
Bidirectional Translation between OCL and JML for Round-trip Engineering

Hiroaki Shimba ,Kentrao Hanada ,Kozo Okano and Shinji Kusumoto

Graduate School of Information Science and Technology
Osaka University, Japan

{h-shimba,k-hanada,okano,kusumoto} @ist.osaka-u.ac.jp

Abstract—In recent years, Model-driven development
(MDD) based techniques have emerged, and thus translation
techniques such as translation from Object Constraint Lan-
guage (OCL) to Java Modeling Language (JML) have gained
much attention. We have been studying not only translation
techniques from OCL to JML but also from JML to OCL
in order to support Round-trip Engineering (RTE). Two
directions of translation among OCL and JML are performed
independently without considering unified and iterative transla-
tions in our previous work. For an OCL statement and another
OCL statement which is obtained from a JML statement which
was translated from the original OCL, our previous framework
preserves only the meaning of the two statements; however, the
forms of the OCL statements may change. It prevents us from
RTE-based development. This paper proposes a translation
technique between OCL and JML maintaining OCL code
by describing their original forms in the comment area of
the target languages. Our implementation has been evaluated
on two projects used in our previous work and also seven
additional open source projects.

Keywords-Model-Driven Development,Bidirectional Transla-
tion,OCL,JML,

I. INTRODUCTION

Agile software development has come to be used recently

and has been important in industry. Round-trip Engineering

(RTE) is one of agile software development. In RTE, devel-

opers generate code from models using MDD techniques and

modify the models or the generated code. In general changes

in the models or the code are reflected to the corresponding

code or the models. Such a developer refines the models

and the code using a framework which supports RTE. This

framework maintains consistency between the models and

the code automatically translating the models to the code and

the code to the models. Several approaches to support RTE

have been proposed. For example, Tanaka et al. proposed a

bidirectional translation technique between Service Oriented

Architecture and Process Oriented Architecture [1]. However

any bidirectional translation techniques which focus on

annotation language such as OCL [2] and JML [3] have

not been proposed.

We have been studying not only translation techniques

from OCL to JML but also from JML to OCL [4]. The

advantage of using the annotation languages such as OCL

and JML is described as follows.

• It is possible to describe specification precisely than a

natural language.

• It enables a user to detect the location of software

defects by the concept of design by contract.

• For JML, there are several tools to check whether

inconsistency exists between implemented code and the

specification in JML.

In our previous work, two directions of translation among

OCL and JML are performed independently without consid-

ering unified and iterative translations. For an OCL statement

and another OCL statement which is obtained from a JML

statement which was translated from the original OCL, our

previous framework preserves only the meaning of the two

statements, however the forms of the OCL statements may

change. This paper proposes a translation technique between

OCL and JML with maintaining OCL code by describing

their original forms in the comment area of the target

languages.

Our contributions are summarized as follows.

• A bidirectional translation technique helps unification

of design and implementation by some devices such

as describing OCL statements in the comment area of

JML such that forms of code are maintained.

• Our implemented tool enables a user to maintain con-

sistency of specification between design and implemen-

tation.

• The experimental results highlight the benefits of our

translation approach between OCL and JML.

The organization of the remainder of this paper is as

follows. Section 2 describes the background of this research.

Sections 3, 4, and 5 describe our approach, the implemen-

tation of our tool and the experimental results respectively.

Finally, Section 6 concludes the paper.

II. BACKGROUND

A. Design by Contract

Design by Contract [5] is known as contract program-

ming. It is one of the concepts of object-oriented designing.

It regards specification as a contract between a supplier of

the method (callee) and client of the method (caller) for the

purpose of improving software quality and reliability.

B. OCL and JML

OCL is an annotation language for the Unified Model-

ing Language (UML). It can describe specification more

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.111

49

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.111

49

2013 20th Asia-Pacific Software Engineering Conference

1530-1362/13 $31.00 © 2013 IEEE

DOI 10.1109/APSEC.2013.111

49

precisely than natural languages. The specification is rep-

resented by describing pre-condition, post-condition and

invariant condition to model elements of UML. OCL does

not change state of models because OCL statements have

no side effect.

JML is an annotation language for Java code. It can

describe specification of Java methods or objects in the same

way as OCL. It is easy to describe the specification in JML

because its syntax is similar to that of Java. JML statements

are described in the comment area of Java. There are tools

to verify Java code annotated with JML. JML Run Time

Assertion Checker [6] dynamically detects inconsistency

between runtime values and specification in JML. ESCJava2

[7] checks correctness of the implementation of Java code

for specification with JML.

C. Model Translation

Model translation in general translates a model in ac-

cordance with a certain metamodel into another model in

accordance with yet another metamodel. Model translation

falls into two types. One translates from a model to another

model (M2M), while the other translates from a model to

code (M2T). QVT and ATL are typical M2M model trans-

lation languages. UML2Java [8] supports M2T translation.

D. Round-trip Engineering

RTE is a software development method performed by

repeating forward engineering and reverse engineering. In

forward engineering, program code is generated from mod-

els such as class diagram and sequence diagram. In reverse

engineering, program code is translated into corresponding

models. Developers iterate modeling phase and coding phase

in RTE. In general, when code or models are modified,

changes must be automatically reflected to the corresponding

models or the code by using tools which support RTE.

E. Xtext

Xtext [9] is a framework which supports defining syntax

of models and translation rules based on M2T. It automati-

cally generates an editor from models. This editor supports

code completion and detection of syntax error. If models are

described on the editor, they are automatically translated into

a target language by using user-defined translation rules.

F. Related Work

An existing method [10] does not adequately support the

iterator feature, which is the most basic operation among

collection loop operations. Our research group proposed a

technique to translate the iterator feature by generating a

Java method that is semantically equal to each OCL loop

feature [11].

There is a research which generates OCL constraints from

a natural language specification[12]. In this research, the

natural language which conforms SBVR is translated into

OCL. It is useful to study OCL.

Cheon et al. [13] manually translated OCL into four

languages such as Java code, assertion, JML and AspectJ.

They compared results of verification using translated speci-

fication. As a result, they found that Java code and assertiosn

are useful from the viewpoint of CPU usage and memory

usage. JML and AspectJ are useful in terms of ease of

translation and debug.

A translation technique from UML class diagram an-

notated with OCL to Alloy was proposed by Anastasakis

et al [14]. It enables designers of software to verify the

UML class diagram. Moreover they proposed a translation

technique from the results of verification by Alloy to UML

object diagram [15]. Designers can understand the results of

the verification without knowledge of Alloy by combining

these translations.

It takes a significant amount of time and resources to

perform model translation on large and complex models.

Razavi et al. [16] proposed an approach for deriving incre-

mental model transformations by partial evaluation of the

original model transformation programs. The experimental

results indicate that their approach significantly improves the

performance of repetitive applications of model transforma-

tions.

It is important and difficult to maintain traceability be-

tween models and code in MDD. It will be lost when a user

of MDD modifies the models or the generated template code.

Yu et al. [17] proposed their framework which maintain

traceability between the modified models and the modified

template code.

III. APPROACH

A. Translation from OCL to JML

First, we describe the overview of our proposed translation

from OCL to JML. The translation on basic operations is

defined in our previous work. The translation rules define

one-to-one relation in target elements. The translation on

collection loop is performed using the translation rules de-

scribed at related work [11]. In the bidirectional translation,

it is desirable that statements which are not modified by a

user are maintained in the same form. Our tool maintains

OCL code by inserting their original forms in the comment

area in the front of the generated JML statements. Moreover,

a hash code for each of the generated JML statements is

inserted in the same comment area. It is used to check

whether the generated JML statements are modified by a

user.

Collection loop operations are replaced with an iterate

operation and translated into semantically equivalent Java

methods in our previous work. However there are some

cases that the translation fail. For example, translation on

the statement (1) fails. The keyword “result” means returned

value of a method in OCL. In this case, the type of the

“result” value is collection. In our previous work, collection

505050

/*@ensures translatedIteration1(\result)
>= 100; @*/

private Collection sample(){}
private Integer translatedIteration1

(Collection param_Collection){
Integer res = 0;
for (String e : param_Collection){

res = (res + e);
}
return res;

Figure 1. translation on iterate operation

which is the target of the iterate operation is translated in

the generated methods.

result−> iterate(e : Integer; res : Integer = 0

| res+ e) >= 100 (1)

The keyword “result” in OCL is translated into “\result”

in JML. However “\result” is available only in JML state-

ments. The keyword “\result is not available in Java

methods. Thus we perform translation correctly by passing

collection (the “\result” value) as argument to the generated

methods. The statement (1) is translated successfully into

Figure 1.

In our new approach, we maintain OCL statements as

original forms in bidirectional translation if generated JML

statements are not modified by a user. First, we insert the

original OCL statements and its hash code in the comment

area in the front of the corresponding JML statements in

translation from OCL to JML. Then in reverse translation

we calculate the hash code of the target JML statements

and compare it with the inserted hash code in order to

check whether the generated JML statements are modified

by a user. If the target JML statements are not modified,

we output the OCL statements in the comment area of the

JML statements as a result of translation instead of adapting

translation rules on the target JML statements. If the target

JML statements are modified, we adapt translation rules.

The advantage of this approach is that forms of statements

don’t become complex by repeated bidirectional translation.

Moreover it enables us to translate JML statements which

are impossible to translate into OCL unless a user modi-

fies generated code. Figure 2 and 3 describe examples of

such translations. Note that the inserted OCL statements as

comment in the generated JML statements will be directly

outputted in reverse translation.

Basically, OCL statements which are translated from JML

statements are translated into JML by using translation

rules defined in our previous work. However JML state-

ments which cannot be essentially translated to OCL are

maintained original forms inserted in the comment area

of OCL statements in translation from JML to OCL. In

translation from OCL to JML, these inserted JML statements

as comment are directly outputted into JML. Figure 4

describes such situation. The first statement represents JML

statement which cannot be essentially translated into an OCL

statement. The second statement represents statement which

can be translated into JML. The area enclosed by “*”

and “*\” is comment in OCL. This approach prevent us

from losing information about statements which cannot be

essentially translated from JML to OCL.

B. Translation from JML to OCL

Here, we describe the overview of the translation from

JML to OCL firstly. Translation rules on basic operations

are defined with one-to-one relation between target elements.

However it is necessary to deal with collection loop state-

ments in order to perform translation correctly. Moreover

when generated JML statements are not modified by a user,

OCL statements which are inserted in the comment area

of corresponding JML statements have to be outputted as

a result of translation in translation from JML to OCL.

There are several JML statements which are impossible to

translate into OCL. We need to consider dealing with these

statements.

In JML, loop operations such as “exist” and “forall”

operation are similar to “for” operations in Java. Thus

these operations can handle various variables. However these

operations can handle only collection variables in OCL.

We assume that the loop operations deal with collection

variables in JML. Thus we defined translation rules under

this assumption.

In translation from OCL to JML, collection loop op-

erations are translated generating semantically equivalent

Java methods. These methods are invoked by statements in

JML. We need to analyze the generated methods in order to

perform reverse translation.

pre : c−>iterate(e :Integer; res : Integer = 0

| res+ e) >= 10 (2)

requires translatedIteration1() >= 10 (3)

pre : translatedIteration1() >= 10 (4)

For example, the OCL statement (2) is translated into the

JML statement (3) generating a sementically equivalent Java

method. The translatedIteration1 method is semantically

equal to the statement c− >iterate(e : Integer; res :
Integer = 0 | res + e) . It is invoked by the generated

JML statement (3) . Then the statement (3) is translated

into the OCL statement (4). As a result, information about

implementation of translatedIteration1 in OCL has been

lost. Thus we analyze only the generated Java methods

semantically equivalent to the original OCL in translation

from JML to OCL. Basically modifying these methods

are prohibited except for modification in accordance with

515151

op getAmount(name : String) : Integer{
pre : not name.oclIsUndefined() and name <> ’’
post : itemList->exists(i : Item |

i.getTotalAmount() = result) or result = 0
}

Figure 2. An example of translation between OCL and JML (OCL)

//Original_OCL={pre: not name.oclIsUndefined() and name <> ’’}
,JML_HashCode={378505836};

/*@ requires !(name == null) && !(name.equals("")); @*/
//Original_OCL={post: itemlist->exists(i:Item |

i.getAmount() = result) or result = 0}
,JML_HashCode={2016817273};

/*@ ensures translatedIteration3(itemlist, name, \result)
|| \result==0; @*/

public Integer getAmount(String name) {
}

Figure 3. An example of translation between OCL and JML (JML)

op sampleMethod(str:String) : void{
 /*@require (¥forall int i; 0<=i && i<=str.length();
 str.itemAt(i) instanceof JMLChar);@*/
 pre : not str.oclIsUndefined();
}

/*@require (¥forall int i; 0<=i && i<=str.length();
 str.itemAt(i) instanceof JMLChar);@*/
/*@require str != null;@*/
public void sapleMethod(String str){
}

Figure 4. Translation on inserted JML as comment in OCL

method template. An modifier can change particular part of

the methods.
In translation from OCL to JML, the OCL statements and

the hash code of the generated JML statements are inserted

in the comment area of the JML statements. In translation

from JML to OCL we use these information as mentioned

in section III-A.
There are JML statements which are impossible to trans-

late into OCL because JML has complex operations than

that of OCL. The first statement of Figure 4 is impossible to

translate. It is desirable that information on these statements

is preserved in bidirectional translation. Thus we insert

these JML statements in the comment area of the OCL

in translation from JML to OCL, which is reused when

translation from OCL to JML is performed.

IV. IMPEMENTATION

We implemented a translation tool between OCL and

JML using Xtext. First, we define syntax of models such as

UML annotated with OCL and Java skeleton code annotated

with JML. The syntax of the models is defined by EBNF.

Next, we define translation rules on elements of the models.

Translations from OCL to JML and JML to OCL are

implemented in the same way. The advantage of using Xtext

is described as follows.

• Defined syntax of models is reusable for other transla-

tion because syntax of the models and translation rules

are defined independently.

• An editor which supports code completion and syntax

checking is automatically generated from the defined

syntax.

V. EVALUATION

A. Targets and Metrics

We have conducted experiments on nine Java projects

annotated with JML statements. Two of the nine projects

are developed by our research group in a past research while

525252

Table I
DETAIL OF THE PROJECTS

Project Class JML
warehouse management 7 142

educational affairs 200 468
PokerTop 9 113

101JMLSpecifications 3 30
consultorOrtografico 6 124

Zinara 28 126
Lenguajes III 16 65

P2-master 5 56
extweka 10 233
TOTAL 77 747

Table II
TRANSLATION FROM JML TO OCL

Project JML Success Ratio
Warehouse Management 142 142 100%

educational affairs 468 444 94.5%
PokerTop 113 113 100%

101JMLSpecifications 30 30 100%
consultorOrtografico 124 84 67.7%

Zinara 128 106 82.8%
Lenguajes III 65 65 100%

P2-master 56 56 100%
extweka 233 230 98.7%
TOTAL 1359 1270 93.5%

the other seven projects are open source projects obtained

from Github. The two projects are a warehouse management

system and an educational affairs system. The warehouse

management system has correct JML statements as described

in the past research. Table I shows the number of the classes

and the JML statements each project has.

We measured the following items in the experiments.

• Ratio of the statements which are successfully trans-
lated from JML to OCL (Rsucc)
We measured the successfully translated OCL state-

ments from the view of meaning of the statements at

translating from JML.

• Ratio of the semantically corresponding statements
in reverse translation (Rseman)
We measured the ratio of the generated JML statements

which are semantically equal to the original JML state-

ments. Note that forms of the statements may change.

• Ratio of the syntactically corresponding statements
in reverse translation (Rsyntac)
We measured the ratio of the generated JML statements

which are syntactically equal to the original JML

statements. Note that there is no difference except for

white space, tab, parentheses and line separators. The

ratio of the semantically corresponding statements is

greater than the ratio of the syntactically corresponding

statements.

• Ratio of the statements which cannot be translated
(Rcannot)

Table III
TRANSLATION FROM GENERATED OCL TO JML

Project Statements Semantically Syntactically
Num Ratio Num Ratio

Warehouse Management 142 142 100% 62 43.7%
educational affairs 444 444 100% 214 48.2%

PokerTop 113 103 91.2% 74 65.5%
101JMLSpecifications 30 26 86.7% 9 30%
consultorOrtografico 84 82 97.6% 63 75%

Zinara 106 96 90.6% 36 34.0%
Lenguajes III 65 65 100% 0 0%

P2-master 56 30 53.6% 18 32.1%
extweka 230 200 87.0% 115 50%
TOTAL 1270 1188 93.5% 591 46.5%

We measured the ratio of the statements which cannot

be translated from JML to OCL.

We have conducted the experiments in the following way.

1) We applied the implemented tool to the Java projects

annotated with JML statements. It generated UML

diagrams annotated with OCL statements.

2) We measured the Rsucc and the Rcannot.

3) We applied the tool to the generated UML dagrams

annotated with OCL statements. It generated Java code

annotated with JML statements.

4) We measured the Rsyntac and the Rseman.

B. Results of Experiments

Table II represents the results of the translation from JML

to OCL. The Rsucc is 93.5 percent. Most of the remaining

statements contain loop operations on an array variables.

The array variables in JML are translated into “Sequence”

in OCL. Therefore, we define translation rules for statements

refering variables with array type. We, however, don’t define

such rules for statements with loop operations for arrays. In

order to deal with such a statement, one possible solution

would be to define rules for a subset of such statements,

which can be naturally translated into OCL. The solution still

has problem on a trade-off between possibility of translation

and degrees of freedom of description.

Table III represents the results of the translation from

generated OCL to JML. The Rseman is 93.5 percent. There

are typos of JML statements in the open source projects.

Our tool cannot detect these errors unless the statements

conform the syntax of the defined models. If semantical

inconsistency between original statements and generated

statements occurs, our tool either cannot detect such an

error. It is one of the problems we have to deal with

in the future. The Rsyntac is 46.5 percent. More than

half of the statements change their forms by application

of the bidirectional translations which starts from JML.

The Rsyntac of Lenguajes III is zero percent because all

statements contain “!=” operator. For example, “name !=
null” becomes “(name==null)==false” after application of

our bidirectional translation. If a bidirectional translation

535353

starts from OCL using our approach, the Rsyntac will be

100 percent unless generated code is modified by a user.

If the generated code are modified by a user, our tool

translate normally using translation rules defined by our

previous work and the statements which cannot be translated

“essentially” from JML to OCL are inserted in the comment

area of the OCL.

The Rcannot is 6.5 percent. The ratio of the statements

which cannot be translated “essentially” in these 6.5 percent

statements is 9.86 percent. Thus, the ratio of the statements

which cannot be translated “essentially” in all statements is

less than one percent. We think it is practical to perform

translation between OCL and JML.

VI. CONCLUSION

This paper proposes a translation technique between OCL

and JML maintaining OCL code by describing their orig-

inal forms in the comment area of the target languages.

We applied our implemented tool to two projects used in

our previous work and also seven additional open source

projects. From the results of experiment, we found that our

tool performs translation from OCL to JML and from JML to

OCL efficiently. However syntactically corresponding ratio

is not high. We found that the ratio of JML statements which

is essentially impossible to translate is less than one percent.

In the future, we want to refine the translation rules

in order to improve correspondence ratio because forms

of half the number of statements are different from the

original statements after applying our several bidirectional

translations. We also want to handle other JML features such

as pure, model and ghost modifiers.

ACKNOWLEDGMENTS

This work is being conducted as a part of Grant-in-Aid

for Scientific Research C(21500036) and S(25220003).

REFERENCES

[1] A. Tanaka and O. Takahashi, “Experimental transformations
between business process and soa models,” International
Workshop on Informatics 2011, pp. 104–112, 9 2011.

[2] Object Management Group, “Ocl 2.0 specification,” 2006,
http://www.omg.org/spec/OCL/2.0.

[3] G. Leavens, A. Baker, and C. Ruby, “Jml: A notation for
detailed design,” Behavioral Specifications of Businesses and
Systems, pp. 175–188, 1999.

[4] K. Hanada, H. Shinba, K. Okano, and S. Kusumoto, “Imple-
mentation of a prototype bi-directinal translation tool between
ocl and jml,” International Workshop on Informatics 2012
(IWIN2012), pp. 121–127, 9 2012.

[5] B. Meyer, Eiffel: the language. Upper Saddle River, NJ:
Prentice-Hall, Inc., 1992.

[6] A. Sarcar and Y. Cheon, “A new Eclipse-based JML compiler
built using AST merging,” Department of Computer Science,
The University of Texas at El Paso, Tech. Rep, pp. 10–08,
2010.

[7] J. Kiniry and D. Cok, “ESC/Java2: Uniting ESC/Java and
JML,” Construction and Analysis of Safe, Secure and Interop-
erable Smart devices (CASSIS’2004), vol. 3362, pp. 108–128,
2005.

[8] W. Harrison, C. Barton, and M. Raghavachari, “Mapping
UML designs to Java,” in Proc. of the 15th ACM SIGPLAN
conference on Object-oriented programming, systems, lan-
guages, and applications, 2000, pp. 178–187.

[9] Eclipse Foundation, “Xtext - Language Development Frame-
work,” http://www.eclipse.org/Xtext/.

[10] A. Hamie, “Translating the object constraint language into
the java modelling language,” in Proc. of the 2004 ACM
symposium on Applied computing, 2004, pp. 1531–1535.

[11] K. Miyazawa, K. Hanada, K. Okano, and S. Kusumoto,
“Class enhancement of our ocl to jml translation tool and its
application to a curriculum management system,” In IEICE
Technical Report, vol. 110, no. 458, pp. 115–120, 2011.

[12] M. G. L. I. S. Bajwa, B. Bordbar, “OCL Constraints Gen-
eration from Natural Language Specification,” in 14th IEEE
The Enterprise Computing Conference (EDOC 2010), 2010,
pp. 204–213.

[13] Y. Cheon, C. Avila, S. Roach, and C. Munoz, “Checking
design constraints at run-time using OCL and AspectJ,”
International Journal of Software Engineering, vol. 3, no. 1,
pp. 5–28, 2009.

[14] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray,
“UML2Alloy: A Challenging Model Transformation,”
ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2007), vol.
4735, pp. 436–450, 2007.

[15] S. Shah, K.Anastasakis, and B. Bordbar, “From uml to alloy
and back,” in 6th Workshop on Model Design, Verification and
Validation (MODEVVA 09) published in ACM International
Conference Proceeding Series, vol. 413, 2009, pp. 1–10.

[16] A. Razavi and K. Kontogiannis, “Partial evaluation of model
transformations,” in Proc. of the 2012 International Confer-
ence on Software Engineering, ser. ICSE 2012, 2012, pp.
562–572.

[17] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L. Mon-
trieux, “Maintaining invariant traceability through bidirec-
tional transformations,” in Proc. of the 2012 International
Conference on Software Engineering, ser. ICSE 2012, 2012,
pp. 540–550.

545454

