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Abstract: Research on clone detection has been quite successful over the past two
decades, which produced a number of state-of-the-art clone detectors. However,
it has been still challenging to detect clones, even with such successful detectors,
across multiple projects or on thousands of revisions of code in limited time. A
simple and coarse-grained detector will be an alternative of detectors using fine-
grained analysis. It will drastically reduce time required for detection although it
may miss some of clones that fine-grained detectors can detect. Hence, it should be
adequate for a tentative analysis of clones if it has an acceptable accuracy. However,
it is not clear how accurate such a coarse-grained approach is. This paper evaluates
the accuracy of a coarse-grained clone detector compared with some fine-grained
clone detectors. Our experiment provides an empirical evidence about acceptable
accuracy of such a coarse-grained approach. Thus, we conclude that coarse-grained
detection is adequate to make a summary of clone analysis and to be a starter of
detailed analysis including manual inspections and bug detection.

Keywords: Clone detection, Software evolution, Mining software repositories

1 Introdution

Code clone, also called duplicated code, is known as a typical bad smell for software develop-
ment and maintenance [FBB*99]. They recieve a considerable amount of attention from devel-
opers [YM13], which may be because code cloning is quite easy to do and almost unavoidable
[KBLNO4].

Such a background encourages researchers to develop a variety of techniques to cope with
clone-related problems [Kos08, ZR12, Kos06]. Clone detection is one of the hottest topics in
this research area since it plays a fundamental role for managing clones. Research on clone
detection has been quite successful because of great effort that many researchers have spent.
As a result, a variety of clone detectors have been developed and used [RBS13, RC07, Bak95,
BYLB98, KKI102, MLM96, DRD99, HIHC10, RC08, JIMSGO07].

Nowadays, the success of clone detection research has let clone detection go well beyond a
single state of code in a single project. It opened its own application area beyond both project
and historical borders. More concretely, it has been applied not only in intra-project but also in
inter-project, and it has been used to analyze clone evolution.
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Inter-project clone detection opens our eyes to find reusable code, and to detect plagiarism
and license violations [Kos13]. Historical analysis of clones has provided a number of useful
findings [KSNMO5, GK11, Kri08, HSHK10, LWO08, HG12, JDHW09] because historical data
has rich information that the current states of projects do not have [HMK 12, KMM ™" 10].

However, these research areas suffer the following issues.

Time required for detection: although state-of-the-art detectors have been successful to
detect clones in single projects, clone detection across multiple projects or on multiple revisions
requires a huge amount of time.

A huge number of clones: state-of-the-art detectors tend to report a number of clones even
from a single state of code in a single software system. If we apply them to inter-project detection
or historical analysis, the number of detected clones will become much larger. This may make it
difficult to analyze the results in a limited time period.

It should be an alternative of using state-of-the-art detectors to use simple and coarse-grained
clone detectors [HHK13]. Herein, “coarse-grained clone detection” means “clone detection on
coarser units of code”. In this paper we suppose that finer unit of code means sequence of tokens,
statements, or lines, and coarser units of code include blocks, methods, functions, classes, and
files. In our defenition, fine-grianed detectors can find clones composed of a part of syntactic
block, but coarse-grained detectors cannot find them. The main objective of this paper is to reveal
the performance and the accuracy of such a coarse-grained detection. We have implemented a
simple block-based detector and use it in our investigation.

The most advantageous point of the coarse-grained approach should be in its performance.
That is, it will drastically reduce time required for clone detection because it requires a fewer
number of comparisons of code units. Hence, it should be suitable for analyzing inter-project
cloning or clone evolution. Therefore, we investigate the performance of the coarse-grained
detection as our first research question.

RQ1: Is the coarse-grained detector much faster than fine-grained ones?

In addition to that, coarse-grained detectors will report a fewer number of clones than fine-
grained ones. Therefore, they may make it possible to analyze the results in limited time. Hence,
we are interested in the number of detected clones in the second research question.

RQ2: Does the coarse-grained detector report a fewer number of clones?

Note that this research question considers only the number of detected clones. In other words,
this research question is not interested in the correctness of detected clones. Hence, it is unclear
how many correct clones are detected and missed by the coarse-grained detector. The remaining
research questions focus on the accuracy of the coarse-grained detector.

The next research question is interested in the accuracy of the detection. We think the coarse-
grained detection has high precision. This is because if there exists a pair of code fragments that
is regarded as a clone pair with such a coarse-grained technique, the pair also will be regarded as
a clone pair with a fine-grained approach. On the other hand, it might have low recall compared
to fine-grained detectors. This is because it will report a fewer number of clones than fine-grained
techniques on the same target software systems. This means that the coarse-grained approach
misses some clones that fine-grained techniques can detect.
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RQ3: Does the coarse-grained detector have high precision?

RQ4: Does the coarse-grained detector have high recall?

Our experiment confirmed high scalability of the coarse-grained detection on multiple projects
and multiple revisions compared with fine-grained ones. It also showed that the coarse-grained
detector reported fewer numbers of clones than fine-grained detectors. In addition, the coarse-
grained detector achieved high precision compared to other detectors. On the other hand, it had
lower recall than other detectors, but it was not so low.

Based on these findings, we conclude that using such a coarse-grained clone detector as a
starter of clone analysis should be an effective way to analyze across multipe projects or multiple
revisions. For instance, suppose that we are about to analyze clones among thousands of projects,
which requires a vast amount of time to be analyzed with fine-grained detectors. In this case,
we can apply a coarse-grained detector to get an overview of clones in the dataset even though
there exists a tight limit of time. With the coarse-grained detector, you may find that there are
a number of clones in a particular pair of projects. However, we have to note that the coarse-
grained detector has a little lower recall compared to fine-grained ones. Hence, it is not sufficient
using only coarse-grained detectors because it should miss some clones. Therefore, we suggest
a two-staged analysis using both of fine-grained and coarse-grained detectors. That is, at the
first stage we use a coarse-grained detector to get a summary of clones and narrow down the
analysis target with the results. After the first stage, we use a fine-grained detector to conduct
more detailed analysis with the narrowed target. Such a two-staged analysis should be effective
for a huge dataset with limited time.

The remainder of this paper is organized as follows. At first, we discuss related work in
Section 2. Section 3 describes the coarse-grained detector used in this study. Section 4 gives
how to conduct the experiment, and Section 5 shows the experimental results. Section 6 discusses
threats to validity of this research, and the final section, Section 7, concludes this paper.

2 Related Work

2.1 Clone Detection across Multiple Projects

Koschke developed a technique to detect inter-system clones with a suffix-tree-based approach
[Kos13]. His technique is interested in clones between a subject system and a set of other sys-
tems. He achieved high scalability with some heuristics, including to generate suffix trees for
either the subject system or the set of other systems, and to use a filter based on hashing.

Ossher et al. proposed a technique to detect file-level clones [OSL11]. Through an empirical
study on a dataset that includes over 13,000 projects [LBJP], they revealed that approximately
10% of files were clones. Furthermore, they found that file-level cloning tends to occur in cases
of reusing whole of existing projects as a template of a new project.

A similar work was conducted by Sasaki et al. [SYHI10]. They developed a tool named
FCFinder to detect file-level clones. They applied FCFinder to FreeBSD Ports Collection, and
they reported that 68% of files were file clones.
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Ishihara et al. proposed a technique to detect method-level clones for locating library candi-
dates [[HH" 12]. They conducted an empirical study on the dataset used in Ossher et al.’s study,
and their technique found approximately 2,900,000 cloned methods within four hours.

Keivanloo et al. conducted a set of empirical studies toward building real-time clone search
system [KRC11]. They adopted multi level hashing to detect clones in their study. Although they
were interested in clone search, they also reported the performance of their light weight clone
detection approach on a code base that includes 1,500,000 Java classes. The empirical study
revealed that their approach could detect approximately 11 billion clone pairs in 21 minutes.

Keivanloo et al. proposed a framework to improve scalability of existing detectors for large
datasets including multiple projects [KRRC12]. Their technique is compirising of shuffling,
repetition, and random subset generation of the subject dataset. Their approach is completely
independent of detectors, and so it can be applied for any detectors without any modifications
on them. The research was followed by a further experiment by Svajlenko et al. on six existing
clone detectors [SKR13], and the experiment revealed the effectiveness of the framework.

2.2 Analysis of Clone Evolution

The pioneers of studies on clone evolution are Kim and her colleagues [KSNMO5]. They formu-
lated clone genealogies and conducted an empirical study on clone genealogies. The empirical
study revealed that most of clones were short-lived.

Gode and Koschke investigated how many times clones were changed during their evolution
[GK11]. They showed that most of clones were changed at most once, and changes on them did
not cause severe problems in most cases.

There exists some other studies to analyze evolution of clones, which includes analyzing evo-
lution of Type-1 clones [G09], analyzing evolution of near-miss clones [Baz12, SRS11], and
analyzing stability or changeability of clones [Kri08, HSHK10, LWO08, HG12]. The results did
not agree with each other, and so the research community still has a room for discussion about
harmfulness of clones. It can be said that, however, there are both harmful clones and harmless
ones. Hence, managing clones is no longer considered a “hunt-and-kill” game [WG12] and
we thus have to carefully select the clones to be managed to avoid unnecessary effort managing
clones with no risk potential [GK11].

2.3 Comparison between Clone Detectors

One of the benchmarks on clone detectors is the one conducted by Bellon and his colleagues
[BKAT07]. It is quite difficult to make a correct set of clones due to the vagueness of definition
of clones. Hence, they made their correct set through a manual inspection. They collected clones
with six detectors on eight open source projects, and looked them through to judge whether they
should be really regarded as clones. The vast amount of collected clones made it impossible to
investigate all of them, and so they randomly selected clones to be judged.

Roy et al. provided another benchmark from a different standpoint [RCKO09]. That is, they
compared clone detectors with four distinct senarios on copy/paste/modify operations. Their
benchmark showed which tools are adequate for each senario.

Roy and Cordy also provided another benchmark for evaluating clone detectors empirically
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[RCO9]. The key idea of their study is using mutation. Their technique generates and injects
mutants of code fragments, and evaluates detectors with them.

A similar work to our study was conducted by Ducasse et al. [DNRO6]. They implemented a
clone detector using simple string matching, which can be applied to a number of different lan-
guages including COBOL, Java, or C++. They confirmed that the inexpensive detector achieved
high recall and acceptable precision. A major difference between their work and this study is
in the granularity of clone detection. Their work used a simple string matching to reduce time
required for detection, which is a fine-grained detection technique. On the other hand, this study
is interested in coarse-grained technique. The simple string matching reduces the cost of each
comparison between two elements, but coarse-grained detection, by contrast, reduces not only
the cost of each comparison but also the number of comparisons of elements. Hence, coarse-
grained technique will be faster than simple fine-grained ones, but it may miss some clones that
finer techniques can detect. The objective of this research is to empirically reveal that.

3 Coarse-grained Clone Detection

This section describes the coarse-grained detector used in this study. It detects block-level clones
from the given source files. It explains how to detect clones in a set of source files, followed by
the description of incremental detection.
3.1 Clone Detection on a Set of Source Files
Input and Output
The detector takes a set of source files as its input, and reports a list of clone pairs among them.
Currently, it targets only Java because of the limitations of the implementation.
Procedure
The detection procedure consists of the following four steps.

e STEP1: Parse given source files to detect blocks.

e STEP2: Normalize every detected block.

e STEP3: Calculate a hash value from each block.

e STEP4: Group the blocks based on their hash values.

Figure 1 shows an overview of the procedure. The followings describe each step in detail.

STEP1: Detect Blocks

The first step is to detect all the blocks from the given source files. Herein, blocks include classes,
methods, and block statements such as i f or for statements. This step requires not only lexical
analysis but also syntax analysis. Our implementation uses Java Development Tool (JDT) to
perform the syntax analysis.
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public class Cl { public class C1 {
public int method(int x) { public int method(int $) {
if (x <= 0) { if ($ <=39) {
return 0; return $; Hash Value m
} }
int result = 1; int $ = §; 10 Bl
for (int i = 1; i <= x; i++) { for (int $ = $; § <= §; S++) | 20 B2
result = result * i; STEP1 $=8*53; STEP3
} & } < & 30 B3
return result; return $;
) STEP2 ) W STEP4 40 B4, B7

! ! 50 B5
( 60 B6

public class C2 { public class C2

public int anotherMethod (int x) { public int anotherMethod (int $) {
int y = 1; int $ = $;
for (int 1 = 1; i <= x; i++) { for (int $ = $; $ <= $; S$++) { -

yo=y *i; $ =5 *5; | B4 & B7 compose a clone pair

} }
return y; return $;

’ : B

} }

Figure 1: Overview of the Detection Procedure

STEP2: Nomalize Blocks

The next step is normalization for every block detected in the previous step. At first, it reformats
every block with a regularized form. This procedure allows the detector to ignore differences of
white-spaces or tabs. In addition to that, it replaces each variable name and each literal with a
special token, which allows the detector to find Type-2 clones. Hence, the detector can find both
of Type-1 and Type-2 clones, but cannot find Type-3 clones.

STEP3: Calculate Hash Values

The third step calculates hash values from texts of respective blocks. Our implementation uses
hashCode () of java.lang.String as the hash function. Any other hash functions, how-
ever, can be used instead if they can generate a numerical value from a given string.

STEP4: Group Blocks

The final step is grouping blocks based on their hash values. Two blocks have the same hash
value if their text representations after normalized are equal to each other. Hence, a block pair is
regarded as a clone pair if the two blocks have the same hash value. The detector groups all the
detected blocks and reports all the clone pairs.

3.2 Incremental Detection

In addition to the function of clone detection for a single state of code, the detector has a function
for detecting clones incrementally. The detector takes a Subversion repository as its input for
performing incremental clone detection, and reports clone pairs in every revision.

The detector is motivated by the idea of the implementation from the literature [HHK13].
That is, it analyzes only files that were modified in a target commit. In other words, it reuses the
results of analysis on the past commits of the target commit.

Suppose that the detector is about to analyze a commit c,, which is a commit between the
revisions r — 1 and r. The commit ¢, modified a source file f;, and the revision r has n source
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files (f1 ... f,). In this case, the detector has already finished analyzing all the commits before c,.
Hence, all the analysis results for files f; ... f,, except for f; can be used for analyzing c, because
these files did not changed in ¢,. Therefore, the detector newly performs STEP1, STEP2, and
STEP3 only for f;, and it performs STEP4 on all the blocks in files f ... f;.

4 Experimental Setup

4.1 Terms

This study uses the benchmark of Bellon and his colleagues [BKA"07], which is a well-used
benchmark in the research community.
Hereafter, this paper uses the following terms.

Reference: a reference is a clone pair that was judged as correct by Bellon and his colleagues.
Candidate: a candidate is a clone pair that was reported by a clone detector.

This study uses a metric named OK-value to judge whether a candidate matches a reference.
This metric was defined and used in the original study of Bellon et al..

Before defining OK-value, we give the definition of contained(CF1,CF2) for a given code
fragments CF'1 and CF2 as follows.

lines(CF1) N lines(CF2
contained(CF1,CF2) = [nes(CF1) Nlines(CF2)| 0
|lines(CF1)|

where, lines(CF ) indicates the set of all the lines of code in the code fragment CF.
Now we can define OK-value for a given pair of clone pairs CP1 and CP2.

OK(CP1,CP2) = min(max(contained(CP1.CF1,CP2.CF1), 2)
contained(CP2.CF1,CP1.CF1)),
max(contained(CP1.CF2,CP2.CF2),
contained(CP2.CF2,CP1.CF1)))
where, CP.CF1 and CP.CF?2 are the two code fragments of which the clone pair CP consists.
It is regarded that a detector could detect a reference CR if it reported a candidate CC that
satisfies the following condition.

OK(CR,CC) >= threshold 3)

This study uses 0.7 as the threshold, which is the same value used in the original work.
Furthermore, this paper uses the following metrics to evaluate the accuracy of detected clones
for a given target software system P and a given detector 7.

N |DetectedRefs(P,T)|
P P.T '
recision(P,T) |Cands(P,T)| "
|DetectedRefs(P,T)|
Recall(P,T) = "
(P,T) |Refs(P)]

where,
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e DetectedRefs(P,T) refers to a set of references in P that were detected with 7.
e Cands(P,T) refers to a set of candidates that T reported from P.

o Refs(P) refers to the set of all the references in P, which is independent of detectors.

We have to note that there exists another metric used in the original benchmark of Bellon and
his colleagues, which is named Good value. Good value is a stronger criterion than OK value.
OK value becomes high in the case that a clone reference(candidate) subsumes a clone candi-
date(reference) sufficiently. On the other hand, Good value becomes high in the case that a clone
reference(candidate) sufficiently match a clone candidate(reference). In other words, Good value
becomes not high in the case that OK value becomes high if a large clone reference(candidate)
subsumes a small clone candidate(reference).

The reason why we have chosen the looser metric is that we suppose that the main use of the
coarse-grained detection is to roughly analyze code clones on a huge data set. Hence, we think
that Good metric is too strict for the purpose.

4.2 Target Software Systems

The expriment for RQ2, RQ3, and RQ4 targets software systems used in Bellon et al.’s work
because there does not exist Bellon et al.’s correct sets of clones on any other software systems.
In addition, it omits C projects from the target due to the limitation of our implementation.
Therefore, there are four target systems for the expriment, which are shown in Table 1.

The experiment for RQ1 needs another set of targets. This is because the main usage of such
a coarse-grained detector should be reducing time required for detection. Hence, it should be
reasonable to use a corpus of many projects and historical repositories to answer RQ1.

The experiment uses a dataset called UCI dataset [OSL11, LBJP]. The dataset has approx-
imately 13,000 Java projects, which should be enough large for fine-grained detectors not to
complete their tasks. More statistics are shown in Table 2.

! 'We ignored branches, tags, test cases, and not parsable files, which results different values from ones in [OSL11,
THH"12]

Table 1: Target Software Systems (for RQ2, RQ3, and RQ4)

Name Shortened  LOC  # of References
eclipse-ant ant 34,744 30
eclipse-jdtcore jdtcore 147,634 1,345
j2sdk1.4.0-javax-swing swing 204,037 777
netbeans-javadoc netbeans 14,360 55

Table 2: Overview of UCI Dataset

# of .java files 2,092,739
# of projects 13,193
total LOC of .java files 373,500,402
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The experiment also uses the historical code repository of DNSJava. We selected this reposi-
tory because it has been used in some empirical studies on clone evolution and it has a reasonable
length of histories. Table 3 tells some statistics of the repository.

4.3 Detectors Used for the Comparison

Our experiment uses seven detectors shown in Table 4 as comparison targets. We chose four
of them, Dup, CloneDR, CCFinder, and Duploc, because they were used in the original work
of Bellon et al. and they can handle Java. We omitted CLAN from the list of attendees in this
experiment becanse it detects clones based on function metrics, which is categorized a coarse-
grained detector in our definition. We add other two detectors, Deckard and CDSW, that were
developed recently because the four detectors used in the original work were developed over a
decade ago.

The other one, which is refered as LD (Lightweight Detector), was developed by ourselves
based on the paper of Hummel et al. [HJHC10]. It aims to detect clones in a short time period
with lightweight analysis. The technique creates and uses indexes on N-grams of source lines,
which gives it high scalability. Although it uses a lightweight analysis, it is more fine-grained
than the coarse-grained detector. Hence, we think that coarse-grained analysis will be faster than
it, but it is still unclear. This is a motivation that we use the detector in the experiment.

In addition to that, it has a function of incremental clone detection. Incremental clone detec-
tion is one of the way to cope with the issue of time required for clone detection on multiple
revisions of code [GK09]. Hence, this detector has high scalability for detecting clones on mul-
tiple revisions. This is the other reason that we use this detector as our target.

Table 3: Overview of the Repository of DNSJava

the revision number of the latest revision 1,670
# of commits where at least one .java file was modified 1,432
# of files in the latest revision 7,362
total LOC of .java files in the latest revision 1,237,336

Table 4: Detectors Used as Comparison Targets

Tool Taxonomy

Dup [Bak95] Token

CloneDR [BYLB9S] AST

CCFinder [KKI02] Token

Duploc [DRD99] Text

Deckard [JMSGO07] AST

CDSW [MHH " 13] Other(Statement)

LD (based on [HJHC10]) Text
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5 Results

This section provides the results of our experiment. It answers the four research questions, and
gives a summary of the results.

Note that we reused the results of Bellon et al.’s experiment of Dup, CloneDR, CCFinder,
CLAN, and Duploc, and so we did not run the five detectors on our own platform.

5.1 RQ1: Is the coarse-grained detector much faster than fine-grained ones?

The answer is Yes.

We applied the coarse-grained detector and LD to UCI dataset and the repository of DNSJava
to compare the performance of the coarse-grained approach with fine-grained one. Note that
both of the two detectors can perform incremental clone detection and parallelized execution.

Each detector ran on an HP workstation Z820 with two Intel 64bit 2.4GHz CPUs and 128GB
RAM. The workstation has an SSD that contains the whole of UCI dataset and a copy of the
repository of DNSJava. Each detector used 32 threads to perform parallelized execution.

Table 5 shows the result of the comparison. Coarse-grained in the table refers the coarse-
grained detector described above, which detects clones in the block-level. Note that LD could
not finish its task on UCI dataset within 24 hours, so we aborted it. As the table shows, the
coarse-grained detector was faster than fine-grained one. We also applied CCFinder on the latest
revision of the repository of DNSJava just for reference. The target has approximately 7,000 files
with 1.2 million LOC as shown in Table 3. As a result, CCFinder took 42 minutes for the target.
Therefore, it should not be realistic to apply it on the whole of UCI dataset or all the revisions of
DNSJava due to the massive amount of time required for the detection.

To summarize the comparison of performance of the two detectors, although LD completed its
task in hours, the results show the high scalability of the coarse-grained technique.

5.2 RQ2: Does the coarse-grained detector report a fewer number of clones?

The answer is Yes.
Table 6 shows the number of detected clone pairs with each detector on each target. Note that
Duploc could not finish its task on swing, and so the corresponding column is filled with N/A.
As shown in the table, the coarse-grained detector reported fewer numbers of clones in most
cases, except for the comparison with CloneDR and CDSW. Although the coarse-grained detector
did not report the fewest number of clones, we can say that it found fewer numbers of clones.

Table 5: Time Elapsed for Detection

LD Coarse-grained
UCI dataset (multiple projects) N/A 152 [m]
DNSJava (multiple revisions) | 212 [m] 17 [m]
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5.3 RQ3: Does the coarse-grained detector have high precision?

The answer is Yes.

Figure 2 shows the results of comparison of precision. Each bar in the graph indicates the
value of precision with a detector on a target project. The bars are sorted in the descending order
of the value of precision for each of the target projects. The black bar indicates the coarse-grained

detector.

The graph tells us that the coarse-grained detector achieved the highest precision in the case
of jdt-core. In the other cases, it have the second highest precision.
Therefore, we conclude that the coarse-grained detector achieved high precision compared

with others.

Table 6: The Number of Detected Clone Pairs

Tool ant jdtcore swing netbeans
Dup 245 11,589 7,220 344
CloneDR 42 3,593 3,766 33
CCFinder 950 26,049 21,421 5,552
Duploc 162 710 N/A 223
Deckard 319 22,353 25,415 414
CDSW 222 5247 1,703 1,344
LD 662 44,294 19,253 1,360
Coarse-grained | 70 5,398 3,922 57
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Figure 4: The Results of Comparision (F-Measure)

5.4 RQ4: Does the coarse-grained detector have high recall?

The answer is No.

Figure 3 shows the values of recall. This graph has the same fashion of the graph shown in
Figure 2 except for the difference of represented values.

We can see that the coarse-grained detector could not achieve the highest recall in all the
targets. Hence, we conclude that the coarse-grained detector cannot achieve high recall.

However, please note that the coarse-grained detector did not have the lowest recall in all the
cases. Therefore, it could detect a ceartain amount of, not so few, clones.

5.5 Summary of the Results

Our experimental result confirmed the high scalability of a coarse-grained technique on inter-
project and multi-revision clone detection. Furthremore, it showed that the coarse-grained detec-
tion technique achieved high precision with fewer numbers of clones detected, but it could not
achieve high recall.

In general, the values of precision and recall are in trade-off. The clone detector that have high
recall tend to have low precision and vice verse. To evaluate the total accuracy, we compared the
values of F-Measure, which is the harmonic average of precision and recall. A high F-Measure
means that the values of precision and recall are highly balanced. The formal definition of F-
Measure is shown below.

2% Precision(P,T) x Recall(P,T)
Precision(P,T) + Recall(P,T)

F — Measure(P,T) = 6)

Figure 4 shows the values of F-Measure in the similar fashion of Figures 2 and 3. This graph
shows that the coarse-grained detector achieved the highest F-Measure on two out of four target
projects. This result indicates that it has highly balanced precision and recall, and it is no longer
a poor detector.

Based on the findings, we recommend it as a choice to use such a coarse-grained detection to
get an overview of clones. It has been claimed that a large software system has a considerable
number of clones, and it is difficult and not effective to look through all of them. Therefore,
we think that using such a coarse-grained technique at first must be helpful to analyze clones
effectively. After that, it is necessary to use fine-grained state-of-the-art detectors to get more
detailed information of clones. This is because the coarse-grained approach tends to have less
recall than fine-grained ones. Using a fine-grained detector will cover the disadvantage of the
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coarse-grained one because it can retrieve clones that the coarse-grained one misses. We will
need to narrow down our investigation target due to limitations of resources to use a fine-grained
detector. In this case, a coarse-grained technique will help us narrow down the investigation
target.

6 Threats to Validity

Configurations of Detectors

This study used a particular configuration for each detector, but the configurations have not small
effect on the results of detection. There exists an automated way to find a adequate configuration
for a given situation with the search based approach [WHJIK13]. If we search a better configura-
tion for each detector with such a technique, the results might be different from this study.

Different Core Paradigms of Detectors

This study compared the accuracy of a coarse-grained clone detector with other detectors. How-
ever, the detectors adopt different core paradigms and heuristics. Hence, such differences except
for granularity might affect the results of comparison. It is impossible, however, to compare the
detectors with the same paradigm because the detection granularity plays an important role on
the paradigm of clone detection.

Hash Collision

We are threaten by the possibility of hash collision as long as we use hash values for compar-
ing two elements of code. For the ease of implementation, we adopted a simple hash function
provided by Java standard libraries. However, Keivanloo et al. revealed that the 32-bit hash
function is enough strong with an experiment on a huge data set [KRC11]. We used the same
hash function that was used in the experiment conducted by Keivanloo et al., and so we believe
that the hash function is enough strong in this experiment.

Target Software Systems

The limitation of our implementation enfourced us to target only Java projects. Hence, it is nec-
essary to conduct more experiments on other programming languages to generalize our findings.

References of Clones

As long as we used the benchmark of Bellon et al., we suffered from threats to validity of their
study. That is, the references were built on only a part of collected clones. Hence, it is possible
that a clone pair that did not match to any references is actually a correct clone.

This threat especially affects precision. The benchmark might inadequately shows low values
of precision because of this limitation. However, the randomness of judged clones should reduce
the bias of this threat.
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In addition, we have to mention that the references were built from the results of 6 detectors
used in Bellon et al.’s benchmark. The results of any other detectors used in this study, including
the ones developed by ourselves for this study, were not considered for building the references.
For fairer comparision, it is necessary to rebuild the clone references with considering all the
results of all the clone detectors attending the competition.

A fairer way of compaison will be sampling each detector’s output and making judgements
whether they are true clones. However, we are afraid that we make judgements that are better for
coarse-grained detectors. Hence, we decide to use Bellon et al.’s benchmark.

Types of Clones

The two detectors that we have implemented for this study do not consider the types of clones.
However, the references judged by Bellon et al. have been labeled with their types. Hence, some
other findings may be produced if we take into account types of clones.

In addtision, most of clone detectors are not very good at detecting Type-3 clones. Therefore,
it has been still unclear whether the coarse-grained approach is useful in the case that Type-3
clones are taken into account.

However, it is difficult for the simple and coarse-grained approach to detect Type-3 clones.
NiCad, which is one of the well-used clone detectors in the research community, can detect
Type-3 clones at the block level. The granurality of detection of NiCad is the block level as
well as the coarse-grained detector that is used in this study. However, NiCad compares token
sequences created from each block with the algorithm to detect longest common subseqneuces.
In other words, it requires a fine-grained analysis to detect Type-3 clones.

From this aspect, as well as the issue of low recall, it is not sufficient to use only coarse-grained
clone detectors for detail analysis. The issue of Type-3 clones can be resolved by using Type-3
clone detector in the second stage of clone analysis.

7 Conclusion

This paper evaluated the accuracy of coarse-grained clone detection compared to other fine-
grained clone detectors. We implemented a simple coarse-grained clone detector, and we com-
pared precision and recall of the detection results of it with Bellon et al.’s benchmark.

Our experimental results showed that the coarse-grained detector achieved high precision com-
pared to other seven detectors, with the number of detected clones reduced. They also showed
that it could not achieve high recall. However, although such a coarse-grained detector missed
some of correct clones, our experimental results indicate that it is not a poor detector.

In addition, we confirmed that the coarse-grained approach drastically reduced the time re-
quired to complete its clone detection. We adapted it to a corpus of over 13,000 Java projects,
and we confirmed that it completed the detection task on the dataset in 152 minutes. Further-
more, we used it on multiple revisions, and confirmed that it completed the task in 17 minutes
for over a thousand revisions.

Based on these findings, we conclude that such a coarse-grained detection is adequate as a
first step of clone analysis. It can detect clones in a short time period and it reports fewer clones
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than fine-grained detectors, which enables its users to analyze the results easily. However, it will
miss some of clones, and so it is necessary to use other fine-grained detectors to perform more
detailed analysis after the lightweight analysis. In such a case, the lightweight analysis helps us
to narrow down the analysis target to achieve effective analysis of clones.
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