
Reusing Reused Code
Tomoya Ishihara, Keisuke Hotta, Yoshiki Higo, Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
{t-ishihr, k-hotta, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract—Although source code search systems are well known
as being helpful to reuse source code, they have an issue that they
often suggest larger code than what users actually need. This is
because they suggest code based on the structure of programming
languages such as files or classes. In this paper, we propose a new
code search technique that considers past reuse. In the proposed
technique, code are suggested at the unit of past reuse. The
proposed technique detects reused code by using a fine-grained
code clone detection technique. We conducted an experiment to
compare the proposed technique with an existing technique. The
result shows that the proposed technique helps more effectively
to reuse code than the existing technique.

Index Terms—code search; code clone; source code reuse;

I. INTRODUCTION

In software development, it is beneficial to reuse existing
source code. If developers reuse existing source code ade-
quately, software development efficiency rises because they do
not need to implement new functions. Besides, if they reuse
source code that has already been well tested, software obtains
high reliability easily. Consequently, it is useful to reuse code
in software development. Currently, many researchers have
proposed systems helping source code reuse.

One of the systems helping code reuse is code search
systems [1]–[3]. Code search systems suggest code related to
queries that users have input. They suggest code in the order
of own measures. Code search systems do not require complex
procedures for users. Users only need to decide queries when
they use code search systems.

However, existing code search systems have an issue. They
suggest source code including extra functionalities that users
do not need. Hence, users must take costs to identify functions
that they actually need. This issue is caused because they
suggest source code based on structural unit of programming
languages. In particular, this issue often occurs when users
need a single or small functionality because most existing
systems suggest source code on class or file unit. Users do
not always require functionalities of the same unit or the same
abstraction level. Sometimes users require a piece of a code
fragment, which consists of several lines of code, and other
times they need code forming the whole classes. Therefore,
it is necessary for the systems to suggest source code with
different sizes and different abstraction levels depending on
users’ requirements.

In this research, we propose a technique that detects
reusable code that has been actually reused in the past and
suggests it to users. That is to say, conventional search engines
return entire PL units (methods, classes, files) while our

CRS computing

Code clone detection

Keyword extraction

Reused code
information

CRS

Clone Clone

Clone Clone

Clone Keyword

visualizer

WOS computing
Clone Query

Code

Code

Code

Clone Clone

Code analysis

Code suggestion

user

Source code set

Code

Clone Keyword

Figure 1. overview of the proposed technique

approach returns code snippets that were duplicated. Also,
our approach can suggest reused code even if they do not
have API invocations unlike the conventional techniques [2].
The presence of reused code means that someone needed and
reused the code in the past. Hence, authors think that code
reused in the past will meet requirements of reuse in the future.
We adopt a code clone detection technique for detecting reused
code fragments [4]. One reason why code clones occur in
source code is code reuse so that detecting code clones means
detecting past code reuse.

Contributions of this paper are as follows.
• We propose a new technique that suggests reusable code

that has been reused. In the proposed technique, only
reused code is suggested to users.

• We have conducted a small experiment and confirmed the
usefulness of it.

II. CODE SUGGESTION ARCHITECTURE

A. Overview

In this research, we propose a technique that suggests
source code based on its past reuse in order to provide
reuse opportunities demanding on sizes and abstraction levels
of users’ requirements. Figure 1 shows an overview of the
proposed technique. The proposed technique analyzes target
source files and stores reused code into a database. If users
input a query into a system, they obtain reused code that are
related to the query.

The proposed technique consists of a code analysis proce-
dure and a code suggestion procedure. In the code analysis
procedure, the proposed technique detects code clones to
collect a set of code fragments to be suggested to users. In the
code suggestion procedure, the proposed technique suggests
code fragments that are related to queries that users have input.
Before the code suggestion procedure process users’ queries,
a database of reused code must have been built by performing
the code analysis procedure. The code suggestion procedure is
performed for every users’ query meanwhile the code analysis
procedure is performed only one time to build a database of
reused code information.

B. Code Analysis Procedure

The code analysis procedure consists of the following steps.
STEP1: detecting code clones to collect a set of code

fragments reused in the past.
STEP2: computing a score for every reused code fragment

based on the caller-callee relationship.
STEP3: extracting keywords in the reused code fragments.
In the proposed technique, only the code fragments reused

in the past are suggested to users. In order to identify past
reuse, we adopt a code clone detection technique. One reason
why code clones occur in source code is code reuse such as
copy and paste operations. Hence, we can find code fragments
that have been reused by detecting code clones from a set of
a large amount of source files.

In addition, the proposed technique computes a score for
each code fragment in order to suggest code that are suitable
for users’ requirements. In this research, we use Component
Rank technique [1] to compute scores for code fragments.
Component Rank technique computes a score for each function
based on the caller-callee relationship. A score for a code
fragment is the same as the score for the function including the
code fragment. It computes a score independently on queries
that users input because it uses static information of function
calls. Also, the proposed technique considers the number of
past reuse in computing scores. Code fragments that have been
reused many times have high scores.

C. Code Suggestion Procedure

The code suggestion procedure includes the following steps.
STEP1: finding code fragments related to queries that users

have input from the database.
STEP2: ranking code fragments based on their scores and

strength of relevance to queries
STEP3: suggesting code fragments in the ranking order.
In this research, we use two scores, Component Rank Score

(CRS) and Word Occurrence Score (WOS). CRS represents
scores computed by using Component Rank technique. WOS
represents strength of relationship between code fragments and
the queries that users have input. WOS becomes high if queries
match the keywords that sufficiently indicate a functionality of
a code fragment. The proposed technique dynamically com-
putes WOS each time users submit queries while it computes
CRS beforehand at the code analysis procedure. Finally, the

proposed technique sorts code fragments suggested to users in
the order.

III. DETAILS OF CODE SUGGESTION

A. Code Clone Detection

In this research, we need to detect small code clones in order
to suggest code fragments on a variety of sizes and abstraction
levels. If we use a fine-grained detection technique, we can
detect both small code clones such as several lines of code
and large ones such as the whole classes. However, if we use
coarse-grained detection technique such as file clone detection
technique, we can detect only large code clones. We also need
to select a scalable code clone detection technique because
the proposed technique needs to detect code clones from a
large amount of source files. Consequently, we adopt an index-
and statement-based code clone detection [4]. This technique
detects code clones through the following steps.

STEP1: extracting all the statements from every method as
a sequence.

STEP2: computing a hash value for every p consecutive
statements. Value p is specified by users in advance.

STEP3: detecting subsequences whose hash sequences are
the same as code clones.

The proposed technique realizes scalable code clone detec-
tions by using hash-based code matching.

B. Component Rank

The proposed technique computes a CRS score for every
code fragment by applying a variant of Component Rank(CR)
[1]. CR technique computes a score for every function based
on the caller-callee relationship, by applying a variant of
PageRank, which is used to measure the relative importance
of web sites. It determines a score based on two concepts:

• functions called in many other functions are significant.
• functions called in significant functions are significant.

Also, CR technique groups similar functions. CR technique
redefines the score of the function by summing up scores of
functions that are similar to it.

In this research, the proposed technique computes a score
for every method by using CR algorithm in order to compute
a score for every code clone. A score of a given code clone is
defined as the score of the method including the code clone.

C. Keyword Extraction

The proposed technique extracts keywords from code frag-
ments. Hence, the proposed technique does not extract any
keywords from code fragments that have not been reused and
does not suggest them to users. We extract keywords from
identifiers such as variable names, method names, class names
and Javadoc comments attached to methods and classes. Also,
the proposed technique uses the natural language processing
such as stemming and eliminating stop words. Finally, the
proposed technique stores keywords into a database.

D. Measuring Relationship between Queries and Keywords

We select TF-IDF technique as a measure of WOS. TF-IDF
technique computes a score for every term in all documents
based on two metrics, TF and IDF. A TF represents a
term frequency of a certain document. A IDF represents an
inverse document frequency including a certain term. TF-IDF
technique is commonly used in search systems into which
users input queries.

In this research, a keyword corresponds to a term and a code
fragment corresponds to a document. The proposed technique
computes WOS by using the following formula.

Wwos(i, j) =
ti,j
|Ti|
× log

|D|
di

(1)

• ti,j represents the number of frequency of term i in code
fragment j

• Ti represents a set of the terms i in all the code fragments
• D represents a set of all the code fragments
• di represents the number of documents including term i
• |S| represents the number of elements included a set S
If queries match keywords extracted only from a small

number of code fragments, WOS becomes high.

E. Merging Scores

The proposed technique derives relative importance among
code fragments based on CRS and WOS. Code fragments are
suggested to users in the order of the relative importance.

F. Implementation

It is necessary that the proposed technique quickly de-
tects code clones from a large amount of source files and
also quickly computes a score of code clones. Hence, we
implemented some heuristics in the proposed technique. For
example, existing systems have computed a score of each
class by using Component Rank algorithm. On the other hand,
the proposed technique needs to compute a score for every
method. The proposed technique needs much more time to
compute scores of methods because there are considerably
more methods than classes in the source files. Hence, the
proposed technique computes a score of every method ap-
proximately by distinguishing between method calls within a
project and method calls across projects. This approximate
calculation is widely used [5].

IV. EXPERIMENT

A. Experimental Setup

In order to evaluate the proposed technique, we have imple-
mented a prototype based on the proposed technique. In this
section, we called this prototype P . We applied it to target
source files and created a database. In this experiment, we
used the source files that had been used in the evaluation of
SPARS as our target [1]. The target source files consist of about
190,000 Java source files, which is about 400 projects.

In addition, we have built the following two variants of the
prototypes for comparison.

• A variant in which the proposed technique was imple-
mented except considering the number of past reuse. For
example, even code that has been reused more than 10
times were handled equally to the one that has been
reused only twice. We called this variant V1.

• A variant which suggested source code based on the
structure of programming language without code clone
detection. This variant suggested code at method unit.
We called this variant V2.

The two variants of the prototypes also were applied to the
target source files and created databases.

B. Methodology

In this research, 6 participants used either of 3 tools for
each given task. Firstly, they took a lecture by the authors
for understanding given tasks and for learning how to use the
tools. After the lecture, each of them independently did the
tasks. For each task, they considered keywords themselves. If
they did not find reusable code fitting to the given tasks with
a keyword, they searched code with another keyword freely.
In the experiment, we did not restrict the number of searching
code with keywords because we search reusable code by freely
changing keywords in the real situation in code reuse. The time
limit of each task set to 20 minutes. Participants timed their
code reuse, which was from the beginning of searching code
to the completion of the task.

Three participants were master’s course students and the
other 3 participants were Ph.D students of computer science
at Osaka University. All the participants had experiences of
Java programming more than one year. The average was 2.83
years. They had no industry experiences. They were divided
into 3 groups. A pair of a master’s course and a Ph.D students
belonged to each group. Each participant was given 9 tasks.
Each group used the tool showed in Table I to complete each
task.

C. Tasks

We used tasks that had been used to evaluate SPARS [1].
We selected 9 tasks that could be easily executed out of the
10 tasks. Also, participants determined difficulty of the given
tasks into 3 levels in the experiment. Each difficulty level has
3 tasks, respectively. Table II shows a list of the tasks used in
this experiment.

D. Result

Table III shows the result of the experiment. The second,
third and fourth rows in the table mean the total times that two
participants took to complete each of the given tasks. After
the participants had finished all the tasks, we confirmed that
all the tasks were executed correctly. If a certain participant

TABLE I
THE TOOL THAT EACH GROUP USED TO COMPLETE EACH TASK

task1,2,3 task4,5,6 task7,8,9
group1 P V1 V2

group2 V2 P V1

group3 V1 V2 P

TABLE III
THE TOTAL TIMES THAT PARTICIPANTS TOOK TO FINISH EACH THE GIVEN TASK
task1 task2 task3 task4 task5 task6 task7 task8 task9

P 1,091 1,393 2,400 2,400 1,525 848 1,360 1,529 853
V1 1,309 1,109 2,400 1,994 367 1,286 2,400 1,890 2,011
V2 365 925 2,400 1,508 689 954 1,930 2,400 240

difficulty easy easy difficult difficult easy medium medium difficult medium
best tool V2 V2 - V2 V1 P P P V2

157 protected String streamAsset(HttpServerRequeset request,
 HttpServerResponse response)

158 {
159 // Get Asset ID
160 int A_Asset_ID = WebUtil.getParameterAsInt(request, “Asset_ID”);
 :
 :
260 ServletOutputStream out = response.getOutPutStream();
261 ZipOutputStream zip = new ZipOutputStream(out); //Servlet out
262 zip.setMethod(ZipOutputStream.DEFLATED);
263 zip.setLevel(Deflater.BEST_COMPRESSION);
264 zip.setComment(readme);
265
266 // Readme File
267 ZipEntry entry = new ZipEntry(“readme.txt”);
268 entry.setExtra(assetInfo);
269 zip.putNextEntry(entry);
270 zip.write(readme.getBytes(), 0, readme.getLength());
271 zip.closeEntry();
 :
 :
328 return null;
329 }

(a) output of the tools. P and V1 suggested a highlighted part of the method.
V2 suggested the whole method.

 FileInputStream in = new FileInputStream(input);
 ZipOutputStream zip = new ZipOutputStream(output); //Servlet
 //out
 zip.setMethod(ZipOutputStream.DEFLATED);
 zip.setLevel(Deflater.BEST_COMPRESSION);

 final byte[] buf = new byte[1024];
 zip.putNextEntry(new ZipEntry(input.getName()));
 int len;
 while((len = in.read(buf)) > 0){
 zip.write(buf, 0, len);
 }
 zip.closeEntry();

(b) code in which a certain participant implemented the given task
Figure 2. an example of code reuse in the experiment

could not complete the given task within the limited time,
we regarded that the participant took 20 minutes to complete
the task. The fifth row means the difficulty of each task. The
sixth row means the best tool, with which participants took
the shortest time to complete the task. For the task 3, the best
tool was not selected because no participant completed the
task within the limited time.

TABLE II
A LIST OF THE TASKS

task requirement
task1 implement a quicksort algorithm
task2 implement a binary search algorithm
task3 build a Java applet that shows an analog clock
task4 build a Java applet that shows a textarea
task5 implement a functionality of random number generation
task6 implement functionalities of a stack such as push and pop

task7 implement a functionality that compresses a file or
a directory with ZIP format

task8 implement a functionality that dumps a class file

task9 implement functionalities that read an input file and
write the copy of the file through a stream

We compared the means of completion time for each
technique by using Tukey’s HSD test with significance level
α = 0.05. The result of the test showed that there were no
differences among the means of completion time for the 3
techniques. Then, we investigated which technique made the
completion time shortest for each task. As looking at the table
III, we found that V2 was the most effective tool for users on
4 tasks. However, compared to P , V2 is the most effective
for relatively easy tasks. On the other hand, P is the most
effective for relatively difficult tasks.

This was caused by the difference of sizes of functional-
ities. Difficult tasks were implemented with a combination
of multiple methods meanwhile easy tasks were implemented
with a single method. Participants using P could make an
effective combination of functionalities because P suggested
only necessary parts of methods. On the other hand, because
V2 suggested the whole methods, participants using V2 needed
to find where they should reuse. Participants had difficulties to
complete the task 4 because of a low experience of Java applet.
Hence, this task was determined as difficult nevertheless it
could be implemented with a single method. Figure 2 shows
an example of code suggested by P , V1 and V2. P and V1
suggested a highlighted part of the method meanwhile V2
suggested the whole method that was about 200 lines of code.
In order to improve efficiency to reuse code, it is necessary that
systems help to reuse functionalities that users takes much time
to implement. Consequently, P is useful to support reusing
code that it is difficult for users to implement.

Also, comparing between P and V1, the participants finished
over half of all the tasks in a shorter time by using P than
by using V1. For example, P suggested the code in Figure 2
on the top if they input a query into it, “zip deflate”. On the
other hand, V1 suggested the code at the 43rd from the top.
This means that functionalities that users actually needed were
suggested on the top by considering the number of past reuse.

V. THREATS TO VALIDITY

Participants. We had 6 participants use the 3 tools and
complete the given tasks. All the participants had experiences
of Java programming more than one year. However, if there
is a large difference of skills of Java programming among
the participants, the difference of skills has possibilities to
influence result in this experiment. In this experiment, 6
participants were divided into 3 groups. Each group consisted
of 2 participants, a master’s course student and a Ph.D student.
Hence, the difference of skills among the groups should have
been small.

Time pressure. The participants must have completed each
task within 20 minutes. Hence, there was a possibility that
the limited time might have pressured the participants and
so some of them missed the code that should be reused and
consequently spent more time to complete the task.

Target data set. The proposed technique decides the order
of code suggestion considering the number of code clones.
Which code becomes code clones is dependent on target data
sets. Hence, it is possible that a result with another data set is
different from the one in this experiment.

Implementation. In this research, in order to create a
database quickly, some approximate calculations were imple-
mented in the proposed technique. For example, the proposed
technique computed a score of every method approximately
by distinguishing between method calls within a project and
method calls across projects. Hence, if the proposed technique
computed a strict score of every method by using such as a
high performance machine, there was a possibility that the
result in this experiment varies.

VI. RELATED WORK

Inoue at el. proposed Component Rank(CR), which com-
putes scores of functions based on the caller-callee relation-
ship, and Keyword Rank(KR), which gives different weights
for each keyword based on its position in source code [1].
They also built a source code search system, SPARS [1], in
which the above ranking algorithms were adopted. CR gives
a high score to a function called in many other functions and
a function called in functions whose scores are high. Also, it
merges scores of similar functions and redefines their scores.
Hence, scores of functions to which many functions are similar
become high. KR gives scores to keywords based on their
token types. If the types of a given keyword is significant,
its score becomes high. For example, keywords included in
method names or class names are significant.

McMillan et al. proposed a technique that computes scores
of functions based on Navigation Model(NM) and Association
Model(AM). They built a source code search system, Portfolio,
based on their proposed technique [3]. NM represents how
programmers trace functions. It gives scores to functions based
on the caller-callee relationship, by applying a variant of
PageRank. AM represents the relationship among keywords.
It computes strength of the keyword relationship by applying
Spreading Activation. After users submit a search query, Port-
folio shows a function call graph included suggested functions.
Users can learn the usage of the functions by tracing functions
with the graph and viewing their usage.

The two existing techniques are similar to the proposed
technique in terms of computing a score of every function
based on the caller-callee relationship. In addition, SPARS
merges similar functions like the proposed technique. How-
ever, the two techniques suggest source code based on the
structure of programming languages. On the other hand, the
proposed technique suggests source code based on past reuse.
Hence, particularly when users are going to reuse small
functionalities, the proposed technique better than the two

techniques in terms of suggesting only the functionality that
users actually need.

Holmes et al. proposed an approach to help pragmatic
reuse [6]. It enables developers to investigate code that they
want to reuse and to integrate the code semi-automatically
by using captured pragmatic reuse. Meanwhile the approach
supports reuse from only a system given by users, the proposed
technique suggests functionalities from a variety of systems.

VII. CONCLUSION

This paper proposed a new technique that suggested
reusable code that had been reused in the past in order to meet
the different requirements of users. The proposed technique
calculates the number of past reuse for each code fragment
and ranks the suggested code fragments by considering it. We
have conducted an experiment that measured and compared
the time when 6 participants completed the given task. They
completed the given tasks by using 3 tools including one in
which the proposed technique is implemented.

The result shows that the proposed technique helps more
effectively to reuse code than a conventional technique. The
result also shows that consideration of the number of reuse in
the past contributes to the effective code reuse.

As future works, we are going to build a web-based code
search system in which the proposed technique is fully im-
plemented. At this time, the proposed technique considers
not only the relevance to a task but also the ease of reuse.
After building it, we are going to invite more participants and
conduct large scale experiments. Also, we consider that we
apply the proposed technique to the code completion. If users
write code half way and execute code completion, the code that
has been reused in the past is auto-completed immediately.

ACKNOWLEDGMENTS

This study has been supported by Grants-in-Aid for Scien-
tific Research (S) (25220003), Grant-in-Aid for Exploratory
Research (24650011), and Grand-in-Aid for Young Scientists
(A) (24680002) from the Japan Society for the Promotion of
Science.

REFERENCES

[1] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto,
“Ranking significance of software components based on use relations,”
IEEE Transactions on Software Engineering, vol. 31, no. 3, pp. 213–225,
2005.

[2] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. Cumby, “A search engine for finding highly relevant applications,”
in Proc. of the 32nd International Conference on Software Engineering,
2010, pp. 475–484.

[3] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Port-
folio: Finding relevant functions and their usages,” in Proc. of the 33rd
International Conference on Software Engineering, 2011, pp. 111–120.

[4] B. Hummel, E. Jürgens, L. Heinemann, and M. Conradt, “Index-based
code clone detection: incremental, distributed, scalable,” in Proc. of the
26th International Conference on Software Maintenance, 2010, pp. 1–9.

[5] A. Z. Broder, R. Lempel, F. Maghoul, and J. Pedersen, “Efficient pagerank
approximation via graph aggregation,” Information Retrieval, vol. 9, no. 2,
pp. 123–138, 2006.

[6] R. Holmes and R. J. Walker, “Systematizing pragmatic software reuse,”
ACM Transactions on Software Engineering and Methodology, vol. 21,
no. 4, pp. 1–44, 2012.

