
Identifying Clone Removal Opportunities
Based on Co-evolution Analysis

Yoshiki Higo, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, JAPAN

{higo,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT
Previous research efforts have proposed various techniques for sup-
porting code clone removal. They identify removal candidates based
on the states of the source code in the latest version. However, those
techniques suggest many code clones that are not suited for removal
in addition to appropriate candidates. That is because the presence
of code clones do not necessarily motivate developers to remove
them if they are stable and do not require simultaneous modifica-
tions. In this paper, we propose a new technique that identifies
removal candidates based on past records of code modifications.
By using the proposed technique, we can identify code clones that
actually required simultaneous modifications in the past.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing

General Terms
Design, Measurement

Keywords
Code clone, Co-evolution analysis, Refactoring

1. INTRODUCTION
The presence of code clones (in short, clones) is regarded as

one of the factors that makes it more difficult to keep source code
consistent [11]. If a clone is modified, we must consider to ap-
ply the same modifications to its correspondences simultaneously.
Higo and Kusumoto revealed that delay propagation often happen
in clones [5]. Clone is well-known as targets of refactoring [4].

On the other hand, several research efforts reported that remov-
ing clones are not necessarily good for source code. For example,
Kim et al. found the following [10].

• Some clones exist only for a short period. They evolve dif-
ferently after they have become unduplicated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE ’13, August 19-20, 2013, Saint Petersburg, Russia
Copyright 13 ACM 978-1-4503-2311-6/13/08 ...$15.00.

• If clones exist for a long period, it should be difficult to merge
them as a single module because of limitations of program-
ming languages.

Kapser and Godfrey reported that clones can be a reasonable de-
sign decision based on an empirical study of open source systems
[8]. They derived several patterns of clones, and they discussed the
pros and cons of clones based on the patterns. Bettenburg et al.
reported that the presence of clones does not have much a nega-
tive impact on software quality [2]. They investigated inconsistent
changes to clones at release level on open source systems. In the
empirical study, only 1.26% to 3.23% of inconsistent changes in-
troduced software errors into the target systems.

Consequently, it is obvious that not all clones need to be re-
moved. However, some clones need to be considered as candidates
for simultaneous modifications or for refactoring to keep source
code consistent easily. In this paper, we propose a new technique
to identify clones that should be removed. The proposed technique
considers past modifications on clones.

If every clone in a clone group was modified in the same way
even if the modifications were not simultaneous, the proposed tech-
nique suggest the clone group as a refactoring candidate. Even if
there are clones that are long or spread into many files, they are not
recommended as refactoring candidates unless they were modified
in the same way. The authors think that the same modifications in
the past can be a sufficient motivation for removing clones.

The main contributions of this paper are as follows.

• The proposed technique has a new feature that considers past
modifications for identifying clone removal candidates. The
source code analysis (repository mining) for the identifica-
tion is rapid. We can obtain candidates within a short time
frame even if there are several thousand or more revisions in
the repository of the target software.

• We confirmed that most of the identified candidates actually
had been removed in subsequent revisions, or they seemed to
be reasonable candidates based on our manual investigation
on their source code.

The remainder of this paper is organized as follows: Section 2 in-
troduces a motivating example of this research; Section 3 explains
the proposed technique; Section 4 shows an experimental result on
open source software; in Section 5, we introduce some research
related to this work; lastly, Section 6 concludes this paper.

2. MOTIVATING EXAMPLE
Figure 1 shows an actual modification on open source software.

In this modification, the 116th and 120th lines were changed. The

115　 if	 (org.argouml.model.ModelFacade.isAInstance(target))	 {	
116	 	 	 	 	 MInstance	 inst	 =	 (MInstance)	 target;	
117	 //	 	 ((MInstance)	 target).setClassifier((MClassifier)	 element);	
118	
119	 	 	 	 	 //	 delete	 all	 classifiers	
120	 	 	 	 	 Collection	 col	 =	 inst.getClassifiers();	
121	 	 	 	 	 if	 (col	 !=	 null)	 {	
122 	 	 Iterator	 iter	 =	 col.iterator();	

DELETED	

DELETED	

(a) Before modification

115	 	 	 if	 (org.argouml.model.ModelFacade.isAInstance(target))	 {	
116	 	 	 	 	 Object	 inst	 =	 /*(MInstance)*/	 target;	
117	 //	 	 ((MInstance)	 target).setClassifier((MClassifier)	 element);	
118	
119	 	 	 	 	 //	 delete	 all	 classifiers	
120	 	 	 	 	 Collection	 col	 =	 ModelFacade.getClassifiers(inst);	
121	 	 	 	 	 if	 (col	 !=	 null)	 {	
122 	 	 Iterator	 iter	 =	 col.iterator();	 	 	

ADDED	

ADDED	

(b) After modification

Figure 1: Actual modification on OSS. The same modifications
were performed on three files simultaneously

same modifications were performed on three source files simulta-
neously. This is evidence that clones require the same modifica-
tions, which makes it more difficult to keep source code consistent.
If developer had forgotten to modify one of the clones, an unin-
tended inconsistency would have occurred. Such inconsistencies
sometimes become bugs [5].

Authors think that refactoring is a reasonable design choice for
clones that actually required the same modifications in the past. If
such clones are merged as a single module like a method or class,
unintended inconsistencies never occur in the code even if the code
requires modifications repeatedly in the future.

Consequently, in this paper, we propose a new technique iden-
tifying clones that were modified in the same way in the past. Of
course, we can obtain clones for removal with conventional tech-
niques. However, there is a big difference between the proposed
technique and conventional ones.

• Conventional techniques identify clones in the latest version
as refactoring candidates.

• The proposed technique identifies clones that required the
same modifications in the past as refactoring candidates.

That is, the proposed technique considers modification records.
The fact that a given group of clones required the same modifica-
tions in the past will motivate developers to remove it.

A simple way to obtain both the code before and after modifica-
tion is using the Unix diff command. However, the diff command is
not sufficient because it does not consider structures of the source
code. For example, in the case of Figure 1, two lines of code were
modified: however, they are not consecutive ones. If we apply the
diff to the code, diff outputs two different modifications. On the
other hand, the proposed technique outputs a single modification in
this case because it ignores the presence of comment lines.

3. PROPOSED TECHNIQUE

3.1 Modification Pattern
In this paper, we use two terms Modification Instance (in short,

MI) and Modification Pattern (in short, MP). An MI is an instance
of source code modification and an MP is a pattern that a code frag-
ment was changed to another code fragment. MPs hold both code
fragments before and after the modifications. In this research, code
fragments are represented by sequences of tokens.

MPs also have the following metric values.

after
commit 1	

commit 1	 commit 2	

before
commit 2	

after
commit 2	

commit n	

before
commit n	

after
commit n	

before
commit 1	

MI 1	

MI 2	

MI 3	

MI 4	

MI m-1	

MI m	

STEP1	

MP 1	

SUPPORT: 4	
LAM: 10	
M-Type: CHANGE	

C-Type: STATEMENT	

MP 2	

SUPPORT: 2	
LAM: 5	
M-Type: CHANGE	

C-Type: TOKEN	

MP p	

SUPPORT: 2	
LAM: 3	
M-Type: DELETE	

C-Type: STATEMENT	

STEP1	 STEP1	

STEP2	 STEP2	 STEP2	

STEP3	

Figure 2: Overview of the proposed technique

SUPPORT the number of occurrences of a given MP.

LAM (Length After Modification) the number of statements in
code fragments after the modification. Please refer to the
description of STEP2B in Subsection 3.2 for the definition
of statement in the proposed technique.

M-TYPE (Modification-TYPE) If the length of both the before
and after modification of a given MP are not 0, its type be-
comes CHANGE. If the length before modification is 0, its
type becomes ADD. If the length after modification is 0, its
type becomes DELETE.

C-Type (Change-TYPE) if a given MP is a token-level modifica-
tion, it becomes TOKEN. If not, it becomes STATEMENT.

Those metrics are used for extracting removal candidates from
MPs, not for providing insights on the refactoring that could remove
clones.

3.2 Deriving Modification Patterns
Here, we explain how we derive MPs based on co-evolution anal-

ysis. The input and output of the proposed technique are as follows:

INPUT software repository of a target software system, and

OUTPUT clones as refactoring candidates.

Deriving MPs consists of the following steps.

STEP1 a list of source files modified is identified for every revi-
sion. Then, the contents before and after the modification for
each source file are retrieved.

STEP2 MIs are extracted by comparing the contents before and
after the modification.

STEP3 MPs are derived from the set of MIs.

In the remainder of this section, we explain every step in detail.
In this explanation, we assume that R is an input repository.

file before
modification	

file after
modification	

if	 (org	 . argouml	 . model	 . ModelFacede	 . isAInstance	 (target)) {

MInstance	 inst	 = (MInstance) target	 ;

Collection	 col	 = inst	 . getClassifiers	 () ;

if	 (col	 !=	 null) {

Iterator	 iter	 = col	 . iterator	 () ;

token sequence of modified file before modification	

if	 (org	 . argouml	 . model	 . ModelFacede	 . isAInstance	 (target)) {

Object	 inst	 =

()

target	 ;

Collection	 col	 = inst	getClassifiers	 ;

if	 (col	 !=	 null) {

Iterator	 iter	 = col	 . iterator	 () ;

ModelFacede	 .

token sequence of modified file after modification	

10	 20	 30	 40	 50	

hash sequence of
modified file before
modification	

10	 60	 70	 40	 50	

hash sequence of
modified file after
modification	

10	 20	 30	 40	 50	

DELETED	

hash sequence of
modified file before
modification	

10	 60	 70	 40	 50	

ADDED	

hash sequence of
modified file after
modification	token sequence of deleted statements	

MInstance	 inst	 = (MInstance) target	

Collection	 col	 = inst	 . getClassifiers	 ()

token sequence of added statements	

Object	 inst	 =

()

target	

Collection	 col	 = inst	getClassifiers	ModelFacede	 .

if	 (org	 .	 argouml	 .	 model	 .	 ModelFacade	 .	 isAInstance	 (target))	

MInstance	 inst	 =	 (MInstance)	 target	

Collection	 col	 =	 inst	 .	 getClassifiers	 ()	

if	 (col	 !=	 null)	

Iterator	 iter	 =	 col	 .	 iterator	 ()	

statement sequence of modified file before modification	

if	 (org	 .	 argouml	 .	 model	 .	 ModelFacade	 .	 isAInstance	 (target))	

Object	 inst	 =	 target	

Collection	 col	 =	 ModelFacade	 .	 getClassifiers	 ()	

if	 (col	 !=	 null)	

Iterator	 iter	 =	 col	 .	 iterator	 ()	

statement sequence of modified file after modification	

STEP2A	

STEP
2B

	

STEP2C	

STEP2D	

STE
P2E

	

Figure 3: Details of STEP2

STEP1: Retrieving Source Code
We assume that C(R) is the whole set of commits included in R. If
the number of elements in C(R) is n, C(R) can be represented with
the following formula.

C(R) = {c1,c2, · · · ,cn} (1)

We assume that S(ck) is a set of source files modified in commit
ck. If s files are modified in ck, S(ck) can be represented with the
following formula.

S(ck) = { f1, f2, · · · , fs} (2)

Note that S(ck) does not include source files added or deleted
in ck. it includes only changed files. The output of STEP1 is
S(ck)(∀ck ∈C(R)).

STEP2: Extracting Modification Instances
This step extracts MIs by comparing source code before and after
modification, which are included in S(ck). This step consists of the
following sub-steps. Figure 3 shows how each sub-step works.

STEP2A token sequences before and after modification are gener-
ated by performing lexical analysis.

STEP2B statements are identified in the token sequences. Herein,
we define that a statement is a token sequence among semi-
colon (“;”), open bracket (“{”), and close bracket (“}”). The
three kinds of tokens are not included in statements.

Table 1: Repository information for ArgoUML
oldest revision (date) 1 (1998-01-27)
latest revision (date) 19,910 (2013-02-08)
LOC of end revision 370,152

STEP2C a hash value is generated from every statement. We ob-
tain a hash sequence from each of statement sequences be-
fore and after modification, respectively.

STEP2D modified statements are identified by applying the Longest
Common Subsequence algorithm [1] to the two hash sequences.

STEP2E identified subsequences of hash values are inversely trans-
formed to sequences of tokens, which are the output of STEP2.

Each MI extracted in STEP2 has the following information:

• token sequences before and after the modification,

• date of the modification, and

• name of the source file.

Herein, we assume that M(ck) is a set of MIs extracted from
S(ck). The output of STEP2 are M(ck)(∀ck ∈C(R)).

STEP3: Deriving Modification Patterns
In STEP3, all the MIs extracted in STEP2 are compared based on
their token sequences before and after modification. If both the
token sequences before and after modification of an MI are equal to
token sequences of another MI. The MIs are merged as a single MP.
Even if an MI is not merged with any other MIs, it is regarded as a
single MP whose SUPPORT value is 1.

4. EXPERIMENT
A software tool has been developed based on the proposed tech-

nique1. Currently, the tool handles only source code written in Java
and Subversion’s repositories. However, it is not difficult to extend
it for other programming languages and other repositories. The tool
uses method java.lang.String.hashCode() to generate hash values
for statements in the source code.

We conducted a small experiment on an open source project, Ar-
goUML. The purpose of this experiment is to derive insights on the
usefulness of the proposed technique.

Table 1 summarizes the repository for ArgoUML. ArgoUML has
been developed and maintained for 15 years, and its repository in-
cludes about 20,000 revisions. The latest revision consists of about
370,000 lines of code. If we detect clones from the latest revision
for identifying refactoring candidates, many refactoring candidates
are detected. Thus, it is difficult to find which clones should be
removed in priority to the others.

We derived 64,124 MPs from the target repository with the tool.
The derivation took around 31 minutes. Then, we filtered out them
by using the following conditions:

CONDITION1 lower threshold of SUPPORT is 3,

CONDITION2 lower threshold of LAM is 5,

CONDITION3 M-Type is only CHANGE, and

CONDITION4 C-Typeis only STATEMENT.

Why we used CONDITION2 is that size of clones probably af-
fects the motivation for removing them. We think that large clones
are more likely to be removed than small ones. In order to obtain
MPs that existing code had been changed to another code, we used
CONDITION3. CONDITION4 was used for identifying MPs that had
required large modifications.
1https://github.com/YoshikiHigo/MPAnalyzer

	 41	 public	 class	 ActionStateDiagram	 extends	 ActionAddDiagram	 {	
	 	 	 	 	 	 ...	
	 82	 	 	 public	 boolean	 isValidNamespace(MNamespace	 ns)	 {	
	 83	 	 	 	 	 if	 (ns	 instanceof	 MClassifier)	 return	 true;	
	 84	 	 	 	 	 	 	 return	 false;	
	 85	 	 	 }	
	 	 	 	 	 	 ...	

DELETED	

(a) Before modification (revision 3,760)

	 54	 public	 class	 ActionStateDiagram	 extends	 ActionAddDiagram	 {	
	 	 	 	 	 	 ...	
108	 	 	 public	 boolean	 isValidNamespace(Object	 handle)	 {	
109	 	 	 	 	 if	 (!ModelFacade.isANamespace(handle))	 {	
110	 	 	 	 	 	 	 cat.error("No	 namespace	 as	 argument");	
111	 	 	 	 	 	 	 cat.error(handle);	
112	 	 	 	 	 	 	 throw	 new	 IllegalArgumentException(
113	 	 	 	 	 	 	 "The	 argument	 "	 +	 handle	 +	 "is	 not	 a	 namespace.");	
114	 	 	 	 	 }	
115	 	 	 	 	 MNamespace	 ns	 =	 (MNamespace)handle;	
116	 	 	 	 	 if	 (ns	 instanceof	 MClassifier)	
117	 	 	 	 	 	 	 return	 true;	
118	 	 	 	 	 return	 false;	
119 	 	 }	
	 	 	 	 	 	 ...	

ADDED	

(b) After modification (revision 3,761)

Figure 4: Example of identified refactoring candidates that
were actually refactored by pulling up clones to the common
base class in the latest revision.

We extracted 13 MPs with the conditions2, then we manually
investigated them by browsing their source code before and after
the modifications, and of the latest revision. Table 2 summarizes
the investigation result.

Category A is a set of MPs that has already been removed in the
latest revision. There were six MPs classified into A. Four of them
were clones that were pulled up to the common base classes (A1),
and the remaining two were extracted as new methods (A2).

Figure 4 shows an MP classified into A1. In the modification,
code labeled DELETED was deleted and code labeled ADDED was
added in revision 3,761. The same modifications were performed
on 4 methods, each of which was defined in different classes but
they have a common base class. The 4 methods have the same
signature, and they have been pulled up to the common base class
in the latest revision.

Figure 5 shows an MP classified into A2. In this modification,
procedure for generating an object that variable persister points to
was added. The type of the generated object depends on the type of
the object that variable projectMember points to. In the latest revi-
sion, the added if-else statements were replaced with a constructor
call. The SUPPORT value of this MP is 3, and all the three code
were modified in the same way in the latest revision.

Category B is a set of MPs that were regarded as not appropri-
ate as removal candidates. Two of them were code that had been
generated by tools like compiler-compiler. The modifications were
not made by human but the grammar for the generated code was
changed. If we were the developers of the target software, we
would know which source files had been automatically generated
by tools. Consequently, in actual usages of this tool, it will not be
difficult to filter out such generated code.

We found that one MP deemed to be a typical modification of
Java language (see Figure 6). In the modification, an iterative pro-
cedure with Enumeration was changed to a procedure with a for-
statement. In Java language, there are several ways to implement
iterative procedures such as Iterator, enhanced for-statement, con-
ventional for-statement, Enumeration, and so on. Changing code
implemented using one of them to another is often performed. Such

2If we had used looser conditions, we would have extracted more
MPs. The reason why we used relatively strict conditions is to ex-
tract a small number of MPs for manual investigation.

	 45	 public	 class	 XmiFilePersister	 extends	 AbstractFilePersister	 {	 	
	 	 	 	 	 	 ...	
	 77	 	 	 public	 void	 doSave(Project	 project,	 File	 file)	
	 78	 	 	 	 	 	 	 throws	 SaveException	 {	
	 	 	 	 	 	 	 	 ...	
107	 	 	 	 	 if	 (projectMember.getType().equalsIgnoreCase("xmi"))	 {	
108	 	 	 	 	 	 	 if	 (LOG.isInfoEnabled())	 {	
109	 	 	 	 	 	 	 	 	 LOG.info("Saving	 member	 of	 type:	 "	
110	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 ((ProjectMember)	 project.getMembers()	
111	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .get(i)).getType());	
112	 	 	 	 	 	 	 }	
113	 	 	 	 	 	 	 projectMember.save(writer,	 null);	
144 	 	 	 	 }	
	 	 	 	 	 	 	 	 ...	

DELETED	

(a) Before modification (revision 7,436)

	 47	 public	 class	 XmiFilePersister	 extends	 AbstractFilePersister	 {	 	
	 	 	 	 	 	 ...	
	 79	 	 	 public	 void	 doSave(Project	 project,	 File	 file)	
	 80	 	 	 	 	 	 	 throws	 SaveException	 {	
	 	 	 	 	 	 	 	 ...	
109	 	 	 	 	 if	 (projectMember.getType().equalsIgnoreCase("xmi"))	 {	
110	 	 	 	 	 	 	 if	 (LOG.isInfoEnabled())	 {	
111	 	 	 	 	 	 	 	 	 LOG.info("Saving	 member	 of	 type:	 "	
112	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 ((ProjectMember)	 project.getMembers()	
113	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .get(i)).getType());	
114	 	 	 	 	 	 	 }	
115	 	 	 	 	 	 	 MemberFilePersister	 persister	 =	 null;	
116	 	 	 	 	 	 	 if	 (projectMember	 instanceof	 ProjectMemberDiagram)	 {	
117	 	 	 	 	 	 	 	 	 persister	 =	 new	 DiagramMemberFilePersister();	
118	 	 	 	 	 	 	 }	 else	 if	 (projectMember	 instanceof	 ProjectMemberTodoList)	 {	
119	 	 	 	 	 	 	 	 	 persister	 =	 new	 TodoListMemberFilePersister();	
120	 	 	 	 	 	 	 }	 else	 if	 (projectMember	 instanceof	 ProjectMemberModel)	 {	
121	 	 	 	 	 	 	 	 	 persister	 =	 new	 ModelMemberFilePersister();	
122	 	 	 	 	 	 	 }	
123	 	 	 	 	 	 	 persister.save(projectMember,	 writer,	 null);	
124	 	 	 	 	 }	 	
	 	 	 	 	 	 	 	 ...	

ADDED	

(b) After modification (revision 7,437)

208	 	 	 	 	 if	 (projectMember.getType().equalsIgnoreCase(getExtension()))	 {	
209	 	 	 	 	 	 	 if	 (LOG.isLoggable(Level.INFO))	 {	
210	 	 	 	 	 	 	 	 	 LOG.log(Level.INFO,	 "Saving	 member	 of	 type:	 {0}",	
211	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 projectMember.getType());	
212	 	 	 	 	 	 	 }	
213	 	 	 	 	 	 	 MemberFilePersister	 persister	 =	 new	 ModelMemberFilePersister();	
214	 	 	 	 	 	 	 persister.save(projectMember,	 stream);	
215	 	 	 	 	 }	 DELEGATED	

(c) Latest code (revision 19,910)

Figure 5: Example of identified refactoring candidates that
were actually refactored by extracting clones as a new construc-
tor in the latest revision.

change strongly depends on Java language, and depend neither on
software itself nor on its domain. Consequently, the authors did not
think that the code was appropriate as a removal candidate.

We found that, in the latest revision, source files including an
MP had been deleted. We regarded that the remaining 3 MPs were
appropriate as removal candidates. They exist in the latest revi-
sion, and it is not difficult to remove them with relatively simple
operations such as Pull Up Method or Extract Method.

5. RELATED WORK

5.1 Distilling Changed Code
Kim et al. proposed a technique to summarize code changes and

Table 2: Investigation Result
category # of candidates

A: already removed 6
A1: pull up method 4
A2: extract method 2

B: not appropriate 4
B1: generated code 2
B2: typical change 1
B3: not exist in latest revision 1

C: appropriate 3

222	 /**	 Reply	 the	 bounding	 box	 for	 this	 FigEdge.	 */	
223	 public	 Rectangle	 getBounds()	 {	
224	 	 	 Rectangle	 res	 =	 _fig.getBounds();	
225	 	 	 Enumeration	 enum	 =	 _pathItems.elements();	
226	 	 	 while	 (enum.hasMoreElements())	 {	
227	 	 	 	 	 Fig	 f	 =	 ((PathItem)	 enum.nextElement()).getFig();	
228	 	 	 	 	 res	 =	 res.union(f.getBounds());	
229	 	 	 }	
230	 	 	 return	 res;	
231	 }	

DELETED	

(a) Before modification (revision 145)

240	 /**	 Reply	 the	 bounding	 box	 for	 this	 FigEdge.	 */	
241	 public	 Rectangle	 getBounds()	 {	
242	 	 	 Rectangle	 res	 =	 _fig.getBounds();	
243	 	 	 int	 size	 =	 _pathItems.size();	
244	 	 	 for	 (int	 i	 =	 0;	 i	 <	 size;	 i++)	 {	
245	 	 	 	 	 Fig	 f	 =	 ((PathItem)	 _pathItems.elementAt(i)).getFig();	
246	 	 	 	 	 res.add(f.getBounds());	
247	 	 	 }	
248	 	 	 return	 res;	
249	 }	

ADDED	

(b) After modification (revision 146)

Figure 6: The identified modification that an iteration with
Enumeration was changed to one with for-statement

developed a tool, LSDiff based on their technique [9]. The tech-
nique permits us to know easily what kinds of changes were per-
formed on APIs or program elements such as method invocations.
Their technique abstracts code changes because its purpose is sup-
porting the understanding of code changes. On the other hand, our
technique is intended to identify refactoring candidates. It does not
abstract code changes: however it extracts code changes from to-
ken sequences generated from the source code not from the source
code itself in order to identify appropriate refactoring candidates.

Fluri et al. proposed a change distilling technique [3]. Their
technique compares two versions of abstract syntax trees, computes
tree-edit operations, and maps each tree-edit to atomic AST-level
change types. AST-level comparison can distill code changes that
line-level comparison cannot (e.g., reordering parameters of meth-
ods). In this research, we adopted token-level comparison to iden-
tify removal candidates because of its rapidity. However, AST-level
comparison will also be useful to identify refactoring candidates.

5.2 Identifying Refactoring Candidates
Higo et al. proposed a technique to identify refactoring candi-

dates based on clone analysis [6]. In their technique, candidates
are wholly-duplicated program units such as classes, methods and
blocks. Duplicated units are characterized with some metrics in or-
der to infer how they can be refactored. For example, a metric used
in their technique indicates each set of duplicated units has the a
common base class or not. If so, it may not be difficult to remove
them by pulling up them to the common base class.

Hotta et al. proposed using program dependency graph (in short,
PDG) for identifying refactoring candidates [7]. Using PDG en-
ables the identification of refactoring candidates even if a program
unit is not wholly-duplicated with other units.

The two existing techniques identify refactoring candidates based
on code analysis of the latest version. Clones are suggested to users
as refactoring candidates regardless of how they evolved. On the
other hand, the proposed technique identifies candidates that were
actually modified in the same way during their evolution.

6. CONCLUSION
In this paper, we proposed a technique to identify refactoring op-

portunities based on co-evolution analysis. If clones were modified
in the same way in the past, they are suggested as refactoring can-
didates in the proposed technique. Using past modification records

is different from conventional identification techniques. We have
conducted a small experiment on an open source project, and the
proposed technique identified 13 candidates. We carefully investi-
gated all the candidates and confirmed that only 4 out of them were
not appropriate for refactoring. In the future, we are going to in-
troduce more semantic analyses to extract code changes. Semantic
analysis will requires more time to extract code changes: however,
we will obtain more useful changes for refactoring.

7. ACKNOWLEDGEMENTS
This work was supported by MEXT/JSPS KAKENHI 25220003,

24650011, and 24680002.

8. REFERENCES
[1] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest

common subsequence algorithms. In Proceedings of the 7th
International Symposium on String Processing Information
Retrieval, pages 39–48, 2000.

[2] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou,
and A. E. Hassan. An empirical study on inconsistent
changes to code clones at release level. In Proceedings of the
16th Working Conference on Reverse Engineering, pages
85–94, 2009.

[3] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Transactions on Software
Engineering, 33(11):725–743, 2007.

[4] M. Fowler. Refactoring: improving the design of existing
code. Addison Wesley, 1999.

[5] Y. Higo and S. Kusumoto. How often do unintended
inconsistencies happened? –deriving modification patterns
and detecting overlooked code fragments–. In Proceedings of
the 28th International Conference on Software Maintenance,
pages 222–231, 2012.

[6] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based
approach to identifying refactoring opportunities for merging
code clones in a java software system. Journal of Software
Maintenance and Evolution: Research and Practice,
20(6):435–461, 2008.

[7] K. Hotta, Y. Higo, and S. Kusumoto. Identifying, tailoring,
and suggesting form template method refactoring
opportunities with program dependence graph. In
Proceedings of the 16th European Conference on Software
Maintenance and Reengineering, pages 53–62, 2012.

[8] C. Kapser and M. W. Godfrey. "Cloning considered harmful"
considered harmful: patterns of cloning in software.
Empirical Software Engineering, 13(6):645–692, 2008.

[9] M. Kim, D. Notkin, D. Grossman, and G. Wilson Jr.
Identifying and summarizing systematic code changes via
rule inference. IEEE Transactions on Software Engineering,
39(1):45–62, 2013.

[10] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. In Proceedings of
the 10th European Software Engineering Conference held
jointly with 13th International Symposium on Foundations of
Software Engineering, pages 187–196, 2005.

[11] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and tools : A
qualitative approach. Science of Computer Programming,
74(7):470–495, 2009.

