
MPAnalyzer: A Tool for Finding Unintended
Inconsistencies in Program Source Code

Yoshiki Higo
Osaka University

1-5 Yamadaoka, Suita, Osaka, Japan
higo@ist.osaka-u.ac.jp

Shinji Kusumoto
Osaka University

1-5 Yamadaoka, Suita, Osaka, Japan
kusumoto@ist.osaka-u.ac.jp

ABSTRACT
Unintended inconsistencies are caused by missing a modifi-
cation task that requires code changes on multiple locations
in program source code. In order to identify such inconsis-
tencies efficiently, we proposed a new technique. It firstly
learns how code fragments were changed in the past mod-
ification tasks, and then, it identifies where inconsistencies
exist at the latest version. In this paper, we focus on an
aspect of the tool that we developed and shows a case study
that we conducted with the tool. A video of the tool is
available at http://youtu.be/a7_PVVZ4-vo.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided
software engineering; D.2.7 [Distribution, Maintenance,
and Enhancement]: Version control

Keywords
Inconsistency detection; Modification patterns; Static anal-
ysis

1. INTRODUCTION
A modification task such as a bug fix occasionally requires

source code changes on multiple locations. If a developer
overlooks a location to be changed in a given task, an un-
intended inconsistency occurs there. Such an inconsistency
may cause faults in the future, and such a task inherently
involves the risk of overlooking locations [5].
Figure 1 shows two source files of Apache Subversion project.

The 721th line of update_editor.c, the 1,340th and 1,502th
lines of status.c include the same expression. Two of them
were changed in the same way in 2004/01/10. Then, in
2004/03/11, the remaining one was modified and the 3 ex-
pressions got consistent again. The commit log of 2004/03/11
described that the modification was for following up to the
modifications in 2004/01/10. The commit log is an evidence

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2648616.

718	 	 eb-‐>root_opened	 =	 TRUE;	
719	
720	 	 *dir_baton	 =	 d	 =	 make_dir_baton	 (NULL,	 eb,	 NULL,	 FALSE,	 pool);	
721	 	 if	 (!	 eb-‐>target)	
722	 	 {	
723	 	 　　/*	 For	 an	 update	 with	 a	 NULL	 target,	 this	 is	 equivalent	 to	 open_dir():*/	
724	 	 	 	 svn_wc_adm_access_t	 *adm_access;	

trunk/subversion/libsvn_wc/update_editor.c	

1337	 /*	 If	 this	 is	 the	 top-‐most	 directory,	 and	 the	 operation	 had	 a	
1339	 	 	 	 target,	 we	 should	 only	 report	 the	 target.	 */	
1340	 	 	 if	 (eb-‐>target)	
1341	 	 	 {	
1342	 	 	 	 	 svn_wc_status_t	 *tgt_status;	
1343	 	 	 	 	 const	 char	 *path	 =	 svn_path_join	 (eb-‐>anchor,	 eb-‐>target,	 pool);	
...	
1499	 	 /*	 If	 we	 have	 a	 target,	 that's	 the	 thing	 we're	 sending,	 otherwise	
1500	 	 	 	 	 we're	 sending	 the	 anchor.	 */	
1501	
1502	 	 if	 (eb-‐>target)	
1503	 	 {	
1504	 	 	 	 svn_node_kind_t	 kind;	
1505	 	 	 	 const	 char	 *full_path	 =	 svn_path_join	 (eb-‐>anchor,	 eb-‐>target,	 pool);	

trunk/subversion/libsvn_wc/status.c	

*eb-‐>target	
2004/01/10	

*eb-‐>target	
2004/01/10	

*eb-‐>target	
2004/03/11	 	

Follow-‐up	 to	 r8842.	 	 I	 forgot	 that	 eb-‐>target	 is	
never	 NULL	 (but	 that	 *eb-‐>target)	 might	 be.	
*	 subversion/libsvn_wc/status.c	 	 	
	 	 	 (close_edit):	 Check	 *eb-‐>target,	 not	 eb-‐>target.	

Figure 1: Modifications in Subversion

that: the 3 expressions must have been modified simultane-
ously; however the developer overlooked one of them.

Keyword-based search tools such as grep are useful to
avoid inconsistencies. Developers can get a list of locations
that may require changes in a given task by using grep. How-
ever, using grep still remains the following issues.

• Once an inconsistency has occurred, it is difficult to de-
tect it with grep. Although developers need keywords
included in the code fragment before the change, they
have no way to get such keywords after the change be-
cause they do not know where the inconsistency exists.

• grep often returns a long list of locations, but most of
the locations are not ones that actually require changes.
Checking the locations one by one to eliminate false
positives is a costly and burdensome task.

Another choice should be clone detection techniques (in
short, CDTs). Using CDTs enables developers to identify
where inconsistencies exist. However, using them still re-
mains the following issues.

• Token-level inconsistencies can be detected by CDTs
[2, 4]. However, at present, it still has not been re-
vealed whether they have a sufficient capability to de-
tect statement-level ones. We already have many type-

31 CDTs, but they have not been applied to detecting
statement-level ones yet.

• Token-level inconsistencies can be detected by CDTs
only if they are included in detected clones. If code
surrounding inconsistencies is not duplicated to its cor-
respondents, they will not be detected by CDTs. We
are able to detect such clones like the 3 expressions in
Figure 1 if we decrease the minimum size of clones to
be detected. However, we will get a long list of clones
even if the system is not large. Extracting necessary
clones from it is a complicated and burdensome task.

As an alternative way to detect inconsistencies, we have
proposed a new technique [1]. It firstly finds modification
patterns, each of which means how a code fragment was
changed to another one, by analyzing a code repository of
target software. Then, it detects inconsistencies in the latest
source code by using the patterns. In literature [1], we have
reported the following experimental results.

• It detected 16 and 69 unintended inconsistencies from
the two open source systems, respectively.

• Most of the detected unintended inconsistencies were
not detected by two CDTs, CCFinder[3] and Nicad[6].
CCFinder detected 2 and 39 out of the 16 and 69 in-
consistencies, and Nicad detected 2 and 2 out of them.

In this paper, we focus on an aspect of the tool we devel-
oped. The remainder of this paper is organized as follows:
Section 2 explains our solution for the issues of inconsistency
detection. Section 3 introduces our tool that we developed;
Section 4 shows a case study we have conducted with the
tool; Section 6 concludes this paper.

2. OUR SOLUTION
In order to detect where inconsistencies exist, we have

proposed a new technique that utilizes the past changes [1].
The followings are its characteristics, and it is free from the
issues of grep and CDTs.

• It can detect not only token-level inconsistencies but
also statement-level ones.

• It can detect inconsistencies even if they are not in
duplicated code chunk.

• It does not require deep analysis of source code, and so
it is easy to apply it to many programming languages.

• It has high scalability, less than an hour is required for
analyzing million lines of code and its history.

The technique analyzes how source code was modified in
the past to find modification patterns. A modification
pattern (in short, MP) means a pattern that a code frag-
ment was changed to another one. For example, by analyz-
ing modifications performed in 2004/01/10 in Figure 1, the
technique finds that the following MP occurred twice.

eb->target → *eb->target

Found MPs are used for detecting inconsistencies. In the
case of Figure 1, by using the above MP, we can automati-
cally suggest that the 1,502th line must be changed to “*eb-
>target” just after the 2004/01/10 modifications.
1A type-3 clone is a duplicate code region including some
instructions that are not duplicated to its correspondents.

3. TOOL: MPANALYZER
We have implemented the proposed technique as a tool,

MPAnalyzer2. Currently, the tool handles C/C++ and
Java software systems managed with Subversion.

MPAnalyzer has two functions called mining function and
detection function: mining function is a batch processing
that analyzes past modifications to find MPs; detection func-
tion is an interactive processing for detecting inconsistencies
to be modified with the found MPs.

3.1 Mining Function
The input and output of mining function are as follows.

Input: a code repository of a target system,

Output: a set of MPs with confidence and support values.

Mining function consists of three steps.

STEP1: identifies revisions where the source code was changed.

STEP2: extracts MPs from the revisions.

STEP3: calculates confidence and support metrics for MPs.

In STEP1, mining function identifies revisions where one
or more source files were modified. Code repositories contain
not only source files but also other kinds of files such as
manual or copyright files. There are revisions that no source
files were modified. Consequently, the purpose of STEP1 is
eliminating revisions to be ignored.

In STEP2, mining function extracts MPs from every of
two consecutive revisions. MPs are extracted at the level
of program statements and conditional predicates. Inter-
face E in Figure 2(a) shows an extracted MP. The detailed
operaions in STEP2 is described in literature [1].

In STEP3, mining function calculates confidence and
support metrics for each of the extracted MPs.

Definition 1 (Confidence) This is a probability that a given
code fragment (cf1) is changed to another one (cf2). Con-
fidence is represented by a fraction, m

n
. Herein, “m” is the

number of modifications whose pre-changed code fragments
are cf1 and post-changed ones are cf2 (cf1 → cf2)

3. “ n”
is the number of modifications whose pre-changed code frag-
ments are cf1 (cf1 → ∗). m ≤ n is always satisfied.

Definition 2 (Support) This is a numerical metric to present
the number of equivalent modifications classified into a given
MP. Two modifications, cf3 → cf4 and cf5 → cf6 are equiv-
alent if the two conditions are satisfied.

• The token sequence of cf3 is identical to the one of cf5.

• The token sequence of cf4 is identical to the one of cf6.

3.2 Detection Function
The inputs of detection function are the followings, (1)

source files where inconsistencies are to be detected, (2) a
list of MPs with their confidence and support values, and
(3) thresholds of confidence, support, and place. The output
is a list of detected inconsistencies.

Detection function consists of the following steps.

2https://github.com/YoshikiHigo/MPAnalyzer
3“→” means “was changed to”.

A	

B	

C	

D	

E	

(a) Window for selecting MPs (STEP1)

F	 G	

H	

I	

J	

(b) Window for detecting overlooked code fragments (STEP2)

Figure 2: Snaphosts of Windows for each of the steps in detection function

STEP1: selects MPs.

STEP2: detects inconsistencies.

In STEP1, detection function selects MPs used for detect-
ing inconsistencies. Selections are conducted by specifying
the thresholds of confidence and support. If both the con-
fidence and support values of a given MP are within the
threshold range, it is used for detecting inconsistencies.
Figure 2(a) shows the window for selecting MPs. In the

window, developers select MPs with interfaces A and B. The
right-hand list (C) shows a selection result. Developers can
see the commit logs where the MPs occurred and their code
with interfaces D and E.
In STEP2, every of the source files is checked to find out if

it contains any of the selected MPs. Assuming that there are
a source file f in a revision r1 and a selected MPmp = cf1 →
cf2. If the token sequence of f contains the token sequence
of cf1, MPAnalyzer regards that f has an inconsistency, and
it shows the following information:

• location of the matched code fragments (file path, start
line, and end line), and

• cf2, which is a suggestion of how the code fragments
should be modified.

In detection function, we introduce one more metric, place.
place represents the number of code fragments matched with
cf1. If cf1 is matched in many locations, the matched lo-
cations are unlikely to be unintended inconsistencies. The
authors think that the number of unintended ones is a small
number because they were overlooked. Consequently, we use
place to specify an upper limit of matched locations. If a
code fragment is matched more often than the place thresh-
old, the matched locations are not suggested to developers.

Figure 2(b) shows the window for detecting inconsisten-
cies. In the window, developers firstly select a revision where
inconsistencies are to be detected and they specify a place
threshold in interface F. Then, they start a detection with
the specified conditions by pushing the search button. De-
tecting inconsistencies usually finishes in less than 10 sec-
onds, but of course it depends on the size of search targets.
The detected inconsistencies are listed in interface G. Devel-
opers see their source code and suggestions of how to modify
by using interfaces H and I. The commit logs of the matched
MPs are available interface J.

Table 1: An overview of the target branches
branch # of commits # of .c files LOC # of total MPs # of used MPs # of inconsistencies # of UIs
1.3.x 3,434 161 104,672 5,232 973 58 42
2.0.x 217 195 154,894 258 20 0 0
2.2.x 831 225 193,011 1,240 122 8 5
2.4.x 510 259 210,217 1,090 69 5 5

4. CASE STUDY
We have applied MPAnalyzer to Apache HTTP Server4. In

this case study, we used 4 branches, 1.3.x, 2.0.x, 2.2.x, and
2.4.x in the repository. Those branches are intended for
providing stable versions of the software, and source code
modifications in the branches are for bug fixes and refactor-
ings rather than adding new functionalities.
The target period is from each start of the branches to

the end of October, 2013. Table 1 shows the number of
commits5 in the branches and size of the latest versions.
Table 1 also shows the quantitative result. The column

names mean the followings.

Total MPs: the number of all the found MPs.

Used MPs: the number of the MPs used for detecting in-
consistencies. In this case study, we selected MPs sat-
isfying two conditions: (1) its support was 2 or more;
and, (2) its confidence was 1.

Inconsistencies: the number of inconsistencies detected by
using the selected MPs. In this case study, we config-
ured the threshold of place as 1.

UIs: the number of unintended inconsistencies included in
the detected inconsistencies. Herein, an unintended
inconsistency means that it is a code fragment that was
overlooked in a past modification task. The authors
carefully browsed each of the detected inconsistencies
to judge whether it was unintended or not.

We found 52 unintended inconsistencies in total. In our
investigation, 19 out of them were classified into bug fixes, 17
were refactorings, 14 were functional enhancements, and the
remaining 2 were for removing warnings in its compilation
time. We spent about 5 hours to judge the 71 detected
inconsistencies. But, if developers of the software had judged
them, they would have spent much less time because they
have deep knowledge on the software.

5. EXPERIENCES WITH MPANALYZER
Through this case study, we learned that the commit logs

play an important role in identifying whether detected in-
consistencies are unintended or not. It would be much more
difficult to do it if we could not have seen the commit logs.
Interface J of Figure 2(b) was very useful in the case study.
We found some trivial inconsistencies in addition to severe

ones that may cause faults in the future. For example, the
trivial ones include (1) missing modifiers such as const and
(2) recommending renaming variables. If developers useMP-
Analyzer within strictly limited time frame, such trivial in-
consistencies will be obstacles to identify severe inconsisten-
cies efficiently. Consequently, we need to invent a technique
that ranks detected inconsistencies based on their severities.

4http://httpd.apache.org/
5Herein, this number means the number of commits where
at least one .c file was modified in the branch.

MPAnalyzer is intended not for avoiding inconsistency oc-
currences but for detecting inconsistencies that have already
occurred. In order to avoid occurrences, we need another
tool. A plugin for IDEs seems to be a reasonable choice as
an implementation of such a tool. By integrating the tool to
IDEs, it can check whether developers have overlooked some
locations to be changed in a given task before committing
their changes. This case study showed that the MP-based
approach is useful to detect inconsistencies, which means the
approach is also promising to avoid inconsistencies.

6. CONCLUSIONS
In this paper, we introduced our tool, MPAnalyzer, which

was developed for detecting unintended inconsistencies in
program source code. MPAnalyzer takes a repository of tar-
get software to find patterns that code fragments were changed
to other ones in the past modification tasks. After finding
patterns, MPAnalyzer detects inconsistencies by using them.
The pre-changed code fragments in the patterns are keys for
searching inconsistencies. The post-changed code fragments
in the matched patterns are showing how the detected in-
consistencies should be modified.

We applied MPAnalyzer to four branches in the repository
of Apache HTTP Server. As a result, we found 52 unin-
tended inconsistencies. The application result shows that
the pattern-based approach[1] is promising and the tool is
useful for efficient analysis of unintended inconsistencies.

7. ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Num-

bers 25220003, 24650011, and 24680002.

8. REFERENCES
[1] Y. Higo and S. Kusumoto. How Often Do Unintended

Inconsistencies Happened? –Deriving Modification
Patterns and Detecting Overlooked Code Fragments–.
In Proc. of ICSM, 2012.

[2] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue.
Simultaneous Modification Support based on Code
Clone Analysis. In Proc. of APSEC, 2007.

[3] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
Multilinguistic Token-Based Code Clone Detection
System for Large Scale Source Code. IEEE TSE, 2002.

[4] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner:
Finding Copy-Paste and Related Bugs in Large-Scale
Software Code. IEEE TSE, 2006.

[5] B. Ray, M. Kim, S. Person, and N. Rungta. Detecting
and Characterizing Semantic Inconsistencies in Ported
Code. In Proc. of ASE, pages 367–377, 2013.

[6] C. K. Roy and J. R. Cordy. NICAD: Accurate
Detection of Near-Miss Intentional Clones Using
Flexible Pretty-Printing and Code Normalization. In
Proc. of ICPC, 2008.

