
Does Return Null Matter?
Shuhei Kimura, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University
1-5, Yamadaoka, Suita, Osaka 565-0871, Japan

{s-kimura, k-hotta, higo, igaki, kusumoto}@ist.osaka-u.ac.jp

Abstract—Developers often use null references for the returned
values of methods (return null) in object-oriented languages.
Although developers often use return null to indicate that a
program does not satisfy some necessary conditions, it is generally
felt that a method returning null is costly to maintain. One of
the reasons for is that when a method receives a value returned
from a method invocation whose code includes return null, it
is necessary to check whether the returned value is null or not
(null check). As developers often forget to write null checks, null
dereferences occur frequently. However, it has not been clarified
to what degree return null affects software maintenance during
software evolution. This paper shows the influences of return null
by investigating return null and null check in the evolution of
source code. Experiments conducted on 14 open source projects
showed that developers modify return null more frequently than
return statements that do not include null. This result indicates
that return null has a negative effect on software maintenance.
It was also found that the size and the development phases of
projects have no effect on the frequency of modifications on
return null and null check. In addition, we found that all the
projects in this experiment had from one to four null checks per
100 lines.

Index Terms—software evolution; return null; software main-
tenance

I. INTRODUCTION

A null reference is a common mechanism in object-oriented
languages, such as Java and C++. Developers use null in
various roles, for instance, as an initializer or sentinel. In par-
ticular, it is general practice that a method returns null values
when some necessary conditions are not satisfied (hereafter we
refer to return statements whose operand is null as “return
null”).

Developers often use a return null rather than error constants
or exceptions for the following reasons:

• As null is a unique value, we know some errors have
occurred, even if there are no error messages.

• Returning null is easier to write than handling excep-
tions.

Although return null supports developers for the above
reasons, it is generally felt that return null is one of the factors
that increase software maintenance efforts [1].

A null dereference, a bug by which a program dereferences
a null value, is the main bug caused by a return null. To
prevent a null dereference from occurring, returned values
from a method that includes a return null need to be checked
(hereafter we refer to such checking as “null check”). Ac-
cordingly, when a developer adds return null to a method, a
null check needs to be added for all of its invocations. If a

1 final RevCommit base = walk.next();
2 if(base == null)
3 return null;

Fig. 1: Example of passing return null

developer forgets to add null check, the program will try to
dereference null, and NullPointerException will be thrown. In
addition, null contains no information about an error; whereas
an exception contains information on errors that have occurred.
For this reason, it is very difficult for caller methods that
have received null to know what errors have occurred. This
characteristic sometimes hides the root causes of errors that
have occurred, because a null dereference will occur at places
remote from the point of origin of null if a program has
methods that include return null in a null check (e.g., Figure 1).
For these reasons, return null is regarded as a factor that
increases the cost of software maintenance.

However, it has not been clarified to what extent a return
null affects software maintenance during software evolution.
Therefore, in this research, we conducted an experimental
study on 14 open source projects to ascertain whether, and to
what extent, the presence of return null and null check affect
software maintenance.

We found that the presence of return null and null check
increases the cost of software maintenance, and that the source
code modifications that are related to them have the following
characteristics:

• Developers modified return nulls more frequently than
return statements that do not include null.

• The size and the development phases of projects did not
affect the frequency of modifications on return nulls and
null checks.

• The density of null checks in source code was between
one and four in 100 lines, in any project. If the density
of null checks in a project exceeds 0.04, the project is
presumed to have a problem. None of the projects had
a density less than 0.01, and none of the projects had
special measures in place for return nulls and null checks.

• There were modifications that replaced return null with
exception handling or an erased null check. These phe-
nomena indicate that programmers considered that the
presence of return null and null check were harmful to
software evolution.

The contributions of this paper include the following:

• This paper revealed that return null affect software main-
tenance during software evolution.

• The result indicated that developers should avoid writing
return null without given a great deal of thought to doing
so.

• Measurement of return null and null check showed that
return null and null check are costly to maintain through-
out the entire development periods.

• The result showed the average density of null checks.
This value can be used as a criterion (e.g., when the
density of null check in a project exceeds the average,
developers should apply refactoring to return null and
null check).

A developer could replace return null with other mecha-
nisms, for example, exception handling, a proper object such
as an empty array, or a NullObject pattern. However, this paper
presents whether return null matter. Providing how to replace
it is our future work.

The rest of this paper is organized as follows. Section II
presents previous work by way of introducing our research.
Section III defines our research questions and describes the
experimental design. Section IV shows the result of the
experiment and answers the research questions. In Section V,
we discuss our answers to the research questions. Section VI
discusses threats posed to validity. Section VII provides var-
ious approaches to resolving problems related to null, and
Section VIII concludes this paper.

II. BACKGROUND

Null dereference often occurs in programs written in object-
oriented programming languages. For this reason, many re-
searchers have proposed techniques to detect null dereference
[2]–[7], and many tools have been released [8], such as
FindBugs [9], SALSA [6], JLint, and ESC/Java [10]. However,
previous studies did not mention whether, and to what extent,
the presence of return null and null check affected software
maintenance during software evolution.

A factor of null dereference is that a program unintention-
ally refers null when programmers forget to write null check,
despite the callee method possibly returning null. Figure 2(b)
is a code fragment that appears in JGit. command.call(),in the
fourth line, invokes the method shown in Figure 2(a). This
method may return null, as written in the ninth line. The
variable named “ref,” defined in the fourth line in Figure 2(b),
may be assigned null by calling command.call(). As a result,
ref.getName(), in the fifth line, possibly causes null derefer-
ence. Figure 2(c) is a bug fix for this null dereference. Prefix
“+” in a line means that the line was added in this commit. This
fix added null check in order to avoid the occurrences of null
dereference. The commit message, “Do not fail when checking
out HEAD,” shows the purpose of this commit is to fix the null
dereference. As mentioned above, return null, null check, and
null dereference are closely related to each other. Thus, we
can show how null dereference affects software maintenance
by investigating the effect of return null and null check on
software maintenance.

1 public Ref call() throws GitAPIException,
RefAlreadyExistsException, RefNotFoundException,
InvalidRefNameException, CheckoutConflictException
{

2 checkCallable();
3 processOptions();
4 try {
5 if (checkoutAllPaths || !paths.isEmpty()) {
6 checkoutPaths();
7 status = new CheckoutResult(Status.OK, paths);
8 setCallable(false);
9 return null;

10 }
11 ...

(a) Method including return null

1 ...
2 try {
3 String oldBranch = db.getBranch();
4 Ref ref = command.call();
5 if (Repository.shortenRefName(ref.getName()).equals(

oldBranch)) {
6 outw.println(MessageFormat.format(
7 CLIText.get().alreadyOnBranch,
8 ...

(b) Invokes the method shown in (a)

1 ...
2 try {
3 String oldBranch = db.getBranch();
4 Ref ref = command.call();
5 + if (ref == null)
6 + return;
7 if (Repository.shortenRefName(ref.getName()).equals(

oldBranch)) {
8 outw.println(MessageFormat.format(
9 CLIText.get().alreadyOnBranch,

10 ...

(c) After adding null check

Fig. 2: Example code fragments of return null, null dereference, and null
check

To reveal the effect of return null, the experiment in this
paper covers not only return null but also null check. Error
constants, such as -1, are used as having the same meaning as
return null. However, mainly in Java, as all the variables —
except primitive ones — can be assigned null, null probably
has a greater negative effect on software maintenance than
error constants. For this reason, this research focuses on return
null and null check.

In the remainder of this paper, we use the phrase “a
statement is costly to maintain” to indicate “developers modify
the statement many times” and “the statement has a trend that
new bugs are likely to be introduced into it.”

III. EXPERIMENTAL DESIGN

In this section, we explain the design of our experiment on
open source projects. Herein, we use the abbreviations listed in
Table I for convenience. In addition, |S| means the number of
elements in a given set S. Let c be a commit between revision
r and r+1, and then the set of added/deleted ret

null

, ret
not

,
cond

null

, and cond

not

in c are defined as �Ret

c

null

, �Ret

c

not

,
�Cond

c

null

, and �Cond

c

not

.

TABLE I: Abbreviations

Abbreviation Explanation of Abbreviation

ret

null

return statements whose operands are null

ret

not

return statements whose operands are NOT null

cond

null

conditional expressions having comparison with null

cond

not

conditional expressions NOT having comparison with null

Ret

r

null

a set of ret
null

in revision r

Ret

r

not

a set of ret
not

in revision r

Ret

r

Ret

r

null

[Ret

r

not

Cond

r

null

a set of cond
null

in revision r

Cond

r

not

a set of cond
not

in revision r

Cond

r

Cond

r

null

[Cond

r

not

Desc

r

null

Ret

r

null

[Cond

r

null

Desc

r

not

Ret

r

not

[Cond

r

not

Desc

r

Desc

r

null

[Desc

r

not

C a set of all commits in a target project
R a set of all revisions in a target project

loc

r lines of code in revision r

latest the latest revision in the specified term

A. Research Questions

We investigated the following research questions.
RQ1: Were ret

null

and cond

null

modified more frequently
than ret

not

and cond

not

?
RQ2: Did the size of projects affect the frequency of

modifications to ret

null

and cond

null

?
RQ3: Did the development phases of the projects affect the

frequency of modifications to ret

null

and cond

null

?
RQ4: Did the density of cond

null

increase as projects
proceeded?

RQ1 is the question on whether statements including null

are, in fact, costly to maintain. In this research, “a statement
is costly to maintain” means that the statement is modified
frequently. RQ2 and RQ3 are questions on whether the fre-
quency of modifications depends on the characteristics and
development periods of projects. RQ4 is the question on how
the density of cond

null

changes during software evolution. If
the density of cond

null

increases as a project proceeds, the
occurrences of cond

null

, which is not the functionality we
want to realize, are so many that cond

null

and ret

null

are
costly to maintain. ret

null

is also costly because it is the cause
of writing cond

null

.

B. Target Projects

Table II shows the list of target projects. All the target
projects are Java systems managed using git, and all had a
high number of revisions and the size of each revision was
not low. They were used in previous research [2], [3], [8], [9].

C. Experimental Method

In this experiment, the input was a target repository, and
the outputs were the following:

• Ret

r

null

, Ret

r

not

, Cond

r

null

, Cond

r

not

, locr, for 8r 2 R

• �Ret

c

null

, �Ret

c

not

, �Cond

c

null

, �Cond

c

null

, for 8c 2
C

In order to collect the necessary data, we proceeded as
follows. Figure 3 is an overview of the steps.

Step 1) We analyzed the source code in each revision to
obtain the number of instances of ret

null/not

and cond

null/not

for each method. ret

null

is only the literal sequence of
tokens “return null,” and cond

null

are conditional predicates
comparing a variable to null, such as “a == null,” and “null
!= a.”

Step 2) By using the data obtained in Step 1, we
found additions/deletions of ret

null/not

and cond

null/not

. We
regarded the changed number of instances of ret

null/not

and cond

null/not

in a method between two revisions to be
additions/deletions, respectively. As we used the number of
instances of ret

null/not

and cond

null/not

, some changes were
ignored in a case where some ret

null/not

were modified, but
the number of instances of ret

null/not

in the method was not
changed.

Step 3) We filtered out unnecessary additions/deletions.
If ret

null/not

and cond

null/not

were added/deleted as a part
of module additions/deletions, they were filtered out. This
was done because the changes in numbers arising from
adding/deleting modules are not commonly caused by bug
fixes. In this experiment, when a method was added/deleted,

TABLE II: Target projects and their size

Project loc

latest |R|

ant 131,265 12,783
commons-io 25,031 1,526
eclipse.jdt.core 1,155,484 19,140
egit 92,305 3,126
jEdit 115,842 6,221
jboss-as 551,426 10,764
jetty 207,517 6,082
JGit 124,662 2,321
log4j 30,010 3,226
lucene-soir 537,150 8,026
maven 72,201 9,312
org.eclipse.cdt 1,029,497 21,157
org.eclipse.hudson.core 81,876 1,008
tomcat 240,086 9,172

Total 4,394,352 122,116

we considered it to be an addition/deletion of the modules.
In summary, our filtering omitted the additions/deletions of
ret

null/not

and cond

null/not

from the experimental target if
they satisfied any of the following conditions: their number
in their owner method was not changed, their owner method
disappeared, or their owner method appeared anew at a given
commit.

We obtained the remains of this filtering as necessary
modifications. In the example shown in Figure 3, we obtained
only modifications where the numbers were changed “0 to 1,”
“2 to 1,” and “1 to 0.”

D. Calculating the Frequency of Modifications

To answer the research questions, it is necessary to com-
pare the frequencies of modifications between ret

null/not

and
cond

null/not

.
f

ret

null

(C), f
ret

not

(C), f
cond

null

(C), and f

cond

not

(C) are
the frequency of modifications to ret

null

, ret

not

, cond

null

,
and cond

not

. They were calculated as follows:

f

ret

null

(C) =

X

c2C

|�Ret

c

null

|

|Ret

latest

null

|
(1)

f

ret

not

(C) =

X

c2C

|�Ret

c

not

|

|Ret

latest

not

|
(2)

f

cond

null

(C) =

X

c2C

|�Cond

c

null

|

|Cond

latest

null

|
(3)

f

cond

not

(C) =

X

c2C

|�Cond

c

not

|

|Cond

latest

not

|
(4)

For example, in Eq. 1, the denominator is the total number
of ret

null

in the latest revision, and the numerator is the
number of added/deleted ret

null

throughout all the com-
mits. The result is the frequency of modifications to one
ret

null

. By dividing |Ret

latest

null

|, |Ret

latest

not

|, |Cond

latest

null

|, and
|Cond

latest

nut

|, we can reduce the influence arising from the
difference in the number of modifications simply caused by
the difference of their number.

E. Unit of Analysis

In this experiment, by using the caller/callee relationships
of methods, we obtained the modifications to cond

null

in a
caller method when ret

null

was added to a callee method. As
this research focuses on methods, |�Desc

c| for 8c 2 C were
calculated for each method.

F. Definition of Development Phases

We could not divide the development phases clearly because
the experimental targets were open source projects. In this
experiment, we considered a period between major version
releases as one software development period, and we divided
each of the development periods into an anterior half and

3� ����	�

��!������ ��

0� ����
�

2� ������

n

� ������

2� ������

	��� ���� �� ��������
 ���� ���������!�������

���	������� ���������� �����

3

����

1

1

1

3

1

1

0

���� "�

3

1

1

0

��

���� ���������������� Latest+revision�

Number+of+targets+per+method�

��

Step+2�

Step+3�

Step+1�

����

Fig. 3: Overview of steps

ver.1.0.0� ver.1.1.0'

revision'

version� ver.1.2.0'

anterior'half'
between'

ver.1.0.0'and'
ver.1.1.0�

n n+ k
2 n+ k n+ k + l

2 n+ k + l

anterior'half'
between'

ver.1.1.0'and'
ver.1.2.0�

posterior'half'
between'

ver.1.1.0'and'
ver.1.2.0�

posterior'half'
between'

ver.1.0.0'and'
ver.1.1.0�

Fig. 4: Overview of division

a posterior half. Figure 4 shows the division of the periods
between version 1.0.0 and version 1.2.0. We considered that
modules had been added in the anterior half and bugs had
been fixed in the posterior half. We performed such divisions,
and calculated the frequency of modifications in the anterior
half and the posterior half.

Division and statistical testing were conducted on
12 projects listed in Table II except for tomcat and
eclipse.jdt.core. As the borders among major version releases
were vague, we excepted those projects.

G. Statistical Testing Methodology

In order to answer the research questions, we need to
check whether two samples have a significant difference or
a statistical correlation.

We used the Wilcoxon signed rank test [11] to determine
whether two paired-samples had a significant difference. If
the obtained p value is low, there is a low probability that the
observed differences are accidental. In this experiment, the
significance level is 1%. This means that there is a significant
difference if p 0.01, and there is no significant difference if
0.01 < p.

Similarly, we calculated the Spearman’s rank correlation
coefficient (⇢ value) to determine whether two paired-samples
had a statistical correlation. After that, we calculated the p

value corresponding to the ⇢ value. The two samples have a
positive correlation if the ⇢ value is positive, and a negative
correlation if the ⇢ value is negative. The meaning of the p

value is the same as for the Wilcoxon signed rank test. Two
samples have no correlation if |⇢| < 0.5, and they have a
correlation if 0.5 |⇢|.

IV. ANSWERS TO RESEARCH QUESTIONS

A. Answer to RQ1

To ascertain whether ret

null

and cond

null

were modified
more frequently than ret

not

and cond

not

, we tested the dif-
ference between them. Figure 5 shows a comparison between
f

ret

null

(C) and f

ret

not

(C), f
cond

null

(C) and f

cond

not

(C). In
the figure, black regions are Desc

null

, and gray regions are
Desc

not

. In addition, the figure does not show a value just
as it is, but the percentage for the value. For example, the
percentage of f

ret

null

(C) is calculated as follows: f
ret

not

(C),
f

cond

null

(C), and f

cond

not

(C) are the same as f

ret

null

(C).

f

ret

null

(C)

f

ret

null

(C) + f

ret

not

(C)
(5)

The p value obtained from the Wilcoxon signed rank test be-
tween f

ret

null

(C) and f

ret

not

(C) is 2.44⇥10�4 (Figure 5(a)).
That means f

ret

null

(C)�f

ret

not

(C) in almost all the projects
are positive values. As p 0.01, ret

null

was modified more
frequently than ret

not

. On the other hand, the p value between
f

cond

null

(C) and f

cond

not

(C) is 0.714 (Figure 5(b)). Thus,
cond

null

were not modified more frequently than cond

not

.
Therefore, our answer to RQ1 is that ret

null

was modified
more frequently than ret

not

, and cond

null

was not modified
more frequently than cond

not

.

B. Answer to RQ2

To ascertain whether the size of projects and the frequency
of modifications have any correlation, we hypothesized that
loc

latest indicated the size of projects, and tested the correla-
tion between them.

Figure 6 shows the scattergram between f

ret

null

(C),
f

cond

null

(C) and loc

latest. The x-axis is loc

latest, and the y-
axis is f

ret

null

(C) and f

cond

null

(C). We calculated that the
Spearman’s rank correlation coefficient (⇢ value) and the p

value corresponds to the ⇢ value.
The result from the Spearman’s rank correlation test be-

tween f

ret

null

(C) and loc

latest was ⇢ = �0.0330, and
p = 0.916 (Figure 6(a)). As 0.01 < p, there was no significant
correlation. Similarly, the result between f

cond

null

(C) and
loc

latest was ⇢ = 0.169, and p = 0.563 (Figure 6(b)). As
it was also 0.01 < p, there was no significant correlation.

As a result, our answer to RQ2 is that the size of the
projects did not have a significant effect on the frequency of
modifications to ret

null

and cond

null

.

C. Answer to RQ3

There were 109 major versions among the target
projects. After dividing them, we calculated f

ret

null

(C) and
f

cond

null

(C) for the divided 218 periods. Figure 7 shows the
calculated values.

We tested f

ret

null

(C) and f

cond

null

(C) for differences
between the anterior half and the posterior half. The result
from the Wilcoxon signed rank test between f

ret

null

(C) in
the anterior half and the posterior half was p = 0.126
(Figure 7(a)). As 0.01 < p, there was no significant difference.
Similarly, the result between f

cond

null

(C) in the anterior half
and the posterior half was p = 0.383 (Figure 7(b)). There was
also no significant difference.

As a result, our answer to RQ3 is that the development
phases did not have a significant effect on the frequency of
modifications on ret

null

and cond

null

.

D. Answer to RQ4

We calculated density(Cond

r

null

), representing the number
of cond

null

per line of code, for each revision r in the target
projects. The value was calculated as follows:

density

cond

null

(r) =
|Cond

r

null

|
loc

r

(6)

For each project, we tested whether there was a pos-
itive correlation between the revision number (r) and
density

cond

null

(r). A positive correlation means that the den-
sity of cond

null

is increasing as a project proceeds. Table III
shows the test result. The ⇢ value indicates the strength of
the correlation, and the p value indicates whether there is a
significant correlation or not.

As a result, four projects showed significant positive cor-
relations, five projects showed significant negative ones, and
three projects had no correlation. Two projects did not have
significant correlation because the p value of two projects is
p > 0.01. This shows there was no regular pattern in the
results.

Consequently, our answer to the RQ4 is that the density of
cond

null

did not increase as the projects proceeded.

TABLE III: Spearman’s rank correlation coefficient (⇢ value) and p value for
revision number r and density

cond

null

(r)

Software ⇢ value p value

ant 0.432 under 2.2⇥ 10�16 a

commons-io 0.733 under 2.2⇥ 10�16

jdt.core -0.974 under 2.2⇥ 10�16

egit 0.223 under 2.2⇥ 10�16

jEdit 0.668 under 2.2⇥ 10�16

jboss-as -0.765 under 2.2⇥ 10�16

jetty -0.992 under 2.2⇥ 10�16

jgit 0.598 under 2.2⇥ 10�16

log4j 0.006 0.740
lucene-solr -0.947 under 2.2⇥ 10�16

maven 0.934 under 2.2⇥ 10�16

cdt 0.156 under 2.2⇥ 10�16

hudson.core -0.151 2.898⇥ 10�4

tomcat -0.986 under 2.2⇥ 10�16

a This indicates the p value is too small to calculate a precise value.

tomcat
hudson.core

cdt
maven

lucene−solr
log4j
jgit
jetty

jboss−as
jEdit
egit

jdt.core
commons−io

ant

0 20 40 60 80 100
(a) Comparison between f

ret

null

(C)(black) and f

ret

not

(C)(gray)

tomcat
hudson.core

cdt
maven

lucene−solr
log4j
jgit
jetty

jboss−as
jEdit
egit

jdt.core
commons−io

ant

0 20 40 60 80 100
(b) Comparison between f

cond

null

(C)(black) and f

cond

not

(C)(gray)

Fig. 5: Comparison between f

Desc

null

(C)(black) and f

Desc

not

(C)(gray)

●

●
●

●

●

●

●

●

●

●

●

●

●

●

0 200 600 10000.
0

1.
0

2.
0

3.
0

LOC (1,000)

f re
t nu

ll

ρ = −0.0330
p = 0.916

(a) f
ret

null

(C)

●

●●
●

●

●

●

●

●

●

●

●

●

●

0 200 600 1000

0.
2

0.
6

1.
0

1.
4

LOC (1,000)

f co
nd

nu
ll

ρ = 0.169
p = 0.563

(b) f
cond

null

(C)

Fig. 6: Scattergrams of loclatest and f

ret

null

(C), f
cond

null

(C)

●●
●

●●

●●

●

●

●

●

●●

●

●
●

●
●

●
●●

●

●

●

●

●

●

0.
00

0.
10

0.
20

0.
30

anterior half posterior half
(a) f

ret

null

(C)

●

●
●

●

●
●

●

●
●
●●

●
●

●

0.
00

0.
10

0.
20

0.
30

f co
nd

nu
ll

anterior half posterior half
(b) f

cond

null

(C)

Fig. 7: Box plot showing f

ret

null

(C) and f

cond

null

(C) of the anterior half
and the posterior half

V. DISCUSSION

A. Discussion on the Results of RQ1, RQ2, and RQ3

Our answer to RQ1 is that ret

null

was modified more
frequently than ret

not

. As ret
null

was frequently modified, we
can say that their presence is probably costly to maintain. Our

answers to RQ2 and RQ3 are that the size and the development
phases of projects did not affect the frequency of modifications
to ret

null

and cond

null

. This means a developer modified
ret

null

and cond

null

throughout the entire development period
of a project. Our answers above show that ret

null

affects soft-
ware maintenance throughout the entire development period of
a project.

B. Discussion on RQ4

In our answer to RQ4 (see IV-D), we showed that many
projects had positive or negative correlations between revision
number r and density

cond

null

(r). We conducted additional
experiments to find common characteristics in the density on
cond

null

.
Figure 8 shows the relationship between revision numbers

and density

cond

null

(r) in four projects. In Figure 8, the x-
axis represents the revision number, and the y-axis represents
density(Cond

x

null

). These projects show that the continua-
tion of the change has been maintained. This means that
the density will have been decreasing/increasing, and it will
become a very low/high value. However, inspecting the overall
density

cond

null

(r) gives us another idea.
Figure 9 shows density

cond

null

(r) of 8r 2 R in all the
projects. Position x in the x-axis means the revision in the
top x% of revisions sorted by ascending order of revision
numbers. The y-axis is density

cond

null

(x). The thick bar
shows the median of all the projects. This graph shows that
density

cond

null

(r) of all the projects is in the range 0.01
to 0.04, and the median is stable regardless of the progress
of their projects. In other words, the number of cond

null

is
from one to four lines per 100 lines, and this density will
be kept in the future of any project. This result also means
that countermeasures to reduce ret

null

and cond

null

have not
been taken in all the projects. After we see Figure 9, we can
recognize that the density reaches the area between 0.01 and

(a) ant (b) egit

(c) maven (d) jetty

Fig. 8: Change in frequency of modifications to cond

null

in some projects.
Tendencies of cond

null

differ in each project

0.04 in all projects as shown in Figure 8. Once a density
reaches the area, it is unlikely that the density will go out
from the area. This is presumably a common characteristic of
the density in cond

null

.
In addition, if density

cond

null

(latest) in a project is high
(> 0.04), the project presumably has some problems. This
means that the number of cond

null

, which is not a function-
ality that we want to realize, has increased too much. Thus, if
density

cond

null

(latest) is high, we suggest that the developer
should refactor (e.g., check the existence of unnecessary
cond

null

, returning suitable values instead of null, and remove
cond

null

by using a NullObject pattern).

C. Discussion on Modifications to ret

null

and cond

null

We select modifications from �Desc

c in 8c 2 C and
we discuss the effect on the density of cond

null

. In this
study, we discuss the modifications to ret

null

and cond

null

in JGit. The reason we targeted JGit is that the size was not
too large, meaning we could check all the modifications, in
addition the JGit project recorded information on bugs using
a bug control system, Bugzilla [12]. We show the characteristic
modifications and discuss them.

Figure 10 shows an example of replacing ret

null

into an
error constant. This is a representative example of replacing
ret

null

with other mechanisms. Such a replacement often
causes software design problems because the return value is
changed. It is difficult to perform such a replacement without
causing a problem in a fully automated way.

Fig. 9: density
cond

null

(r) 8r 2 R of all projects. This figure shows that
density

cond

null

(latest) of all projects are between 0.01 and 0.04

1 } else {
2 - return null;
3 + if (merger.failedAbnormally())
4 + return new CherryPickResult(merger.getFailingPaths

());
5 + // merge conflicts
6 + return CherryPickResult.CONFLICT;
7 }

Fig. 10: Example of replacing ret

null

into an error constant

Although such a replacement is necessary to identify the
errors that occurred in the same method, performing such a
replacement is difficult. Therefore, the presence of ret

null

is
costly to maintain.

Figure 11 shows the modification occurred in a commit
whose commit message is “[findBugs] Don’t pass null for
non-null parameter in RebaseCommand.” This commit mes-
sage shows that developers detected a null dereference by
using FindBugs, and fixed the null dereference by adding
cond

null

. Many instances of null dereference occurred because
developers had forgotten to write cond

null

, but developers
could easily detect this by using null dereference detection
tools.

In Figure 12, as there was no cond

null

for the variable
“objectID,” developers added cond

null

and the error handling
when “objectID” was null. The same problem was fixed in
two places, but the developers forgot to fix all of them. In
such cases, null dereference detection tools are effective. In
addition, we need to fix bugs in multiple places not only
when a developer forgets to write cond

null

, but also when
a developer adds ret

null

to existing methods.
As described above, developers can detect null dereferences

by using null dereference detection tools and fix them. On the

1 DirCacheCheckout dco;
2 - RevCommit commit = walk.parseCommit(repo.resolve(

commitId));
3 + if (commitId == null)
4 + throw new JGitInternalException(
5 + JGitText.get().abortingRebaseFailedNoOrigHead);
6 + ObjectId id = repo.resolve(commitId);
7 + RevCommit commit = walk.parseCommit(id);
8 if (result.getStatus().equals(Status.FAILED)) {
9 RevCommit head = walk.parseCommit(repo.resolve(

Constants.HEAD));
10 dco = new DirCacheCheckout(repo, head.getTree(),

Fig. 11: Example showing lack of cond
null

1 @@ -108,7 +110,10 @@
2 ObjectId objectId = repository.resolve(revstr);
3 - tree = new RevWalk(repository).parseTree(objectId);
4 + if (objectId != null)
5 + tree = new RevWalk(repository).parseTree(objectId);
6 + else
7 + tree = null;
8 this.initialWorkingTreeIterator = workingTreeIterator;
9

10 @@ -125,9 +130,13 @@
11 this.repository = repository;
12 - tree = new RevWalk(repository).parseTree(objectId);
13 + if (objectId != null)
14 + tree = new RevWalk(repository).parseTree(objectId);
15 + else
16 + tree = null;
17 this.initialWorkingTreeIterator = workingTreeIterator;

Fig. 12: Example of cond
null

being fixed in many places

other hand, sometimes we can remove null instead of simply
adding cond

null

. Figure 13 shows refactoring that removes
cond

null

by assigning a suitable value “repo.lockDirCache()”
to variable “dc” as an initialization. However, it is difficult
to perform such refactorings because we need to analyze all
expressions that include a variable so as to be able to assign a
suitable value to a variable. In addition, there is no popular tool
that assigns suitable values to variables automatically. There-
fore, the number of instances of cond

null

rarely decreased. We
can regard such a change as a factor of maintenance stem from
null. Our experiment took such a change into consideration
because our experiment did not focus on only addition of
cond

null

.
In summary, there were ret

null

and cond

null

replaced with
other mechanisms in order to avoid bad effects of ret

null

.
We can detect null dereference automatically by using null
dereference detection tools, and developers add cond

null

when
null dereference is detected. However, as it requires complex
analyses, reducing the number of instances of ret

null

and
cond

null

is difficult both when using manual methods and
when using automatic methods.

D. Replacing Return Null with Other Mechanisms

Exception handling is one of the mechanisms for replacing
ret

null

. We measured the frequency of modifications on throw
statements and try statements. Then, we compared them with
f

ret

null

(C) and f

cond

null

(C). Figure 15 shows the comparison
result. The result of the Wilcoxon signed rank test between
f

ret

null

(C) and throw statements was p = 0.0245. As 0.01 <

p, there was no significant difference. Similarly, the result

1 private void resetIndex(RevCommit commit) throws
IOException {

2 - DirCache dc = null;
3 + DirCache dc = repo.lockDirCache();
4 try {
5 - dc = repo.lockDirCache();
6 dc.clear();
7 DirCacheBuilder dcb = dc.builder();
8 dcb.addTree(new byte[0], 0, repo.newObjectReader

(), commit.getTree());
9 dcb.commit();

10 - } catch (IOException e) {
11 - throw e;
12 } finally {
13 - if (dc != null)
14 - dc.unlock();
15 + dc.unlock();
16 }
17 }

Fig. 13: Example of removing cond

null

by modifying the default value

1 Object referencedObject = getTaskContext().getDataValue(
reference);

2 if (referencedObject == null) {
3 throw new ExecutionException("Unable to locate the

reference specified by refid ’" + getReference() +
"’");

4 }
5 if (!this.getClass().isAssignableFrom(referencedObject.

getClass())) {
6 throw new ExecutionException("The object referenced by

refid ’" + getReference() + "’ is not compatible
with this element ");

7 }

Fig. 14: Example of throw statements being written in multiple places

between f

ret

null

(C) and try statements was p = 0.390. As
it was also 0.01 < p, there was no significant difference.

However, developers sometimes write multiple throw state-
ments, all of which correspond to a single ret

null

. This is
because throw statements have error messages and exception
types. Developers can change error messages and exception
types depending on the reasons of errors (Figure 14 shows an
example of such a situation). For this reason, the frequency
of the modifications on throw statements became a larger
value than the actual one. Therefore, it is not fair to compare
the frequencies of the modifications between ret

null

and
exception handling. Exception handling is better than ret

null

from the qualitative points of view, such as the examples in
Section V-C, and the characteristic that ret

null

have no error
message.

Replacing ret

null

and cond

null

is related to research that
is intended to detect null dereference, because detecting null
dereference is the same as detecting passing null from one
method to another method and a variable can be assigned null.
The information as to which variables can be assigned null is
very useful when it comes to replacing ret

null

and cond

null

.
Therefore, the results of this research reinforce the motivation
of those studies, e.g., “As null dereference occurs frequently,
it is useful to detect them,” with the motivation “Supporting
replacing ret

null

and cond

null

that affect software mainte-
nance.”

tomcat
hudson.core

cdt
maven

lucene−solr
log4j
jgit
jetty

jboss−as
jEdit
egit

jdt.core
commons−io

ant

0 20 40 60 80 100
(a) Comparison between f

ret

null

(C)(black) and the frequency of modifica-
tions on throw statements(gray)

tomcat
hudson.core

cdt
maven

lucene−solr
log4j
jgit
jetty

jboss−as
jEdit
egit

jdt.core
commons−io

ant

0 20 40 60 80 100
(b) Comparison between f

cond

null

(C)(black) and the frequency of modifi-
cations on try statements(gray)

Fig. 15: Comparison between f

Desc

null

(C)(black) and the frequency of modifications on exception handling mechanisms(gray)

VI. THREATS TO VALIDITY

The fairness of comparison on RQ1: As stated in
Section V-D, it is not appropriate to compare ret

null

with
throw statements, because the frequency of modifications
on throw statements was larger than the actual one. The
unfairness also happened to ret

not

. Although f

ret

not

(C) was
presumably larger than the actual one, f

ret

null

(C) was larger
than f

ret

not

(C) under adverse conditions (as shown in Sec-
tion IV-A). Thus, our experimental results were not altered by
the unfairness.

Code outside the methods: In this experiment, �Desc

c

for 8c 2 C were calculated for all methods. This calculation
had the issue that ret

null/not

and cond

null/not

were ignored
if ret

null/not

and cond

null/not

were outside the methods.
However, ret

null/not

and cond

null/not

were rarely written
outside the methods because ret

null/not

and cond

null/not

were return statements or conditional predicates. Thus, we
excluded from consideration ret

null/not

and cond

null/not

that
were outside the methods.

Changed/Moved code elements: �Desc

c for c 2 C

consisted only of additions/deletions. Thus, we did not detect
“Change” modifications, for example, a variable compared to
null had been changed to another variable. This may have
an effect on the experimental result and the discussion. In
addition, as our experimental steps could not detect a code
move of ret

null/not

and cond

null/not

, a code move caused
by refactoring, such as Extract Method, was recognized as
modifications of ret

null/not

and cond

null/not

. A code move
caused by refactoring should be filtered out, similarly to an
addition/deletion of modules. However, in this experiment,
we considered that the density of code moves was low, and
ignored them.

Variables whose values are null: ret

null

is only a return
statement whose operand is null. If a return statement has a

variable whose value is null, the statement is not counted. The
situation is the same for cond

null

. For this reason, the number
of ret

null

and cond

null

could differ from the actual number.
The division of the development phases: In the com-

parison of the development phases, we divided the periods
between major versions into two periods, and tested whether
they had a significant difference. However, as this division
was performed based on the number of revisions, we could
not obtain a precise division of the development phases. As
a result, the experimental result could differ from the result
when the periods were divided more precisely.

VII. RELATED WORK

Many previous studies have tackled null dereference prob-
lems from many viewpoints. Currently, there are many tools to
detect null dereference automatically, which were introduced
in Section II. Those tools target existing null dereference.

By contrast, there are techniques that focus on preventing
null dereference from occurring in compile time. One such
technique is that developers add the constraint “null value is
never assigned to this variable” (non-null) to some variables.
This technique enables compilers to verify whether the vari-
ables could be null. As a result, these techniques can reduce
mistakes in which a null value is unintentionally assigned
to some variables. In formal methods, developers represent a
program as a formal specification using formal specification
languages, such as JML (Java Modeling Language) [13],
and check whether the constraints are violated or not by
performing verifications. Developers can obtain proof that the
variable will never become null by using these methods.
However, writing formal specifications needs a great deal of
effort on the part of developers. Therefore, researchers tend
to implement non-null features as the preferred type system
and annotations. Fähndrich et al. proposed a NonNull type of
system and implemented it on C# as an annotation [14]. Papi

et al. extended the Java-type system and enabled checks to be
made as to whether variables annotated @NonNull can be
null or not [15]. There are many researchers that are trying
to make an environment in which non-null can be used in a
practical environment.

There also are methods that enforce null check on
variables that can be null. Hovemeyer et al. developed
@CheckForNull annotation, and proposed a method that
enforces null check on variables on Java [5]. Haskell [16]
and Scala [17] have variables of Maybe type or Option type
that represent variables that can be null. Variables of these
types contain actual values or Nothing values, which are
equivalent to a null value. When developers use such vari-
ables, they spontaneously handle cases in which the variables
have Nothing values. Such types of systems make developers
aware of exception handling, and can detect the lack of a null
check in compile time. As a result, such systems prevent null
dereference from occurring.

In addition, null as an initializer is a subject of research,
because such an initializer is another factor in the occurring
of null dereference. By using initialization analysis, which
analyzes whether variable initializations have been done or not,
developers can know which variables are uninitialized [18].
This decreases the possibility of null dereference occurring.
In addition, there are techniques that track the origins of null
values [19]. As described above, many approaches have been
proposed.

VIII. CONCLUSION

In this paper, we investigated whether, and to what ex-
tent, the presence of return null and null check is costly to
maintain by mining modifications during software evolution.
This research focused on return null and null check, and an
experiment conducted on 14 projects showed that return null
were modified more frequently than statements that do not
have null. In addition, we suggested that developers should
avoid writing return null by reason of our qualitative analysis.
Moreover, it was found that the frequencies of modifications
on return null and null check bore no relation to the size and
the development phases of projects. The density of null checks
was from one to four in 100 lines, in each project. If the
density of null check in a project exceeds 0.04, we can say
that developers should refactor in order to decrease the density.
A developer could replace return null with other mechanisms,
for example, exception handling, a proper object such as an
empty array, or a NullObject pattern.

We plan to research the reasons for writing return null
and null check, and see to what extent we can lower the
frequency of modifications. We can focus our experiment on
“addition of null check.” Results of such an experiment will
be worth discussing. In addition, it is our future work to

support developers by replacing return null and null check
automatically. We also plan to find a method in order to
compare return null with other error handling mechanisms
quantitatively, and conduct the same experiment for other
programming languages such as C.

ACKNOWLEDGMENT

This study was supported by Grants-in-Aid for Scientific
Research (S) (25220003), Grant-in-Aid for Exploratory Re-
search (24650011) from the Japan Society for the Promo-
tion of Science, and Grant-in-Aid for Young Scientists (A)
(24680002) from the Ministry of Education, Culture, Sports,
Science and Technology.

REFERENCES

[1] T. Hoare, “Historically Bad Ideas: ”Null References: The Billion Dollar
Mistake,” in QCon, 2009.

[2] M. G. Nanda and S. Sinha, “Accurate Interprocedural Null-Dereference
Analysis for Java,” in ICSE, May 2009, pp. 16–24.

[3] N. Ayewah and W. Pugh, “Null Dereference Analysis in Practice,” in
PASTE, Jun. 2010, pp. 65–72.

[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff, “A static analyzer for find-
ing dynamic programming errors,” Software: Practice and Experience,
vol. 30, no. 7, pp. 775–802, Jun. 2000.

[5] D. Hovemeyer, J. Spacco, and W. Pugh, “Evaluating and tuning a static
analysis to find null pointer bugs,” in PASTE, Sep. 2005, pp. 13–19.

[6] A. Loginov, E. Yahav, S. Chandra, S. Fink, N. Rinetzky, and M. Nanda,
“Verifying Dereference Safety via Expanding-Scope Analysis,” in ISSTA,
Jul. 2008, pp. 213–224.

[7] D. Hovemeyer and W. Pugh, “Finding More Null Pointer Bugs, But Not
Too Many,” in PASTE, Jun. 2007, pp. 9–14.

[8] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt, and
P. Balachandran, “Making Defect-Finding Tools Work for You,” in ICSE,
May 2010, pp. 99–108.

[9] D. Hovemeyer and W. Pugh, “Finding Bugs is Easy,” in OOPSLA, Oct.
2004, pp. 24–28.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and
R. Stata, “Extended Static Checking for Java,” in PLDI, Jun. 2002, pp.
17–19.

[11] M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods, 2nd
Edition. Wiley-Interscience, 1999.

[12] Bugzilla, “http://www.bugzilla.org/.”
[13] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary Design of JML:

A Behavioral Interface Specification Language for Java,” SIGSOFT
Software Engineering Notes, vol. 31, no. 3, pp. 1–38, May 2006.

[14] M. Fähndrich and K. R. M. Leino, “Declaring and checking non-
null types in an object-oriented language,” in OOPSLA, Oct. 2003, pp.
302–312.

[15] M. M. Papi and M. D. Ernst, “Compile-Time Type-Checking for Custom
Type Qualifiers in Java,” in OOPSLA, Oct. 2007, pp. 809–810.

[16] S. P. Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton,
J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones,
J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman, and
P. Wadler, “The Haskell 98 Language Report,” Dec. 2002, http://www.
haskell.org/onlinereport/.

[17] M. Odersky, “The Scala Language Specication Version 2.9,” May 2011,
http://www.scala-lang.org/docu/files/ScalaReference.pdf.

[18] F. Spoto and M. D. Ernst, “Inference of Field Initialization,” in ICSE,
May 2011, pp. 231–240.

[19] M. D. Bond, N. Nethercote, S. W. Kent, S. Z. Guyer, and K. S.
McKinley, “Tracking Bad Apples: Reporting the Origin of Null and
Undefined Value Errors,” in OOPSLA, Oct. 2007, pp. 405–422.

