IEICE TRANS. INF. & SYST., VOL.Exx—??, NO.xx XXXX 200x submitted to IEICE TRANSACTIONS on Information and Systems

1

[PAPER |
An Abstraction Refinement Technique for Timed Automata Based

on Counterexample-Guided Abstraction Refinement Loop

Takeshi NAGAOKA t, Nonmembey Kozo OKANO, and Shinji KUSUMOTO f, Members

SUMMARY [specification | [specification]

Model checking techniques are useful for design of high-reliable in- (concrete) abstract
formation systems. Well-known state explosion, however, might occur in model mOde'
model checking of large systems. Such explosion severely limits the scala- _’Enitial j Model Specification
bility of model checking. In order to avoid it, several abstraction techniques abstractio Checklng is satisfied
have been proposed. Some of them are based on CounterExample-Guided speCIflcatlon
Abstraction Refinement (CEGAR) loop technique proposed by E. Clarke [counterexample]

et al. This paper proposes a concrete abstraction technique for timed au-
tomata used in model checking of real time systems. The proposed tech-
nique is based on CEGAR, in which we use a counter example as a guide
to refine the model abstracted excessively. Although, in general, the re-

model
[Reflnement 4—[S|mulatlon]

Specification
is unsatisfied

finement operation is applied to abstract models, our method modifies the
original timed automata, and next generates refined abstract models from
the modified automata. This paper describes formal descriptions of the al-
gorithm and the correctness proof of the algorithm.

key words: Model Checking, Timed Automaton, Model Abstraction, CE-

true
GAR @ h @ —_ » or
model check

1. Introduction

Fig.1 General CEGAR Algorithm

1.initial abstraction 2.model checking

4 refinement 3.simulation

A model checker checks that a given system modeled in a 4" true <7|r"
- PN e . = o ———HCE
finite automaton satisfies given specifications by searching [—— false simulate ¥

the finite transition system exhaustively. It sometimes has, CE
however, limitation in scalability. In order to improve the
scalability, model abstraction technique is important[1]-[3].

In verification of real time systems, a timed automaton
has widely been used[7], [8], which can describe behavior of
realtime systems. In a timed automaton, real-valued clock
constraints are assigned to its control state (called a loca
tion). Therefore, it has an infinite state space represented i
a product of discrete state space made by locations and con-
tinuous state space made by clock variables. In traditional
model checking for a timed automaton, using the property
that we can treat the state space of clock variables as a finite
set of regions; we can perform model checking on timed au-
tomata models. However, the size of such regions increase
exponentially with the number of clock variables; thus an
abstraction technique is also needed.

Paper[1] proposed an abstraction algorithm called CE-
GAR (CounterExample-Guided Abstraction Refinement)
shown in Fig.1. The algorithm is used for abstraction of fi-
nite models[1], [2], hybrid systems[3], timed automata[11]—
[13], and other models. In the CEGAR algorithm, we use a .
counter example produced by a model checker as a guide tQ
refine excessively abstracted models. A general CEGAR al-
gorithm consists of several steps. First, it abstracts the origi-

Fig.2 Our Proposed Algorithm

nal model (the obtained model is called abstract model) and
rPerforms model checking on the abstract model. Next, if a
counter example (CE) is found, it checks the counter exam-
ple on the concrete model. If the CE is spurious, it refines
the abstract model. The last step is repeated until the valid
output is obtained. In the CEGAR loop, an abstract model
Frust satisfy the following property; if the abstract model
satisfies given specifications, the concrete model also satis-
Ties them.

This paper proposes a new concrete CEGAR algorithm
for a timed automaton. The first step of the algorithm is
abstraction, in which we delete all of time attributes from
the given timed automaton. The obtained automaton is just
a finite automaton preserving the transition relations of the
timed automaton; therefore the obtained finite automaton is,
in general, over-approximated of the original one. We re-
strict the class of the verification properties into reachabil-
ity; thus if an abstract model satisfies a given property then
the concrete model also satisfies the property.

In general, CEGAR algorithms[1]-[3], [11]-[13] di-
rectly transforms an abstract model using counter exam-
ples in the refinement step. Our proposed method, how-

fGraduate School of Information Science and Technology, Os-
aka University
Machikane-yama 1-3, Toyonaka City, Osaka, 560—8531 Japan

IEICE TRANS. INF. & SYST., VOL.Exx—??, NO.xx XXXX 200x

ever, doesn’t directly transform an abstract model. It first Z = 2¢: a set of clocks to reset;

transforms the original model using counter examples andandI ¢ (L — 2°(©)): a mapping from locations to clock
then it creates a new abstract model from it by removing constraints, called location invariants.

clock attributes; thus our algorithm indirectly refines the ab- . ,

stract model. The algorithm transforms the original timed A transitiont = = (h,a,9,7,15) € T is denoted by
automaton by adding extra transitions and removing somel1 —> l». Amapv : C — R is called a clock as-
transitions but it preserves the behavioral equivalence of thesignment. We can extend the domain.ointo a set ofC'
timed automaton and prevents the spurious counter examas follows: v € RS,. We define(v + d)(z) = v(x) + d
ples. More concretely, it duplicates locations and transi- for d € Rxq. r(v) = vlz + 0],z € r is also defined for
tions so that its abstract model can tell behavioral difference” € 2. By N, a set of whole- is denoted.

caused by clock values which affects the counter examples
Consequently the obtained new abstract model does not ac-
cept the spurious counter example.

As related works, papers[11]-[13] have proposed CE-
GAR based abstraction techniques for timed automata. Al-
though these techniques mainly refine the abstract model
by adding clock variables which have removed by abstrac-
tion, our refinement method modifies the original timed au-

Definition 2.4 (Semantics of Timed Automaton)For a
given timed automatory = (A, L,l,C,I,T), let a set

of whole states of7 be S = L x N. The initial state ofe
shall be given a$l0 OC) € S.

g:or a transitionl; 2% 1, (e T), the following two tran-
sitions are semantically defined. The first one is called an
action transition, while the latter one is called a delay tran-

tomata and produces the refined abstract model from theSition:

modified models, instead of adding clock variables. I, BT I vd < d I d'
The rest of the paper is organized as follows. In Sec. ! 2 Sy) (2)(T(V)), — L) +d)

2, some definitions are described. Sec. 3 gives our CEGAR (l1,¥) = (l2,7(v)) (h,v)= (L,v+d)

algorithm and its application to a simple example. Compar-
ison with other related methods is also given. Sec. 4 proves
the correctness of the algorithm. Sec. 5 concludes the pape

Definition 2.5 (A semantic model of Timed Automatan)
IFor timed automatons = (A, L,,C,I,T), an infinite
fransition system is defined accordmg to the semantics of
</, where the model begins with the initial state. By.«),

2. Preliminaries . ?
the semantic model o is denoted.

In this section, we give definitions of a timed automaton, a
region automaton which specifies whole states of a timed3 2 Region Automaton
automaton with finite clock regions, and others.

] For a given timed automatos, we can introduce a corre-
2.1 Timed Automaton sponding clock regio@ R(.<) [4], [5]. By [u], an element

o) o N (aregion) inNCR(«/) is denoted. Fofu] € CR(7), g([u])
Defmmqn 21 (leferenngl mequahpes orC).. Syntax and andI([u]) represent that any point jn] satisfies a guarg
semantics of a differential inequality on a finite seCC' of and invariant/, respectively. Also by ([u]), applying clock
(

clocks is given as follows: resettingr onto[u] is denoted, where([u]) = [u][z — 0],
E:::x—y~a|.l‘ ~ a, andx € r.

wherez,y € C, ais a literal of a real number constant, and o .)

~e{<, >, <, >} Def|n|t|on 2.6 (Reg|on Automaton) A region automaton

o, (A, L, I, 0 T,) of a given timed automatow/ =
(A, L lp,C,I,T)is defined as followsL, C L x CR(«),
Iy o = (lo, [OC]), where[0¢] satisfiesl (),

T.Cc L, xAXL,,

T, consists of

Semantlcs of a differential inequality is the same as the or-
dinal inequality.

Definition 2.2 (Clock constraints o). Clock constraints
¢(C) on afinite set” of clocks is defined as follows:

a d /
A differential inequalityin on C' is an element of(C). (1, [u]) = (I, [w]) iff (1, u) :: (Lu') € T (o) ford € Rso
X

Letin, andin, be elements of(C), iny A in is also a A(u') = (U v) € (o) forae A
element of:(C). A u€lul Av € [v].

Definition 2.3 (Timed Automaton) A timed automatory

is a 6-tuple(A, L, iy, C,1,T), where 2.3 DBM (Difference Bound Matrix)

A: afinite set of actions;

L: afinite set of locations; In [7],[10], a data structure DBM(difference bound matrix)
C: afinite set of clocks; is introduced to manage a set of differential inequalities of
lp € L: aninitial location; and two clocks over a finite clock sét.

TCLxAx2M) x % xL, We represent DBM as a set of some elements in the

where2¢(®) is a set of clock constraints, called guards; clock regionCR(<7). Therefore a set of states of a region

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP

automatone,, = (L,,l. 0,71, A), can be represented in without loops.

(I, D) = {(l,[u]) | [v] € D} using the corresponding DBM

D. Paper[7] gives operation functions on DBM, suchuas 3.1 Abstract Model

and and other functions, which represent elapsing time, in-

tersection of time spaces and so on, respectively. There iDefinition 3.1 defines the abstraction functibron L,. of a
a minimum set of differential inequalities which can repre- region automatony,..

sent DBM D [7]. Such a setis denoted bpegset (D). Definition 3.1 (Abstraction Functiorh). For a region au-

Inegset(D) can be obtained by reduction operations on tomatong/, = (A, L., I, o, T,)) of a given timed automaton

DBM. A set of every region which satisfies an invaridt) o an abstraction functior, : .. — $ is defined as fol-
of location! is denoted by(l, Dy,.). lows: "

2.4 General CEGAR Algorithm Vil iy b 5 € Lr. (ki) = h(l j) <= Loc(l i) = Loc(l 5),

whereLoc : L, — L is a function which retrieves a lo-
cation attribute from a state of7.. The inverse function
h~1:8 — 2L+ of his also defined as in a usual manner.

Model abstraction sometimes over-approximates an orig-
inal model, which may produce spurious counter exam-
ples. They are not actually counter examples in the orig-

inal model. Paper [1] gives an algorithm called CEGAR The abstraction functio defined in Definition 3.1
(Counterexample-Guided Abstraction Refinement) (Fig.1). maps any state of,,. which belongs to the same location

In the algorithm, at the first step (called Initial Abstrac- into the same abstract state. Otherwise they are mapped intc
tion), it over-approximates the original model. Next, we per- the different states. This means that there is a one-to-one
form model checking on the abstract model. In this step, if correspondence between the location setofind the ab-
the model checker reports that the model satisfies a givenstract state sef. Therefore, the abstraction functiéncan
specification, the original model also satisfies the specifica-pe extended its domain as in Definition 3.2.
tion, because the abstract model is an over-approximation
of the original model. If the model checker reports that the Definition 3.2 (Extension of Abstraction Functioh). Ab-
model does not satisfy the specification, however, we havestraction functions : L — S of a timed automatony =
to check whether a counter example produced is spurious(4, L, b, C, I, T) is defined as follows:
counter example or not in the next step (called Simulation).
In the Simulation step, if we find the counter example is Vi, € L. h(lk) = h(l) = L =1
valid, we stop thellopp. Otherwisg, we have to refine the ab'SimiIarIy, the inverse functioh—! : § — I of h is also
stract model to eliminate the spurious counter example, anddefined
repeat these steps until valid output is obtained. '

Symbols decorated with™* represent those of an ab-
3. Our CEGAR Algorithm for Timed Automaton stract model (i.e. S represents a state set of an abstract
. model). Definition 3.3 gives an abstract modélof a given

Our proposed algorithm generates an abstract madel timed automatom? using the abstraction functigndefined
from a given timed automatow’ by applying an abstrac- in Definition 3.2.
tion function #, and performs model checking avf. A/

is in fact a finite automaton. If a counter examfilqrep- ~ Definition 3.3 (Abstract Model) An abstract model
resented as a path on the abstract model) is found durmgM (5,80,) of a given timed automatons =
model checking, we concretizé by applying inverse func- (4: L, bo, €, I, T) using the abstraction functioh defined

tion h—1.The concretized one is a set of paths. We denote it Definition 3.2 is defined as follows:
by T' (which is a set of paths o). At Simulation Step, it o &= {n(l)| 1€ L)},

checks whether each pathhis feasible ongez or not. If e $o = h(l), and

every path inT" is infeasible, the next step shall refine the - _ {(Z],a [2) | (h,a,9,7,b) € T).
model so that the counter examplebecomes infeasible.

Our algorithm does not directly refinel but it modifiess” Definition 3.4 (Counter Example) A counter example on
and then obtains a new abstract mode by applying the M is a sequence of states 6f A counter exampld’ of
modified timed automaton. Figure 2 shows flow of our CE- lengthn is represented i = (80, 4 8n)-

GAR algorithm.
The proposed algorithm checks a propesty\/,
whereE (C L) of atimed automatory is a set of error Io

A setT of a run sequences aw' obtained by con-
cretizing a counter exampl = (5, - - - , §,,), is defined as

cations of the target system. The property means there is nJOHOWS

path to locations i from the initial state. Please note that = {(lp I g Ry T
any counter example of such a property can be represented (1 = h=\(s) for0<i<n) A

in a finite length of sequence without loops. Therefore, here- ‘

after, we assume that counter examples are finite sequences ((li-1,ai, 95,7, 5) € Tfor1 <i <n)}.

IEICE TRANS. INF. & SYST., VOL.Exx—??, NO.xx XXXX 200x

4
Abstraction Path of the ~ Bad » 7
InpUtS-Q/, h Abstract rev State next
{h = abstraction functioh Model Tt '6 ’
S:=0, >:=0{M = (S,380,>)} -
foreach! € L do S;rt:e;%ﬂzdﬁr%ed Forn B by next
S:=Su{r()} Automaton . » —2 () »
end for — - — — —
a Transition Relation R
50 := h(lo) in Region @ :[. B
foreach (i1, a,g,7,l2) € T do Automaton ® e
—i=— U{(h(lh), h(l2))} ol ® o
end for o B, @ ;:
return M [I— =]

Fig.3 Abstraction Fig.6 Counter Example

Simulation

1,017, a nsGnyTn Path of th I
InputseZ,t = (b i h fnagre L Amdnt b(ln =€) Aztstrgc: ° l
Ro = (lp, Do) {Do = {0°}} Model
D := up(Do) {Any elapsing tim¢ c g
L . orresponding
D = and(D, I(lp)) {Add Invariant ofly } path of the Timed
for i := 1ton do Automaton
R; :=Reaclfe’, R; 1, (li—1,a:,9i,7, i) — -
if R; = 0 then Transition Relation
in Region
return false Automaton
end if
end for
return true

Fig.4 Simulation Fig.7 Refined Model

Reach
Inputs«, R = (I, D), (L, a,g,7,b2)
D := and(D, g) {add guards of transitiofs

D := reset(D,r) {reset the clocks)
D := and(D, I(lz)) {add Invariant of } 3.4 Refinement of Abstract Model
D := up(D) {Any elapsing timé

D := and(D, I(l2)) {add Invariant ofi; }

In this step, we have to generate a refined abstract model
return (l2, D)

which does not admit the spurious counter example (we
call it the spurious CE free model for a given CE). When
a counter example is judged as a spurious counter example
for a concretized path,,qs., there is a Bad Statk in the
abstract model (Fig.6). A Bad Staikgis the abstract state
that the state setB,(= (I, D1)) and Bo(= (I, D2)) are

) merged (mapped into the same state). The statBséas
Initial Abstraction generates an abstract modélfrom a the states which are reachable from the initial state but un-
timed automatony using the abstraction functign Figure reachable to the next locatidf..;. On the other hand, the

3 shows the algorithm of Initial Abstraction. state setB, has the states which are unreachable from the
initial state, but reachable 1Q..;. In general, refinement al-
gorithm should divide the stafg into more than two states
as the state sé®; and the state sd®, are mapped into dif-
For a setl’ of concretized counter example sequences ob- ferential states. Dividing of a state space of a timed automa-
tained from7’ on M, Simulation performs the algorithm in ton usually needs subtraction operation of DBM. However,
Fig.4 on each sequences T. Reachability from the first DBM is not closed under subtraction operation[10]; there-
location oft to the last location of is checked in Simulation fore, applying such an approach is difficult.

using a procedure Reach in Fig.5. Reach uses some opera- We propose another approach, in which we duplicate
tion functions of DBM. The DBM operation “up” applies the state seB; on the concrete model instead of dividing
time elapsing to the DBM, and “and” imposes a differential a bad state. Also we perform other transformation on the
inequality to the DBM[7]. In the algorithm, we extend the concrete model so that the stated3xnbecome unreachable
domain of the operation “and” to clock constraints. When from the initial state obviously (without considering clock
the algorithm in Fig.4 returns false, the counter exarfipie constraints). Next, we produce the spurious CE free model
judged as a spurious counter example. By, the con- by applying the abstraction function to the transformed con-
crete path input is denoted. The next step refines the abstraatrete model.

model witht,,apic- The algorithm of Refinement in Fig.8 consists of three

Fig.5 Reach

3.2 Initial Abstraction

3.3 Simulation

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUT!

sub algorithms, called duplication of states, duplication of
transitions, and removal of transitions, shown in Fig.9, 10,
and 11, respectively. The state #atis obtained on the way

in the Simulation algorithm. At the line 6 in Fig.4, when
R; = () is true, By corresponds to a previous reachable set
R;_4.

In the algorithm ‘DuplicateState’, we generate the state
setB] = (I}, D) as the duplication oB;. In the timed au-
tomaton level, this transformation generates just a new lo-
cation), and the locatiori; has an invarianfnegset(D;)
which represent®;.

The algorithm ‘DuplicateTransition’ generates a tran-
sition (lrev,a, 9,7, ;) as a duplication of the transition
(brev, a, 9,7,). Also, we duplicate transitions which are
feasible from the states ifi,, D;). Due to this transforma-
tion, we can establish bi-simulation relations between the
states in(l,, D1) and their duplications i), D;)[15].

The algorithm ‘RemoveTransition’ removes the tran-
sition (lprev, @, g, 7,) if the following condition is satis-
fied; the state set which is reachable frdip e, , Dino)
through (1,0, a, 9,7,) €qualsB;. In such a case, be-
cause we can assume the transitién.., a, g, r, i) equals
(Lrev, a, g, 7, I{), we can remove the transition. Otherwise,
we cannot remove the spurious counter example with only
one-time application of a Refinement algorithm. In such a
case, the following CEGAR loops will find the same spu-
rious counter example, and we apply Refinement algorithm
for it again. In Sec.4, we prove that applying Refinement al-

gorithm for the same spurious counter example several times {

can remove it from the abstract model.

The operation “relation, D’)" returns a relation be-
tweenD, D’ suchasD C D', D D D).

Figure 7 shows a refined model. Dotted arrows in the
figure denote transitions which are removed through Refine-
ment algorithm.

For states to duplicate, transitions to duplicate and tran-
sitions to remove, the following lemmas hold. Proofs of
them are obtained from algorithm straightforward way, and
is omitted due to paper space.

Lemma 3.1 (States to Duplicate)Let B; = (&, D;) and
duplication of a locationi, be /. A set of states to duplicate,
of a region automaton g}, D1).

Duplication of transition duplicates the following kinds
of transitions: “transitions fron,,..,, to i,,” and “ transitions
not only fromi, but also enable fror,, D;).”

Lemma 3.2 (Transitions to Duplicate) For a region au-
tomaton«,. = (A, L., l.0,T), B1 = (, D;), states to
duplicate (), D), and a transitione, = (lprev, @, 9,7, 1)

in a counter example, transitions to duplicate of a region
automaton is:

Tr 4 = {(lprev, [0]) = (&, [0']) V(lprev, [v]) € (lprevs Dino)-
V(ly, [']) € (y, D1)-(lprew, [v]) = (I, [v']) € T0}

U{(%, [v]) = (I, [v']) IVa € AN(ly, [v]) € (I, D1).

V(1 [v']) € L. (I, [v]) = (I, [v']) € T)-}.

OMATA BASED ON CEGAR LOOP

Refinement
Inputs.e, h, B1 = (I, D1), e, = (lprev, 0,9, 7, 1)
{ep = atransition taj, }
it =
;11 := DuplicateStatés; 1 1, B1) {Duplication of Statep
o7; 11 := DuplicateTransitiof\e; + 1, B1, ep)
{Duplication of Transitions
;41 := RemoveTransitiofez 1, B1) {Removal of Transitionjs
[; 1 :=Abstractio <7 1, h)

M1
return M1

Fig.8 Refinement

DuplicateState
Input.e/, By = (lb, Dl)
Iy := newLoc() {Generate a new locatidf}
L:=LuU{l}
I(l;) := Inegset(D1) {A set of inequalities representig; }
Fig.9
DuplicateTransition
Inputs.e?, B1 = (I, D1), e = (bprev,a, 9,7, 1)
{ep = atransition tal, }
T :=TU{(lrev,a,g,7, lé)}
{Duplicate a transitiom;, to a BadState}
foreach (I1,a/,4’,7’', l2) € T such that; = [, do
if Reactf <, (I, D1), (l1,d/,4’,7",12)) # 0 then
T:=TU{(l,a, g 7,)}
{duplicate transitions fror, only enable from((/, D1).)}
end if
end for

Duplication of States

Fig.10 Duplication of Transitions

RemoveTransition
Inputs%, B1 = (lb, Dl), ey = (lprev, a,g,r, lb)
ep = atransition tal, }
Prev := (h)'rev, Dlnu)
{a set of every region satisfying an invariantgfe., }
R :=Reacli</, Prev, e;) {obtain regions of, reachable fronPrev}
if relation(R, B1) = (true, true) then
{whenR = B, relation(R, B1) returns(true, true).}
T:=T\{(l,a,9,7,)}
end if

Fig.11 Removal of Transitions

Lemma 3.3(Transitions to Remove)For a region automa-
ton«. = (A, L., l.0,T}), B1 = (I, D1), states to dupli-
cate(l;, D), and a previous locatiofy,.,, of a location in a
counter example, transitions to remove of a region automa-

ton is:
T r = {(lprev, [0]) = (I, [v']) V(lprev, [v]) € (lprev, Dinv)-
(lprev, [v]) = (I, [v']) € Tr-}.

The algorithm of Removal of Transitions removes tran-
sitions only when a set of states reachable figm, is the
same as a set),, D) of Bad States. Therefore, for every
(Lrews [0]) = (b, [V']) € Trry (I, [v']) € (I, D1) holds.

It means that every transition ifi. ,. has its duplication in
T, 4.

3.5 Example
Here, we give an example of applying our abstraction

method to Light Switch model[7]. The model is shown in
Figl12, and it is composed of a switch model (left side of the

IEICE TRANS. INF. & SYST., VOL.Exx—??, NO.xx XXXX 200x

offidle dim,relax

Concrete x<=1088y>10 .
S o bright,idle
Model ©\£im,relax’ O
:=0,
§::O O
x==y
X dim,relax
Abstract offidle bright,idle
Model -
©\£im,relax' O
Fig.12 Light Switch model O
Fig.15 First refinement
bright,study off,idle _ _ dim,relax
X:=0,y:= .
X=20y=Q x<=1088y>10 Here, we show an example of applying our abstraction

method to the model.
As a first step, we produce an initial abstract model

x<=10

dim,t

y<5 from the parallel composition. In this step, we apply Initial
x>10 Abstraction which removes clock variablesndy from the
off,study bright,relax composition. Figure 14 shows the initial abstract model.

Next, we perform model checking on the abstract
model, and the model checker outputs a counter ex-
ample ((of f,idle), (dim,relax), (bright,idle)). This

x<=10
=0
d%njdm
x>10

bright,t x<=10

y<5 ¥=0 :T)Qight dle counter example corresponds to a path fr@ryif, idle) to
x>10 y>10 ' (bright,idle) in the original automaton.
y=0 = x=0 The path in the concrete model in Fig.13 correspond-
ofr.relax T, lrue, T,
ing to this counter example igof f,idle) pirue,(zv}

Fig.13 Parallel composed model ' 2<10Ay>10,0 _ :
(dim,relax) "~~~ —="""" (bright,idle) only. Therefore,
we reproduce the path on the concrete model. When we sim-
ulate this path on the original automaton, however, a tran-
sition from (dim, relaz) to (bright,idle) is unable. The
reason is as follows; a reachable clock state space of the
(bright, idle) always satisfies = y, and it does not satisfy
the guard conditior: < 10 A y > 10. Therefore, we can
conclude that the counter example is spurious. At the same
time, we can obtain the state $éfim, relax), D1)(D; is a
set of regions which satisty = y) as B, and the transition
((of f,idle), T, true, {x,y}, (dim, relax)) asey.

In the refinement step, first, we duplicate the loca-
tion (dim, relax) on the timed automaton. (a duplicate of

bright,study off,idle dim,relax

dim,t

off,study

bright,t 1

bright,idle (dim, relazx) is denoted bydim, relaz’)). Please note that
we duplicate states only reachable from the initial state, and
off.relax the reachable state space (dim,relax) always satisfies
Fig.14 Initial abstract model x = y. Consequently, we have to add an invariant y to

the duplicated locatiofdim, relaz’). Next, we duplicate
a transitione;, and the duplication of this transition is that
'from (of f,idle) to (dim, relaz’). Also, we duplicate tran-
sitions from(dim, relaz) except that being unable from the
state space which satisfies= y. In this example, we dupli-
cate a transition fronidim, relax) to (of f,idle) (and the
duplicated transition fron{dim,relax’) to (of f,idle) is
depicted in Fig.17), but we don’t duplicate a transition from
(dim, relax) to (bright, idle) which is infeasible fromB; .
Finally, we remove a transition betweénf f,idle) and
AG—((dim, idle) V (bright, idle)). 1) (dim,relax). We can remove the transition because there
is a corresponding transitiofp f f, idle) to (dim,relaz’).
For the property (1) and the model of Figl3, the model Figure 15 represents the refinement guided by this counter
checker UPPAAL[9] outputs a result of “valid”. This means example. Finally, we produce a refined abstract model from
the model of Fig13 satisfies the property (1). the refined timed automaton.

figure) and a user model (right side of the model). Hereafter
we assume that locatioridim, idle) and (bright, idle) of
the two models are error locations.

In order to apply our method to these models, first, we
have to produce a parallel composition of the models. Fig-
ure 13 shows the composition. Transitions with no label in
the figure are assumed to be labeled with an actioihe
property which we want to check is:

dim,t off,study dim,idle
il x>1 x:=0,
Concrete '~ GVO%%O
Model y<5
x:=0 dim,t’
y:=0
y<6 && x ==y
dim,t off,study dim,idle
Abstract °ffidle .y —»
Model ©\&bmt

Fig.16 Second refinement

x>10&8&y>10 dim,relax
off,idl

bright,study

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP

3.6 Related works

As related works, papers[11]-[13] have proposed CEGAR
based abstraction techniques for timed automata. In the ap-
proach of [11], they perform abstraction by removing all
clock variables from timed automata, and refine the ab-
stract model by removing transitions which are always im-
possible. However, they can remove such transitions only
when it is guaranteed that such removal preserves under-
approximation, otherwise they have to restore clock vari-
ables to the abstract models. The technique of [12] is based
on bounded model checking using SAT. In this approach,
they refine propositions representing models using spurious

;/:0;) dim,relax’
\\\/Qx:y

x>1088y>10

counter examples. The technique of [13] limits the model
to PLC automata, a sub class of timed automaton. Al-
though these techniques mainly refine abstract models by
adding clock variables which have been removed by abstrac-
tion, our refinement approach modifies transition relations
of models so that the abstract models partially contain real
time behavior. The refinement approach of adding clock
variables is more effective in that it can remove more spu-
rious counter examples. Adding clock variables, however,
may decrease the efficiency of abstraction. On the other
hand, because our approach does not add clock variables
we expect our abstraction reduces more state space of the
model using traditional techniques on space reduction for
ordinal finite automata.

off,relax

Fig.17 Timed automaton generated in the final loop

dim,relax 4. Correctness Proof

bright,study

AN

Off’StUdny bright,relax

bright,t

As mentioned in Section 3, the proposed algorithm checks a
propertyAG \/ . —e, whereE (C L) of atimed automaton

&/ is a set of error locations of the target system. In other
words, we treat only reachability problem. As mentioned
in Section 3, any counter example of such a property can
be represented in a finite length of sequence without loops.
Therefore, we assume that counter examples are finite se-
guences without loops.

Paper [2] gives a theorem on a conservative class of ab-
stractions which attempts to preserve semantics of automata
against state reductions under the condition that it checks
only a propertyAG p for a propositiorp. From the theorem,
offrelax we can derive the following theorem.

dim,study

dim,idle

bright,idle

Fig.18 Abstract model generated in the final loop

Theorem 4.1. For atimed automatowy = (A, L, ly,C, I, T)
and a setFE of error locations. Let the abstract model
and a set of error states of the abstract model Mand

E = {h(e) | e € E}, respectively. The following statement
always holds.

MEA)\ —é = EAa6\/ —e 2)

eck ecE

After the refinement, we perform model check-
ing again, and we obtain another counter example
((of f,idle), (dim,t), (of f, study), (dim,idle)). For this
counter example, Simulation decides it is spurious, and the
refinement is performed in the same way. Figure 16 depicts
the second refinement.

The third time model checking proves that the model Proof. Let a concrete model and its abstract model ab-
satisfies the property. The timed automaton and abstracistracted by, be M andM , respectively. For a propositign
model generated in the final loop are presented in Figl7 andf an abstraction functioh satisfies the following for every
Fig18 respectively. seS:

duplicate duplicate remove

Transition__Transition

Timed
Automaton

Region
Automaton

Abstract
Model

Fig.19 Relations among models

3)

thenM = AG p = M |= AG p holds from Theorem 1 in
Paper [2].

Here we assume that = \/._, —é for M, and
p = V.cp —efor &7, In addition, an abstraction func-
tion defined in Definition 3.2 maps each locationdn to
a stateM and the mapping is one-to-one mapping. Thus,
Vi e L. h(l) =é <= [= eholds. As a result, the ab-
straction function: satisfies the statement 3; Theorem 4.1
is proved. O

hs)Ep=skp

Next, we prove the correctness of our abstraction tech-
nigue; first, we prove the correctness of our refinement algo-
rithms ‘duplicateState, ‘duplicateTransition,” ‘removeTran-
sition.” Figure 19 represents the relations among the timed

IEICE TRANS. INF. & SYST., VOL.Exx—??, NO.xx XXXX 200x

The sketch of proof is as follows. In the worst case,
the states of abstract model are divided as fine as product
of clock region and locations. They are both finite. One
time application of Refinement always divides state space.
Consequently, the loop terminates.

Theorem 4.2(Correctness)If a counter example is spuri-
ous, at most: times repetition of Refinement in Fig.8 pro-
duces a spurious CE free model. CEGAR loop will termi-
nate.

Proof. From Lemma 4.1, Refinement preserves bi-simulation
equivalence. From Lemma 4.2, at mastimes repetition

of Refinement produces a refined spurious CE free model.
Lemma 4.3 shows loop’s termination. O

5. Conclusion

This paper proposes a model abstraction technique for timed
automata based on the CEGAR algorithm. In general, most
CEGAR based algorithms obtain refined abstract models
from the previous abstract models by modifying some trans-
formations. In our algorithm, however, the refined model
is obtained indirectly; we transform the original timed au-
tomaton preserving the equivalence and from it we generate
an abstract model by eliminating clock attributes.

This paper gives a formal description and correctness
proof of our algorithms.

As a preliminary experiment, we have applied our ab-

automata generated by each algorithm. Second, we provestraction technique to some examples, including Gear Box

that repeating our refinement algorithm can remove a spuri-
ous counter example correctly.

Lemma 4.1 (Bi-simulation equivalence among timed au-
tomata) Let denote by; and .7, atimed automaton be-
fore and after applying + 1-th application of Refinement ,
respectively.« is bi-simulation equivalent tez; . ;.

Proof of Lemma 4.1 is given in Appendix.

For an abstract modéll and a spurious counter exam-
ple on M, we use the term ‘the spurious CE free model,
if the refined abstract model af doesn’t have the spurious
counter example (which may have potentially other spurious
CE's).

Lemma 4.2. For the spurious CE and an abstract modé|

at mostn times repetition of Refinement produces the spu-
rious CE free model, where is the length of the spurious
counter example.

The proof of this lemma is given by showing induc-
tively that for a sub-sequence starting frdmto [, (1 <
k < n) of the spurious counter example, at méstimes
application of the Refinement algorithm refines the abstract
model correctly with respect to the sub-sequence. The detai
is given in [15].

Lemma 4.3(Termination) The CEGAR loop terminates.

controller[14], and we have obtained the encouraging result
on memory consumption.

Future work contains applying subtraction opera-
tion[10] in order to divide a bad state into a reachable state
and unreachable one instead of duplicating it, during refine-
ment of an abstract model. Comparison its efficiency with
the method proposed in this paper is also considered.

References

[1] E M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Helmut: “
Counterexample-guided abstraction refinement for symbolic model
checking,” Journal of the ACM, vol.50(5), pp752-794, 2003.

E M. Clarke, A. Gupta, J. Kukula, and O. Strichman: “SAT based
Abstraction-Refinement using ILP and Machine Learning Tech-
niques,” In Proc. of the 14th Int. Conf. on Computer Aided Veri-
fication, vol.2404, pp.695-709, 2002.

E M. Clarke, A. Fehnker, Z. Han, J Ouaknine, O. Stursberg, and M.
Theobald: “Abstraction and Counterexample-guided Refinement in
Model Checking of Hybrid Systems,” In Int. Journal of Foundations
of Computer Science, vol.14(4), 2003.

R. Alur: “Techniques for Automatic Verification of Real-Time Sys-
tems,” PhD thesis, Stanford University, 1991.

R. Alur, C. Courcoubetis, and D. L. Dill: “Model-checking for real-
time systems,” In Proc. of the 5th Annual Symposium on Logic in
Computer Science, |IEEE, pp.414-425, 1990.

S. Das, D. L. Dill, and S.Park : “Experience with predicate abstrac-
tion,” In Proc. of the 11th Int. Conf. on Computer Aided Verification,
vol.1633, pp.160-171, 1999.

(2]

(3]

(4]
(5]

I
(6]

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP

[7] J.Bengtsson, and W .Yi: “Timed Automata: Semantics, Algorithms
and Tools,” In Lectures on Concurrency and Petri Nets, vol.3098,
pp.87-124, 2004.

F. Wang, K. Schmidt, G D. Huang, F. Yu, B Y. Wang: “Formal Ver-
ification of Timed Systems: A Survey and Perspective,” In Proc. of
the IEEE, vol.92, No.8, pp.1283-1307, 2004.

G. Behrmann, A. David, and K G. Larsen: “A Tutorial on UP-
PAAL,” In Proc. of the 4th Int. School on Formal Methods for
the Design of Computer, Communication, and Software Systems,
vol.3185, pp.200-236, 2004

A. David, J. Hakansson, K G. Larsen, and P. pettersson: “Model
Checking Timed Automata with Priorities using DBM Subtraction,”
In Proc. of the 4th Int. Conf. on Formal Modelling and Analysis of
Timed Systems, pp.128-142, 2006

H. Nakajima and Y. Kameyama: “Improvement on Real-Time
Model Checking using Abstraction-Refinement (In Japanese),” In
Transactions of Information Processing Society of Japan, vol.45,
No.SIG12 (PRO23), pp.11-24.

S. Kemper, and A. Platzer: “SAT-based Abstraction Refinement for
Real-time Systems,” In Proc. of the Third Int. Workshop on Formal
Aspects of Component Software, vol.182, pp.107-122, 2006.

H. Dierks, S. Kupferschmid, and K G. Larsen: “Automatic Abstrac-
tion Refinement for Timed Automata,” In Proc. of the 5th Int. Conf.
on Formal Modelling and Analysis of Timed Systems, vol.4763,
pp.114-129, 2007.

M. Lindahl, P. Pettersson, and W. Yi: “Formal Design and Analysis
of a Gear Controller,” In Proc. of the 4th International Workshop on
Tools and Algorithms for the Constraction and Analysis of Systems,
vol.1384, pp.281-297, 1998.

T. Nagaoka, K. Okano, and S. Kusumoto: “Abstraction of Timed
Automata Based on Counterexample-Guided Abstraction Refine-
ment Loop,” IEICE Technical Report, vol.107, No.505, pp.103-108,
2008.

(8]

El

(10]

(11]

(12]

(13]

(14]

(15]

Appendix: Proof of Lemma 4.1
Proof. For region Automatas,. = (A, L, andl,(,T,)
and @/ = (A',L,I ,,T)), we define the following bi-

simulation relation~ recursively.

e Forl., € L. andl, ; € L, if there is a bi-simulation

relationi,. 1 ~ I/, the following conditions are satis-
fied.

foralla € Aandl, ; = I, » € T, there exists a transi-
tionl. , 21’ , € T' such ad, , ~ I, holds, and for

alla € Aandl. | & I, € T/, there exists a transition
l,1 = 1,5 €T,suchagd, , ~ I, holds.

For initial states, ifl, o ~ I, holds, under the bi-
simulation relation~, <. and <7/ are bi-simulation

equivalent.

Let denote byg,. ; and . ;11 their region automa-
ton for .« and .71, respectively. In a similar way',
A}y A2, A2, (= i), 3= o, 141) are defined,

T

duplicate state set bi| = (', Dy).

Let T, 4 andT, , be a set of transitions to be added in
o/, a set of transitions to be removed.ir, that to be a set
of transitions be added iw,. and that to be removed i#,.,
respectively.

) . ;and</},
4, ; is obviously bi-simulation equivalent t&/!, over
the bi-simulation relation-. We omit the proof of it.
i) /'; ande?;
Let considere,. ; = (L, i, L ; 0, Ty i, Ai), and.e?,;

L?,,12.,,T?, A?). Obviously,T?, = T'. UT, 4 holds.
riyri 0 trg % T T

Becausel’', C T2, holds, forl!, € L}, andi?, €

L?,, such that a bi-simulation relatiot} ; ~ (2, holds,

there exists a transitiolf ; = %, € T, where a relation
1L, 21V, e T}, is satisfied for any. € Al. Consequently,
the bi-simulation relatiod!’; ~ [%; also holds.

Let consider converse. Fof, € L!, andi?, € L2,
such that the bi-simulation relatidi; ~ (2, holds, there
exists some transitions such that = 1%, ¢ T2, is satis-
fied. For such transitions, we consider the following cases.

1. The casd?, = 1%, € T}, holds.

In this case,ll, = 1Y, € T!exists, and the bi-
simulation relatior!’; ~ 1%, holds.

2. The casd?, = 1%, € T, 4 holds. (a case in which the
transition is duplicated)

In this case/? ; or 1%, is in duplicated state sé#;
(I;, Dy). If I, € B} holds, as mentioned in Lemma 3.2,
there is a transition which is the source transition for dupli-
cation. Therefore, it¥; ¢ B; holds,l!, ~ [¥. also holds.

If 12, € B} holds,!?, is a duplicate of’;, and B] is fi-
~ 1%, also

YUroa !
nite. Consequently, from the definition ef 1/,
holds.

If i, € Bj holds, as mentioned in Lemma 3.2, there
is a transition that is the source transition for duplication.
Therefore]?, is a duplicate of!’;, and B is finite. Conse-
quently, from the definition of, I, ~ %, holds.

For initial states]! , , ~ 2, , also holds. Therefore,

there is the bi-simulation relation between<!, and.«7?,.
iii) /2, and.e/3,
l3

T

Let consider3, =
T3, =T \ T, holds.

Fori?, € L?,andl?, € L?, such that?, ~ 13,
holds,i? ; & (¥, € T2, holds for anya € A2. For such a

T

(L3, 13,0, T2, A}). Obviously,

79

where the superfix means a sub algorithm of the Refinementy ansition, we consider the following cases.

Therefore the superfixds 2, and3 stand for after applying
Duplication of States, Duplication of Transitions, and Re-
moval of Transition, respectively.

Here, we will prove thaty; is bi-simulation equivalent
to 71 by proving bi-simulation equivalence over the each

pair of region automata (before and after applying each al-

gorithm). For the state s&8; = (I, D1), we denote the

1. The case in which? ; = 1%, ¢ T, ,. holds.

In this case(? ; = ¥, € T2, holds. Thereforel? , =
¥, € T3, exists, and the bi-simulation relatidff, ~ 2/,

holds.

2. The case in whicl? ; = 1, € T, holds.

10

As mentioned in Lemma 3.3, because the transitions
to remove have corresponding duplications, there is a du-
plication of 12, & 1., such that?, = ¥, ¢ T3,, and
1%, ~1¥, holds.

Let consider converse, becausg, C 77, holds, for
alla € A? such that?, & 1%, € T2, there exists a tran-
sition 12, = 1%, € T2,. Consequently, the bi-simulation

T T 1

relationl?; ~ ¥’ holds.
For initial states/?, , ~ 2, , also holds. Therefore,

re0
there is the bi-simulation relation betweens/?; and.<Z?,.
From the facts i), ii) and iii), we can conclude tha ;
and 7. ;.1 are bi-simulation equivalent, and alsg and

;1 are. O

Takeshi Nagaoka received the M.I. degree
in Computer Science from Osaka University in
2007. He currently belongs in a doctoral course.
His research interests include abstraction tech-
nigues in model checking, especially timed au-
tomaton.

Kozo Okano received the BE, ME, and Ph.D
degrees in Information and Computer Sciences
from Osaka University, in 1990, 1992, and 1995,
respectively. Since 2002 he has been an asso-
ciate professor in the Graduate School of Infor-
mation Science and Technology, Osaka Univer-
sity. In 2002, he was a visiting researcher of the
Department of Computer Science, University of
Kent at Canterbury. In 2003, he was a visiting
lecturer at the School of Computer Science, Uni-
versity of Birmingham. His current research in-
terests include formal methods for software and information system design.
He is a member of IEEE, IEICE of Japan and IPS of Japan.

Shinji Kusumoto received the BE, ME, and
DE degrees in information and computer sci-
ences from Osaka University in 1988, 1990, and
1993, respectively. He is currently a professor in
the Graduate School of Information Science and
Technology at Osaka University. His research
interests include software metrics and software
guality assurance technique. He is a member of
the IEEE, the IEEE Computer Society, IPSJ, IE-
ICE, and JFPUG.

IEICE TRANS. INF. & SYST., VOL.Exx—??, NO.xx XXXX 200x

