
How Much Do Code Repositories Include Peripheral Modifications?

Noa Kusunoki, Keisuke Hotta, Yoshiki Higo, Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University, Japan
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

{k-noa, k-hotta, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract—In the last decade, a variety of studies on mining
software repositories has been conducted. Mining repositories
has a potential to obtain useful knowledge for the future
development and maintenance. When software repositories are
mined, large commits in them are often excluded from mining
targets because large commits include merging and we believe
that large commits include peripheral modifications, which may
affect negative impacts on mining code repositories. However,
if large commits include code modifications, excluding large
commits loses such modifications unintentionally. Moreover,
such data cleansing assumes that there are no peripheral
modifications in small commits. In this paper, we investigate
how much peripheral modifications are included in commits
in code repositories. As a result, we found that excluding large
commits is insufficient to remove hindrances in commits for
mining code repositories.

Keywords-Mining software repositories, Large commit,
Source code analysis

I. INTRODUCTION

Recently, the research areas related to mining software

repositories are very active and attract much attention [1],

[2]. A software repository includes a variety of historical

information on the past activities related to its software.

Mining software repositories means actions and techniques

for extracting and deriving useful knowledge for the future

development and maintenance.

Historical code repository is one of the well-mined repos-

itories. They have rich information to gain knowledge or

principles that are useful for software engineering [3], [4].

Therefore, great efforts have been spent on mining historical

code repositories. Such research efforts have a wide variety

of interests, including defects [3]–[7], changes [8]–[13], or

clones [14].

When we mine a software repository, large commits in it

are often excluded from the analysis targets. This is because

large commits often include merging [19] and we believe

that large commits consist of peripheral modifications such

as reformatting source code. However, if a large commit

includes modifications on program instruction code itself,

excluding the large commit may lose important code changes

unintentionally. Consequently, in this research, we investi-

gate the following research question.

RQ1 Do large commits consist of only peripheral modi-

fications?

Excluding large commits provides us one more important

thing to worry about. Such exclusion assumes that all the

small commits includes code changes and there are no

peripheral modifications in the commits. However, none of

research efforts have investigated characteristics of small

commits yet. Consequently, we investigate the following

research question.

RQ2 Do small commits consist of only modifications on

program instruction code?

In order to investigate the research questions, we propose

a new technique to distinguish the following types of mod-

ifications from each other at a fine-grained level:

• modifications on program instruction code,

• modifications for reformatting source files,

• modifications on code comments, and

• modifications on other files than source files.

The remainder of this paper is organized as follows:

in Section II, we define some terms used in this paper

and explain the proposed technique; Section III shows an

evaluation on students’ projects and an experiment on open

source software; related works are described in Section IV;

lastly, Section V concludes this paper.

II. OVERVIEW OF THE INVESTIGATION TECHNIQUE

In order to investigate our two research questions, it

is necessary to discriminate changes affecting program in-

structions from those not affecting them. For this objective,

the investigation technique in this research classifies every

modification in a commit into the following four categories.

• Type-A: modifications for white spaces, tabs, and new

line characters.

• Type-B: modifications for comments.

• Type-C: modifications for program instruction code.

• Type-D: modifications in other files than source files,

or additions/deletions of such files.

The investigation in this study desires a fine-grained

analysis on modifications to achieve a high accuracy.

Hence, it analyzes every modification at the token-level.

Herein, “a modification at the token-level” means “addi-

tion/change/deletion of a token”. In other words, every token

modified in a commit is classified into the above categories.

Note that Type-D modifications cannot be segmentalized

into the token-level because the proposed technique focuses

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.106

19

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.106

19

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.106

19

public void A() {
 method1();
 method2();
}

public void B() {
 method1();
 // Delete Method
}

revision r

revision r+1

public ¥s void ¥s A () ¥s { ¥n ¥t method1 () ; ¥n ¥t method2 () ; ¥n }

public ¥s void ¥s B () ¥s { ¥n ¥s method1 () ; ¥n

public ¥s void ¥s A () ¥s { ¥n ¥t method1 () ; ¥n ¥t method2 () ; ¥n }

public ¥s void ¥s B () ¥s { ¥n ¥s method1 () ; ¥n ¥s

Type-A

// Delete Method

Type-B

A

B

method2

() ;

Type-C

revision r

revision r+1

revision r

revision r+1

perform
 lexical analysis

identify modified tokens

classify modifications into three categories

A

 method2();

m
// Delete Method

B

// Delete Method ¥n }
¥s : white space

¥t : tab

¥n : new line character

α

β
: α is changed to β

γ : γ is deleted

δ : δ is added

¥s // Delete Method ¥n }

¥t

¥s

¥t

¥s

Figure 1. An Overview of the Investigation Technique

on modifications on source files and there is no need to split

modifications in other files.

The investigation technique takes a historical code repos-

itory as its input, and classifies every modification on every

commit into the above three categories.

The investigation technique on a commit consists of the

following three steps, and it repeats the steps for all the

commits included in the given repository.

• STEP-1: Performing lexical analysis.

• STEP-2: Detecting modified tokens.

• STEP-3: Classifying modified tokens.

Figure 1 shows how the investigation technique works on

a commit. This example assumes that only a single source

file is modified in the commit for the ease of explanations,

but the investigation technique works in the same way in

the case of commits in which two or more source files are

modified. The followings briefly describe each step with the

example.

STEP-1: Lexical Analysis

The first step performs lexical analysis on both of two

files before and after modified. Hence, this step provides

two token sequences for every file modified in the commit.

A remarkable point of the lexical analysis in this study is that

it is interested not only in usual tokens (such as identifier or

comma) but also in comments, white spaces, tabs, and new

line characters. This means that comments, white spaces,

tabs, and new line characters are regarded as tokens as you

can see in Figure 1.

STEP-2: Detection of Modified Tokens

This step detects added/changed/deleted tokens in the

commit. It detects mappings of tokens by comparing two

token sequences created from source files before and after

modified. The comparison is based on textual representa-

tions and types of tokens. This step identifies what tokens

are added/changed/deleted in this commit with the token

mappings. It identifies a pair of changed tokens, six deleted

tokens, and three added tokens from the example in Figure

1.

STEP-3: Classification of Modified Tokens

The final step classifies every added/changed/deleted to-

ken detected in the previous step into the above three

categories. The classification is performed based on types

of modified tokens. For instance, the example in Figure 1

has deletion of two tabs and addition of two white spaces,

and so the classification regards these four modifications as

Type-A. The example also has addition of a comment, which

is classified into Type-B. The other modifications, which

include the change on identifies from “A” to “B”, and the

deletion of “method2”, “(”, “)”, and “;”, are classified into

Type-C in a similar fashion.

III. EXPERIMENT

We conducted an experiment on two open source systems,

Columba and SQuirreL SQL Client in order to answer the

RQs. Herein, we show the RQs again:

RQ1 Do large commits consist of only peripheral modi-

fications?

202020

RQ2 Do small commits consist of only modifications on

program instruction code?

The numbers of revisions in the repositories were 463 and

6,737, respectively.

Figure 2 shows each type of modifications included in

every of the commits in the Columba and SQuirreL repos-

itories. Every commit forms a vertical bar, and commits

are sorted in the descending order of their size. Each bar

consists of four colors, blue, read, gray, and water-clear,

each of which corresponds to format, comment, other files,

and code modifications, respectively. Their lengths reflect the

rate of their LOCs for all the lines modified in the commit.

If there is no water-clear part in a given bar, there is no

code modification in the commit. Also, the figure includes

the LOC of each commits1. Note that the figure has the

logarithmic axis for the commit LOC.

We divided them into five groups based on their size. The

first group includes top 20% of the large commits, and the

last group includes top 20% of the small commits. Then, we

measured following rates F(G), C(G), and O(G) for each

group of the commits.

F(G) =

∑
c∈G

f ormat(c)

∑
c∈G

loc(c)
×100 (1)

C(G) =

∑
c∈G

comment(c)

∑
c∈G

loc(c)
×100 (2)

O(G) =

∑
c∈G

other(c)

∑
c∈G

loc(c)
×100 (3)

loc(c) = f ormat(c)+ comment(c)

+other(c)+ code(c) (4)

where,

• G is a given group of commits,

• f ormat(c) is the LOC of f ormat modifications in given

commit c.

• comment(c) is the LOC of comment modifications in

given commit c.

• other(c) is the LOC of other f iles modifications in

given commit c.

• code(c) is the LOC of code modifications in given

commit c.

Table I shows the measurement result. The two systems

have different trends. In Columba, the other files modifica-

tions occupied more than 40% on the top 20% commits,

which was the highest rate in all the five groups. On the

1The number of files modified in commits can be an indicator of commit
size. However, in this experiment, we used LOC for seeing how many lines
had been modified in every commit.

other hand, in SQuirreL, only 13.5% LOCs were included

in the other files modifications, which was the lowest rate.

As a result, there are different trends between the total

rate of the three type modifications of the two systems. In

Columba, all the file groups have approximately the same

value. Meanwhile in SQuirreL, the smaller commits are, the

higher value their total rate becomes.

Next, we ignored the other files modifications. In this

experiment, we distinguished the other files from source

files by checking file’s extension. That is because when

we conduct repository mining experiments, we often ignore

commits not related to source files. Figure 3 shows the result.

We can see that format and comment modifications often

appear in commits regardless of their size. Table II show

more quantitative data. Each cell of this table calculated with

the following formulae.

F ′(G) =

∑
c∈G

f ormat(c)

∑
c∈G

loc′(c)
×100 (5)

C′(G) =

∑
c∈G

comment(c)

∑
c∈G

loc′(c)
×100 (6)

loc′(c) = f ormat(c)+ comment(c)+ code(c) (7)

The table shows that around 30% modifications are either

of the format or comment modifications in the middle

commits (20-80%). On the other hand, in the top 20%

commits, they occupy only around 10%.

Our answer to RQ1 is NO. In the experiment, the top

20% large commits included format, comment and other
files modifications, however the total rate of them for all

the modifications is less than half. Thus, we conclude that

excluding large commits loses many code modifications

unintentionally.

Table I
RATE OF LOCS INCLUDED IN MODIFICATIONS OF FORMAT, COMMENT,

AND OTHER FILES

(a) Columba
group format comment other files total

top 20% 2.9% 1.6% 40.1% 44.7%
21-40% 13.0% 10.2% 24.5% 47.6%
41-60% 12.0% 14.6% 22.3% 48.9%
61-80% 9.0% 6.3% 29.0% 44.4%

81-100% 3.0% 7.2% 34.6% 44.7%

(b) SQuirreL SQL Client
group format comment other files total

top 20% 5.7% 3.5% 13.5% 22.7%
21-40% 11.0% 9.6% 19.0% 39.6%
41-60% 9.9% 10.9% 29.9% 50.6%
61-80% 6.5% 10.2% 43.7% 60.7%

81-100% 1.4% 3.6% 62.5% 67.5%

212121

��

���

����

�����

������

�������

��������

�	�

��	�

�	�

��	�

��	�

�	�

��	�

��	�

��	�

��	�

���	�
�� �� �

�

�

�

�
��

�
��

�
�

�
�

�
��

�
��

�
��

�
�

�
�

�
��

�
��

��
��

��
�

��
�

��
��

��
��

��
��

��
�

�
��

�
��

��
��

��
��

��
��

��
��

��

�

��

�

��

�

��

�

�

�

�

��

�

��

��

�

��

�

��

�

��

�

��

�

��

�

�
��

�
��

��
��

��
�

��
��

��
��

��
��

��
�

��
�

��
��

�
��

�
��

��
��

��
��

��
��

��
��

��
��

��
�

��
�

��

������� �������� ����������� �!"�
��#�
�	�
�	�$���	� ��	�$���	� ��	�$���	� ��	�$����	�

(a) Columba

��

���

����

�����

������

�������

��������

�	�

��	�

�	�

��	�

��	�

�	�

��	�

��	�

��	�

��	�

���	�

�� �
�

��
��

�
��

�
��

��

��
��

�
��

��
��

�
��

�
��

��

��
��

�
��

��
��

�
��

��
��

�
��

��
��

�
��

��
��

�
��

�
�

��
��

�
��

�
�

�

��

�
�

�
�

��
��

�
��

�
�

��
��

�
��

�
�

�
��

�
�

�
�

��
��

�
��

�
�

��
��

�
��

�
�

��
��

�
��

�
�

��
��

�
��

�
�

�
��

�

�

�
�

�
��

�

�

�
�

��

�

�
�

�
��

�

�

�
�

�
��

�

�

�
�

��

�

�
�

�
��

�

�

�
�

�
��

�

�

�
�

�
��

�

�

�
�

�
��

�

�

�
�

��
��

�
��

�
�

��
��

�

������� �������� ����������� �!"�
��#�
�	�
�	�$���	� ��	�$���	� ��	�$���	� ��	�$����	�

(b) SQuirreL SQL Client

Figure 2. Format, comment, and other files modifications

Our answer to RQ2 is also NO. In the experiment,

middle and small commits also include such peripheral

modifications. Moreover, we found that the rate of peripheral

modifications on the middle and small commits was higher

than the one on the large commits. Thus, we conclude that

excluding large commits remains many peripheral modifica-

tions unintentionally.
Our answers to the RQs implies that excluding large

commits is insufficient to exclude only peripheral modifica-

tions. We need another way to exclude them. For example,

constructing a new repository from the original one should

be a reasonable way.

1) creating a new repository,

2) checking out revision r (r = 1,2, · · ·),
3) removing comments from the revision and reformat-

ting it,

4) committing the revision to the new repository,

5) going back to (2) if there are more revisions in the

original repository.

Removing commits from source files and reformatting them

is not such a complicated task. IDEs such as Eclipse or

IntelliJ IDEA have the functions. Reusing the functions is a

simple and easy way.

IV. RELATED WORK

Fluri et al. proposed a method classifying modifications

based on their semantics [15]. In their method, ASTs are

generated from two versions of source code, each of which

is before or after the modification. The classification is

performed by comparing the two ASTs. On the other hand,

our method adopts token sequence comparison because of

its rapidity, however, AST comparison will work well if we

can define how modifications are separated in AST-level.

Kawrykow and Robillard proposed a method to identify

commits that are not significant for repository mining [16].

They defined “surface” modification, which does not have

any impact on execution behavior. For example, changing

variable names is a surface modification. They reported

that, when we mine software repositories, analyzing such

surface modification is useless. However, the authors have

a different opinion about that. The authors think that any

kind of code modifications may be useful for any purpose.

222222

��

���

����

�����

������

�������

���

����

����

����

%���

&���

����

����

	���

���

�����
�� �� ��

�
�

�
�&

�
��

�
��

�
%�

�
%

�
&&

�
��

�
��

�
��

�
�

�
	&

�

�

�

�

�
��
��

��

�

��
&�

��
��

��
��

��
��

��

�

�%
&�

�&
��

�&
��

��
��

��

�

��
&�

�	
��

�	
��

�

��

�

�

��
&�

��
��

��
��

��
��

��

�

��
&�

�%
��

�%
��

�&
��

�&

�

��
&�

��
��

��
��

�	
��

�	

�

�

&�

��
��

��
��

��
��

��

�

������ ������ �!"�

(a) Columba

��

���

����

�����

������

�������

��������

���

����

����

����

%���

&���

����

����

	���

���

�����

�� �&
�

�

�

��
��

��
��

��
��

��
&�

��

�

��
��

��
��

�%
��

��
&�

%�

�

%%
��

%�
��

&�
��

&%
&�

&�

�

��
��

�%
��

�	
��

��
&�

�%

�

�	
��

	�
��

	&
��

		
&�

�

�

&
��

	
��

��
��

�
��

&&
�

��
	

�
��
��

�
��

&�
�

��

�

�
��
�&

�
��

&

�

��

�

�
��
��

�
��
��

�
��

&

�
�%

�

�

�%
��

�
�%

�
�

�&
��

�
�&

�&
�

�&

�
��
��

�
��
��

�
��
��

�
��
�&

�
��
�

�
�	
��

�
�	
��

�
�	
��

�
�

�&

�
�

�

�
�

��

�
��
��

�
��

%�
�

��
�&

�
��
�

�

������ ������ �!"�

(b) SQuirreL SQL Client

Figure 3. Format and comment modifications

Their surface modification include some code modifications

such as renaming variables. On the other hand, our code
modification include any kind of modification on program

instruction code itself.

Hayashi et al. proposed a method to refactor past edit

histories [17]. Their method automatically records all the op-

erations that developers performed, then it reorders, merges,

or deletes the operations. By using their method, we can

obtain well-organized edit histories from the original one

including many modifications for different purposes.

Some researchers conducted experiments for investigating

large commits in software repositories. Hattori et al. reported

that 5 or less source files are modified in most commits

[18]. However, they also said that, in a part of commits, 100

or more source files are modified at the same time. Hindle

et al. reported that large commits happen when we merge

branched source files into it main stream, reformat source

files, and delete unneeded source code [19].

As mentioned above, there are many research efforts

related to commits in code repositories. However, none of

them have investigated the amount of peripheral modifica-

tions in code repositories.

V. CONCLUSION

In this paper, we investigated how much there were

modifications of format, comment, and other files in code

repositories. We found there is a non-negligible amount

of such modifications not only in large commits but also

in small commits. Our findings implies excluding large

commits is insufficient as a data cleansing before mining

code repositories. We need more sophisticated ways to

ignore such peripheral modifications.

As a reasonable way to realize that, we suggested that con-

structing a new code repository for mining code repositories.

The construction will be performed as repeated operations

of (1) checking out a revision from the original repository,

(2) removing comments in the source files and reformatting

the source files in the revision, and (3) commit the revision

to the new repository. Consequently, built new repositories

do not include peripheral modifications.

232323

ACKNOWLEDGMENT

This study has been supported by Grants-in-Aid for Scien-

tific Research (S) (25220003), Grant-in-Aid for Exploratory

Research (24650011) from Japan Society for the Promotion

of Science, and Grand-in-Aid for Young Scientists (A)

(24680002) from the Ministry of Education, Culture, Sports,

Science and Technology.

REFERENCES

[1] H. Kadgi, M. L. Collard, and J. I. Maletic, “A survey and
taxonomy of approaches for mining software repositories
in the context of software evolution,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 19,
no. 2, pp. 77–131, 2007.

[2] A. E. Hassan, “The Road Ahead for Mining Software Repos-
itories,” in Proceedings of the Frontiers of Software Mainte-
nance, 2008, pp. 48–57.

[3] R. Moser, W. Pedrycz, and G. Succi, “A Comparative Anal-
ysis of the Efficiency of Change Metrics and Static Code
Attributes for Defect Prediction,” in Proceedings of the 30th
International Conference on Software Engineering, 2008, pp.
181–190.

[4] H. Hata, O. Mizuno, and T. Kikuno, “Bug Prediction Based
on Fine-Grained Module Histories,” in Proceedings of the
34th International Conference on Software Engineering,
2012, pp. 200–210.

[5] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto,
B. Adams, and A. E. Hassan, “Revisiting Common Bug
Prediction Findings Using Effort-Aware Models,” in Pro-
ceedings of the 26th International Conference on Software
Maintenance, 2010, pp. 1–10.

[6] H. Zhang, “An Investigation of the Relationships between
Lines of Code and Defects,” in Proceedings of the 25th
International Conference on Software Maintenance, 2009, pp.
274–283.

Table II
RATE OF LOCS INCLUDED IN MODIFICATIONS OF FORMAT AND

COMMENT

(a) Columba
group format comment total

top 20% 4.7% 2.6% 7.3%
21-40% 18.2% 13.7% 31.9%
41-60% 16.9% 18.7% 35.6%
61-80% 13.4% 14.2% 27.6%

81-100% 5.4% 8.9% 14.1%

(b) SQuirreL SQL Client
group format comment total

top 20% 6.4% 3.8% 10.3%
21-40% 14.3% 11.8% 26.1%
41-60% 12.2% 13.4% 25.6%
61-80% 13.4% 16.5% 29.9%

81-100% 7.2% 16.5% 23.7%

[7] C. Boogerd and L. Moonen, “Evaluating the Relation between
Coding Standard Violations and Faults within and across Soft-
ware Versions,” in Proceedings of the 6th Working Conference
on Mining Software Repositories, 2009, pp. 41–50.

[8] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller,
“Mining Version Histories to Guide Software Changes,” IEEE
Transactions on Software Engineering, vol. 31, no. 6, pp.
429–445, 2005.

[9] G. Canfora, L. Cerulo, and M. D. Penta, “Identifying Changed
Source Code Lines from Version Repositories,” in Proceed-
ings of the 4th International Workshop on Mining Software
Repositories, 2007, pp. 14–22.

[10] M. Askari and R. Holt, “Information theoretic evaluation
of change prediction models for large-scale software,” in
Proceedings of the 2006 international workshop on Mining
software repositories, 2006, pp. 126–132.

[11] H. Kagdi, J. I. Maletic, and B. Sharif, “Mining software
repositories for traceability links,” in Proceedings of the 15th
International Conference on Program Comprehension, 2007,
pp. 145–154.

[12] E. Giger, M. Pinzger, and H. C. Gall, “Can We Predict Types
of Code Changes? An Empirical Analysis,” in Proceedings of
the 9th Working Conference on Mining Software Repositories,
2012, pp. 217–226.

[13] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll,
“Predicting Source Code Changes by Mining Change His-
tory,” IEEE Transactions on Software Engineering, vol. 30,
no. 9, pp. 574–586, 2004.

[14] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that
Smell?” in Proceedings of the 7th Working Conference on
Mining Software Repositories, 2010, pp. 72–81.

[15] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall, “Change dis-
tilling: Tree differencing for fine-grained source code change
extraction,” IEEE Transactions on Software Engineering,
vol. 33, no. 11, pp. 725–743, 2007.

[16] D. Kawrykow and M. P. Robillard, “Non-essential changes
in version histories,” in Proceedings of the 33rd International
Conference on Software Engineering, 2011, pp. 351–360.

[17] S. Hayashi, T. Omori, T. Zenmyo, K. Maruyama, and
M. Saeki, “Refactoring edit history of source code,” in
Proceedings of the 28th International Conference on Software
Maintenance, 2012, pp. 617–620.

[18] L. Hattori and M. Lanza, “On the nature of commits,” in
Proceedings of the 23rd International Conference on Auto-
mated Software Engineering - Workshop Proceedings (ASE
Workshops 2008), 2008, pp. 63–71.

[19] A. Hindle, D. M. German, and R. Holt, “What do large
commits tell us?: a taxonomical study of large commits,” in
Proceedings of the 3rd International Workshop on Mining
Software Repositories, 2008, pp. 99–108.

242424

