoUML.

RQ2: the proposed technique predicts the number of
program elements in the next change, with 83%–90% asPPR
for Ant and 92%–94% forArgoUML when the threshold is 1.
When the threshold is 5, these percentages are 55%–62% for
Ant and 48%–58% forArgoUML.

VII. D ISCUSSION

In this section, we discuss two prediction results. One is
success, and the other is failure.

A. Case of Success

Figure 10 shows the success case. In this case, the number
of infix expressions changes from 1 to 0, and the number
of number literals changes from 3 to 2. In the training set,
a change in the number of infix expressions from 1 to 0
occurred twice, and that of the number of number literals
from 3 to 2 occurred 62 times. However, these changes did
not occur at the same time in the training set. Thus, existing
techniques using a fix pattern (e.g., [24]) cannot find this case.
The reason the proposed technique could find this case is that
the prediction models were built by learning the changes of
each of the program elements. This is the largest advantage of
the proposed technique.

B. Case of Failure

Figure 11 shows the failure case. In this case, the
number of SIMPLE_NAMEnodes changes from 53 to 57.
SIMPLE_NAMErepresents a user-defined name (e.g., variable
name or method name). The addedSIMPLE_NAMEoccur-
rences are “Thread”, “ sleep”, and two “U”. However, such
changes did not occur in the training set. Therefore, the
model predicted the number ofSIMPLE_NAMEas 56 and not
as 57. The proposed technique occasionally cannot correctly
detect the next change in a large method. A large method
has many occurrences ofSIMPLE_NAME. Predicting correctly
the number of manySIMPLE_NAMEoccurrences is difficult

because the change from a large number to another large
number (e.g., from 53 to 57) seldom occurs and the proposed
technique cannot build correct models. In the experiment, we
found thatSIMPLE_NAMEis the primary cause of prediction
failure. To increase theaccuracy of the prediction models, we
need to tackle the problem ofSIMPLE_NAME. Currently, we
consider one solution, which is using the AST that treats the
variable name or the method name as separate nodes. The AST
provided by JDT treats the variable name or method name as
the same node,SIMPLE_NAME. If we use the enhanced AST,
the number ofSIMPLE_NAMEoccurrences in the next change
could be predicted correctly.

VIII. O UR GOAL

Our final goal is the realization of automated code changes.
However, at this time, we only achieved predicting the number
of added/deleted AST nodes in the next change. To achieve au-
tomated code changes, we have to tackle following problems,
(1) where the change should be made and (2) what actual
code is added, deleted and modified. In order to resolve these
problems, we have to expand the proposed technique. For ex-
ample, we will predict the locations of program elements in the
next change by using a rich PE-Vector that contains locational
information. Moreover, we will convert some elements of the
PE-Vector into an actual code (e.g. if oneIF_STATEMENT,
oneSIMPLE_NAMEand oneBLOCKare added, the following
code would be created).

if (var) {}
Another solution is applying the idea of the proposed technique
for the existing method.GenProg uses genetic algorithm
to randomly generate bug patches. If it is found that what
kinds of program elements are likely changed by the proposed
technique, the genetic algorithm can focus more program
elements than random generations.

IX. T HREATS TO VALIDITY

In this section, we describe some threats to validities.

A. Target Software Systems

In this experiment, each of the target repositories was
divided into 5 equal parts based on the number of revisions.
However, if the repositories are divided in different ways (e.g.,
based on the version upgrade date or development periods) or
if the number of divided repositories is different from that in
this experiment, we might obtain different results. Moreover,
we used only two software systems for the experiment. When
other software systems are used, the proposed technique may
yield different results from that reported in the experiment. In
order to get rid of the threat, we have to evaluate the proposed
technique with more than two software systems.

B. Building Models

In this experiment, only thesmall changes (threshold is 1
or 5) were used for the training set. If the threshold is changed,
different results will be obtained. If the threshold is decreased,
a stricter prediction is conducted. However, the number of
methods that are targets for prediction would be decreased.
Conversely, if the threshold is increased, the number of meth-
ods that are targets for prediction are increased; however, the



accuracy of the prediction models would decrease due tolarge
changes included in the training set.

C. Large Changes

The proposed technique classified all changes intosmall
changes orlarge changes. Then, we used onlysmall changes
for this experiment. In other words, we ignoredlarge changes.
The reason is that we consider thatsmall changes make
prediction models more reliable than dolarge changes. To
achieve a perfect prediction,large changes should not be
ignored. Prediction usinglarge changes is our future work.

D. Types of Changes

The proposed technique did not consider a context or a
requirement of the change. For example, if a change causes
bugs, the proposed technique uses the change for building
the prediction models because the proposed technique did not
consider the context of the change. In that case, the proposed
technique has a risk of predicting the change that causes
bugs. Furthermore, the proposed technique did not consider
a contributor. In the case of predicting the same or similar
change as in the past, if the contributor of the past change and
that of the present change are same, the prediction models are
likely to have high accuracies. On the other hand, if the present
contributor is different from the one of the past change, the
prediction may result in failure. Therefore, it is difficult for
the proposed technique to predict the change in the software
systems that many people develop within a certain amount of
time. One of the solution for the problem is that the proposed
technique builds prediction models by using only the changes
that the contributor of the changes and the user of the proposed
technique are same.

X. CONCLUSIONS

In this paper, we proposed a technique to predict the next
change in source code. While existing techniques concentrate
on changes for fixing bugs, our technique handles all kinds
of changes. As an evaluation of the proposed technique, we
conducted an experiment on two open source software systems.
We performed predictions by the proposed technique with two
thresholds in this experiment: one was predicting only very
small changes, where only a single type of program element
was added or deleted in the next change; the other was intended
to predict changes where 1 program statement was added,
deleted, or changed. The accuracies of the predictions were
74%–85% and 44%–48%, respectively. As the next step in
this research, we are planning to predict (generate) the source
code of the next version.
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