
Seamless Code Reuse with Source Code Corpus

Tetsuo Yamamoto
College of Engineering, Nihon University

Koriyama, Fukushima, Japan

Email: tetsuo@cs.ce.nihon-u.ac.jp

Norihiro Yoshida
Nara Institute of Science and Technology

Ikoma, Nara, Japan

Email: yoshida@is.naist.jp

Yoshiki Higo
Osaka University

Suita, Osaka, Japan

Email: higo@ist.osaka-u.ac.jp

Abstract—Code reuse is attracting much attention as a promis-
ing technique for efficient software development. However, code
reuse itself requires human resources: for example, searching
and opening source files including code fragments that users
would like to reuse, or considering keywords in using code
search systems. The present paper proposes a novel technique
that hardly requires such reuse cost. In the proposed technique,
what programmers have to do for obtaining reusable code is
just inputting a trigger key for code reuse on their development
environments. Also, this paper describes some applications on
OSS with a prototype tool working on Eclipse.

I. INTRODUCTION

Code reuse is one of the promising approaches for realizing

efficient software development. At present, there are various

kinds of methodologies and software tools for helping code

reuse. Copy-and-paste is the most popular and the easiest

way for code reuse, which is refer to cloning [13]. By using

copy-and-paste, we can implement required functionalities

within a short timeframe. However, code reuse itself requires

costs, which is more expensive than finding reused code. For

example, we need to search code fragments to be available for

code reuse.

For solving problems related to code reuse, keyword-based

code search systems have been developed [2], [3], [4]. If

programmers give keywords associating functionalities re-

quired for developing systems, then search systems return code

related to the keywords. By using such systems, we can avoid

searching reusable code by ourselves. Another advantage of

the systems is that reuse target becomes huge. Code search

systems can search code being open to the public. On the

other hand, when a programmer uses copy-and-paste, reuse

target is only the code fragment that he/she or his/her team

implemented in the past.

Also, techniques related to collaborative filtering are used

in the context of software reuse [11], [15]. In collaborative

filtering approaches, firstly, sets of libraries, APIs, or compo-

nents that were used together in the past are extracted from

historical data or obtained by automatic project monitoring.

Then, recommending systems suggest reusable software assets

by matching the collected sets and the developing context.

Developers do not need to consider keywords for searching

reusable software assets in collaborative filtering approaches.

However, these approaches only suggest reusable asset. They

do not show how reusable assets should be reused.

In recent years, collective intelligence attracts much atten-

tion. There are various kinds of research and systems using

collective intelligence (e.g, google suggest) [6]. These systems

firstly collect and analyze data of a large number of people.

Then, they presume what users want at present. It is highly

possible that collective intelligence can be a great help for

code reuse. Suggesting code based on collective intelligence

database created from open source software should be helpful

because programmers can obtain actual code implemented by

skillful developers of open source software.

This paper proposes a novel technique for seamless code

reuse by using hash-based code clone detection techniques.

The features and contributions of this paper are as follows:

• In the proposed technique, queries for searching code are

the half-written code. He/she does not need to consider

keywords for searching code. All he/she has to do is

triggering code search. Consequently, the time required

for code reuse is much shorter than keyword-based code

search systems.

• Reusable code is identified based on hash-based clone

detection [5], [12]. Consequently, the proposed technique

find reusable code even if its comments or identifier

names are not exactly the same as the writing code.

• The proposed technique has been implemented as a

Eclipse plugin. Nowadays, Eclipse is widely used, and so

the implementation can be helpful for many programmers.

The remainder of this paper is organized as follows. Section

II describes the proposed technique and its implementation.

Section III shows experiments conducted with the implemen-

tation. Section IV introduces related works, and Section V

concludes this paper.

II. PROPOSED TECHNIQUE

Herein, we explain a new technique realizing seamless code

reuse. Figure 1 shows an overview of the proposed technique.

It consists of two processes. One is corpus creation process,

which creates a code corpus from target source files. The

created corpus is stored into a database. The other is corpus
usage process, which suggests reusable code based on devel-

opers’ reuse requests. When a programmer is implementing a

functionality, code stored in the corpus is recommended on an

integrated development environment that the programmer are

using. The two processes are independent, both the processes

function separately.

The remainder of this section explains both the processes

and its implementation.

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.108

31

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.108

31

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.108

31



���������	��
���
���

�������	
��
��������
������������

�
��������
����
������������

������������������
���

����
����������
���
�
��������������

��� ������
����� ������� ��� �����
��� �������

�
��������
����
�����������

Fig. 1. Overview of the proposed method

���� ������� �	�� ���� 
� ���� ������ �������

���� ������� �	�� ���� 
� ���� ������ �������

���� ������� �	�� ���� 
� ���� ������ �������

���� ������� �	�� ���� 
� ���� ������ �������

���� ������� �	�� ���� 
� ���� ������ �������

����������	��

���

��� ���

��� ���������

��� ��������� ������

��� ������ �	���� ������


�����������	��



�

Fig. 2. Key and value sequences

A. Corpus Creation Process

The corpus creation process consists of code analysis and

appearance counting.

• The code analysis extracts all the modules from given

source code, and then transforms them into a special

format to store in the corpus. The source code itself is

not stored in the corpus.

• The appearance counting checks the number of appear-

ances for each element in the corpus and reorders the

elements in the order of the count.

In the code analysis, modules are extracted from the in-

put source files. Then, every module is converted to token

sequences. In this step, variable names are changed to their

type names. Every token sequence is divided into two parts

at every border of consecutive tokens. If there are n tokens in

a token sequence, there are n−1 dividing points. Herein, we

call the anterior part key sequence and the posterior part value
sequence, respectively. Figure 2 shows a dividing example.

Next, generated pairs are registered into the corpus. There

can be multiple different value sequences for the same key

sequence. Also, different pairs can have both the same key

sequence and the same value one. Consequently, we use a

triplet of key sequence, value sequence, and appearance count

for registering key and value sequences into the corpus.

When pairs of key and value sequences are being registered

into the corpus, their appearances are counted as follows.

• STEP1: checking whether a given pair is the same as

any pairs in corpus or not. Herein “the same pair” means

both the key and value sequences are exactly the same.

• STEP2A: if there is not the same pair, a new triplet is

created for the given pair. The appearance count of the

triplet is 1. Then, it goes to STEP3.

• STEP2B: if exists, the appearance count of the triplet is

incremented by 1. Then, it goes to STEP3.

• STEP3: triplets in the corpus are reordered by the ap-

pearance count.

The above steps are performed for every pair. The reordering

(STEP3) is intended for efficiently providing necessary triplets

in the corpus usage process.

B. Corpus Usage Process

The corpus usage process takes a half-written code on IDE

and provides code related to it. The provided code is sorted in

the order of its appearance count. In this process, the proposed

technique monitors source code on IDE, and it converts the

half-written code into a key sequence at the background. The

conversion is the same as the code analysis in the corpus
create process. Then, it queries the generated key sequence

to the corpus and obtains triplets where the key sequence is

included. If two or more triplets are returned, they are sorted

in the order of their appearance count. The value strings of the

obtained triplets are inversely converted to source code. The

converted source code is presented to developers on IDE.

C. Implementation

We have implemented the proposed technique as a Eclipse
plugin. Before the implementation, we had investigated Java

open source software to derive some heuristics. As a result,

we had found the following trend in Java source code.

• Many methods include error checking code or assert code

at the beginning of them (e.g., null checkings for avoiding

NullPointerException).

With consideration for the trend, we decided to remove error

checking code or assert code from source code for improving

the accuracy of code completion. If we do not remove error

checking code, developers need to write beginning of methods

with error checking code. If there is not error checking

code, reusable code is not suggested. The followings are the

transformation rules that we adopted.

• All the tokens representing type names and variable

names are converted into class names. All the comments

and “.”, which are used in method invocations are

323232



�
��������������������
�������������
��������
����
������������������������������������������������������
��	�������������������� ������!������
������������
��
���������������� ������!��������������
�����������"�#��
��
�������� �������
��������� ���������������������������
�����

�
�

(a) original source code

������ ������ �

��	��
� �

��
��	�����	� ��

����� ����� �

���� ���� �

�

��	��
�

��
��	�����	�

(b) generated token sequence

Fig. 3. Example of token sequence generation on variable declarations

ignored. “{” and “}” are automatically inserted at the

place where they are omitted.

• “if (expression==null) statement” is ignored.

Herein, “expression” and “statement” mean any

expression and any statement of Java, respectively.

• “if (expression1)return expression2;” is ignored.

Herein, “expression1” and “expression2” mean any

expressions of Java.

• “if (expression1) throw expression2;” is ignored.

Herein, “expression1” and “expression2” mean any

expressions of Java.

• Multiple variable declarations at the beginning of the

method are merged as a single variable declaration. All

variable initializers located in the right hand of variable

declaration statements are ignored. Also, the variable

declarations are sorted in the alphabetical order (case

sensitive). Example of this process is shown in Figure

3. Source code shown in Figure 3(a) is the beginning of

a method. Figure 3(b) shows a token sequence generated

from the source code.

Herein, we explain the code analysis with an example

of Java method in Figure 4. All the tokens in the method

printFile are converted as shown in Figure 4(b). If a

type name appears as a fully qualified name, simple name

of the class is used. For example, a type is described as

“java.io.File” in source code, the type is converted into

“File”. There is neither open nor close bracket (“{” and “}”)

for the while-statement in the source code meanwhile a pair

of brackets exist in the token sequence.

Figure 5 shows a screenshot of the developed system. When

a programmer is writing code on Eclipse, the plugin queries on

the corpus by his/her trigger. The response of the system for

the queries is extremely rapid because matching is performed

���������	

�������$�%�
������	
����
�	
�
������	
����
��
�
�
���&&�
���&�
������������������������������
���&��
�����������������������'���������������(�%�
�������'���������))�����(�%���
���
�*�
��������������)���������'��������(
�
����
���%�
�������������������������)��������������������'����(
�
���������������������������)����������������������'��(
�
������������������������)�������������������'��(
�
����������������
�
���������������������������������
������������''����)������������'((� )�����(�
��������������������������'���(
�
��������������'(
�
��������������'(
�
��������������'(
�
����*��	
��'!	���������(�%�
�����������������"#����'(
�
����***�

(a) original source code

�����

���� 	

����
��
�������� � ����

� ����� � �


��
��������������

� � �����
��
��������

�
������������

� � �
��
��������������

�������

������ � � �

��������� � � � ��� �
��� � 	

������� �
�� �������� � � �  

!����� � � �

 

 

!��!�� � "#!������� 	

��������!$%��!�� � � �

����� �

����
��
��������

����
��
��������


��
�������������� � ����


��
��������������

�
������������ � ����

�
������������

������� �

������� �
������������

�������

�
������������


��
�������������� !����� � � �

����
��
�������� !����� � � �

"#!������� �

"#!�������

(b) generated token sequence

Fig. 4. Example of token sequence generation on Java method code

based on hash values of key sequences. The matching results

are presented as a list on Eclipse. If he/she selects a code

fragment in the list, then it is pasted on the editor.

333333



Fig. 5. A screenshot of the system

III. EXPERIMENT

A. Performance

Herein we describe an evaluation on the performance of

the implemented plugin. We investigated timing of building

database and size of the database. Table I shows a list of soft-

ware that was used in this evaluation. Note that Apache Project
is a set of software systems developed in Apache Project and

they are open to the public in http://www.apache.org/.

Table II shows the investigation result. The timing of

building database increases in proportion to the size of the

target. Especially, in the case of Apache Project, it took about

13 hours to build a database. However, such a batch building

is necessary only once at the beginning of usage. After the

batch building, we can update the database for only updated

files. Consequently, it is a matter of no importance that batch

building requires much time.

Database size also increases in proportion to software size.

In the case of Apache Project, the size is about 28GB, which

is a reasonable size stored into storage of personal computers.

TABLE I
TARGET SOFTWARE

Software # of files LOC

Ant 1.8.1 829 212,401
JDK 1.6.0 7,154 2,071,178

Apache Project 51,777 9,669,445

TABLE II
TIME OF BUILDING DATABASE AND DATABASE SIZE

Software Building time DB size

Ant 1.8.1 3 mins. 7 secs. 493 MB
JDK 1.6.0 53 mins. 41 secs. 4.13 GB

Apache Project 12 hrs. 50 mins. 21 secs. 28.2 GB

Also, we investigated timing of leveraging the database that

contains only JDK 1.6.0. Firstly, we randomly selected several

key sequences from JDK source code. Next, we obtained the

top 10 value sequences from the database by using the key

sequences as queries. We measured the response time of the

system, and the average was below 500 milliseconds. The

timing does not include timing to display the candidates on

the Eclipse plugin. In the implementation, all key sequences

are sorted in the order of appearance count. Consequently,

timing to inquire into the database had an insignificant effect

on database size.

B. Evaluation for Usefulness

When the length of key sequences is small, many value

sequences are returned. However, many of the presented

code should not be related to code that programmers want.

Consequently, we evaluated adequate tokens that programmers

should write before triggering a query.

Herein, we assume that a situation to reuse Java source

code developed within the same organization. A programmer

in the organization remembers the beginning of source code

written in the past. The programmer inputs some tokens in

his/he memory in order to obtain the past source code.

In this evaluation, firstly, we found out similar methods in

different versions from Ant. Then, we investigated whether

the proposed technique suggested newer methods from the

oldest one. We used 23 versions of Ant, which are from 1.1 to

1.8.2. We detected duplicated code between every consecutive

two versions. Then, the detected duplicated code was mapped

into Java methods. If the two methods in the consecutive two

versions were enough duplicated, they were regarded as reuse

instances.

1) Extracting Reuse Instances: If method ma in version v
and method mb in version v+1 are duplicated more than the

threshold, we assumed that method mb had been created by

reusing method ma. In this situation, methods ma and mb have

a reuse relationship, and we call a pair of methods ma and mb
a reuse instance.

A duplicated ratio of reuse instance r, which is a pair

of methods ma and mb, was calculated with the following

formula.

DuplicatedRatio(r) =
dloc(ma)+dloc(mb)

loc(ma)+ loc(mb)

where loc(m) is the lines of code of method m, and dloc(m)
is the duplicated lines of code of method m.

In this evaluation, we used CCFinderX[1] for detecting

reuse relationships. We specified 30 tokens as the minimum

TABLE III
THE NUMBER OF REUSE INSTANCES

Group Duplicated ratio # of reuse instances

high 90% or more 32
middle between 80% and 90% 90

low between 70% and 80% 211

343434



size duplication to be detected. Also, if loc(ma) or loc(mb)
is less than 100 tokens, they were not regarded as a reuse

instance.

Table III shows duplicated ratio and the number of detected

reuse instances. Reuse instances are classified based on their

values. Classified groups are called high, middle, and low.

There are 32, 90, and 211 reuse instances in high, middle,

and low groups, respectively.

2) Detection Result: We wrote the beginning part of

method mi in version v on Eclipse Java Editor, then we checked

whether the plugin suggests method m j in version v+1. The

input queries were 30, 40, 50, 60, 70, 80, 90, and 100 tokens

of the beginning part.

Herein, we assume the followings between version v and

v+1.

• Mv and Mv+1 are sets of methods defined in source files

of versions v and v+1, respectively.

• r = (mi,m j) is an instance of reuse relationship, where

mi ∈Mv and m j ∈Mv+1.

• R is a whole set of reuse instances between versions v
and v+1.

• RM(mi) is a set of methods having reuse relationships

with method mi, which is defined as follows.

RM(mi) = {m j ∈Mv+1|(mi,m j) ∈ R}
• Q(mi) is a set of queries generated from method mi.

Herein, Q(mi) consists of 8 queries, which are 30, 40,

· · · , 100 tokens of the beggining part of mi.

• SMall(q) is a set of all methods suggested triggered by

query q.

• SMcorrect(q) is a correct set of methods suggested trig-

gered by query q. Herein “correct set” is a set satisfying

both the following conditions:

– all the reuse instances related to q are included in it;

– no method not related to q is included in it.

It is defined as follows.

SMcorrect(q) = {m j ∈ SMall(q)|
q ∈ Q(mi)∧m j ∈ RM(mi)}

By using the above assumptions, precision for group R is

defined as the following formula.

Precision(R) =
1

|R| ∑
(mi,m j)∈R

(
1

|Q(mi)| ∑
q∈Q(mi)

|SMcorrect(q)|
|SMall(q)| )

Also, recall for group R is defined as the following formula.

Recall(R) =
1

|R| ∑
(mi,m j)∈R

(
1

|Q(mi)| ∑
q∈Q(mi)

|SMcorrect(q)|
|RM(mi)| )

3) Discussion: Figure 6 shows the result. Both of precision

and recall for high group are the best in the three groups,

and ones for low group are the worst. Those imply that the

proposed technique works well if the completely-written code

of a given half-written method is enough duplicated with

a method having reuse relationship with it. For increasing

�
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

���
�

��� ��� ��� ��� ��� ��� ��� ����

��������������� ����������������� ��������������

���	�������� ���	���������� ���	�������


�����

��
��
��

 	
��
�

Fig. 6. Precision and Recall

precision and recall on low duplicate reuse, it should be better

to use more abstract models on source code such as abstract

syntax trees or program dependence graphs. However, those

models require much more cost to find reuse relationships

than the proposed technique, so that they are not suited for

interactive suggestions to users.

The longer queries were, the better precision was. However,

recall was opposite. We recommend 30-token queries because

of their balance between recall and precision. A reasonable

usage should be that: after obtaining multiple suggestions with

a 30-tokens query, select one from the suggestions.

For increasing precision, we should analyze source code

more deeply to find some heuristics. For example, comparing

a list of invoked methods in a query with one of its suggested

methods or measuring similarities of code metrics between a

query and its suggested methods may be effective.

In this evaluation, the proposed technique was evaluated

on method level. However, it can be applied to other levels

such as simple block level because it does not depend on any

information related to method level.

CCFinderX was used for detecting duplicate code, and 70%

or more duplicated methods were used as reuse instances. If

we use different detection tools or actual history of copy-and-

paste actions, we maybe obtain different results.

IV. RELATED WORK

Grapacc completes the source code under editing based on

usage patterns [17]. It extracts context-sensitive features such

as data types, the control and branching structures, and the

distances of those features with respect to the current editing

position. On the other hand, our method helps to complete the

source code at any position where a developer would like to

complete because all tokens are stored into the corpus.

Hill et al. proposed an approach to complete Java methods

as well as our proposed approach [9]. In their approach, firstly

each Java method is converted a feature vector comprised of

several factors (e.g., the number of lines and the degree of

353535



complexity), then the approach suggests Java methods that are

neighborhood from a specified Java method and have larger

size than the specified one. The suggestion of their approach

is a useful if what programmer wants is similar to a specified

Java method. However, their approach is unsuitable for our

purpose that is Java method completion when programmers

wrote only the beginning of a method body.

There are code completion approaches similar to the pro-

posed method. Bruch et al. proposed a code completion

method based on existing source code [7]. Robbes et al.

proposed a method to use recorded source code histories [18].

Their code completion mechanisms support completion of one

sentence. Our approach is to complete the whole method. Their

method needs a complete change history of source code. On

the contrary, our method requires only source code.

Hipikat seamlessly retrieves source code, problem reports,

newsgroup articles that are relevant to developer’s current task

based on a project memory that consists of project artifacts

themselves and also of links between those artifacts indicating

relationships [8]. The purpose of Hipikat is seamless retrieval

of artifacts but not code completion.

There are several approaches based on API usage informa-

tion of source code. Prospector retrieves code fragments cor-

responding to a query that describes desired code in terms of

input and output types [14]. Instead of finding code fragments

from a database, PARSEWeb uses Google Code Search Engine

for gathering relevant code samples [19]. These tools require

programmers need to make a query for finding source code.

Strathcona retrieves code fragments including API usages

based on structural information of source code, in order

to support API usage understanding [10]. The tokenization

process of our proposed method effectively removes text labels

and flattens names for easy retrieval. Both Prospector and

Strathcona also ignore text identifiers and concentrate on type

tokens in the source code. Michail proposed an approach and

tool named CodeWeb to reuse API patterns by using data

mining technique[16]. The method only focuses API usage.

In contrast, our approach covers all sentences.

The primary strength of the proposed technique compared

to existing techniques and systems is realizing seamless code

reuse interactively on IDE-based programing.

V. CONCLUSION

In this paper, we have proposed a technique to support code

reuse on demand without suspending coding tasks. The key to

search code is half-written code. Users do not have to consider

keywords for searching code. Consequently, the time required

for code reuse is much shorter than keyword-based code search

systems.

Future works will focus on effective transformation rule,

partition points between key sequences and value sequences,

and key sequences matching rules in the corpus. Furthermore,

we plan to develop more suitable ranking methods for provid-

ing appropriate reusable code.

ACKNOWLEDGMENT

This study has been supported by the Kayamori Foundation

of Informational Science Advancement, Grants-in-Aid for Sci-

entific Research (S) (25220003), Grant-in-Aid for Exploratory

Research (24650011) from Japan Society for the Promo-

tion of Science, and Grand-in-Aid for Young Scientists (A)

(24680002) from the Ministry of Education, Culture, Sports,

Science and Technology.

REFERENCES

[1] CCFinderX. http://www.ccfinder.net/.
[2] Codase. http://www.codase.com/.
[3] Koders. http://www.koders.com/.
[4] SPARS-J. http://demo.spars.info/.
[5] N. Bettenburg, S. W. Thomas, and A. E. Hassan. Using fuzzy code

search to link code fragments in discussions to source code. In
Proceedings of the 16th European Conference on Software Maintenance
and Reengineering, CSMR ’12, pages 319–328, 2012.

[6] M. Bruch, E. Bodden, M. Monperrus, and M. Mezini. IDE 2.0:
Collective Intelligence in Software Development. In Proceedings of
the FSE/SDP workshop on Future of software engineering research -
FoSER ’10, pages 53–57, 2010.

[7] M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to
improve code completion systems. In Proceedings of the the 7th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering, pages
213–222, 2009.

[8] D. Cubranic, G. Murphy, J. Singer, and K. Booth. Hipikat: a project
memory for software development. IEEE Transactions on Software
Engineering, 31(6):446–465, 2005.

[9] R. Hill and J. Rideout. Automatic method completion. In Proceedings.
19th International Conference on Automated Software Engineering,
2004., pages 228–235, 2004.

[10] R. Holmes, R. Walker, and G. Murphy. Approximate Structural
Context Matching: An Approach to Recommend Relevant Examples.
32(12):952–970, 2006.

[11] M. Ichii, Y. Hayase, R. Yokomori, T. Yamamoto, and K. Inoue. Software
component recommendation using collabortive filtering. In Proceedings
of the 31st ICSE Workshop on Search-Driven Development-Users,
Infrastructure, Tools and Evaluation, pages 17–20, 2009.

[12] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Inter-project
functional clone detection toward building libraries - an empirical study
on 13,000 projects. In Proceedings of the 2012 19th Working Conference
on Reverse Engineering, WCRE ’12, pages 387–391, 2012.

[13] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of
copy and paste programming practices in oopl.

[14] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid mining:
helping to navigate the API jungle. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implemen-
tation, 2005.

[15] F. McCarey, M. Cinnéide, and N. Kushmerick. A case study on recom-
mending reusable software components using collaborative filtering. In
Proceedings of the MSR workshop, pages 117–121, 2004.

[16] A. Michail. Data mining library reuse patterns using generalized
association rules. In Proceedings of the 22nd International Conference
on Software Engineering, pages 167–176, 2000.

[17] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V.
Nguyen, J. Al-Kofahi, and T. N. Nguyen. Graph-based pattern-oriented,
context-sensitive source code completion. In Proceedings of the 2012
International Conference on Software Engineering, pages 69–79, 2012.

[18] R. Robbes and M. Lanza. Improving code completion with program
history. Automated Software Engineering, 17(2):181–212, 2010.

[19] S. Thummalapenta and T. Xie. Parseweb: a programmer assistant for
reusing open source code on the web. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering, pages 204–213, 2007.

363636


