
Predicting Fault-Prone Modules
Based on Metrics Transitions

Yoshiki Higo1 Kenji Murao1 Shinji Kusumoto1 Katsuro Inoue1

1Graduate School of Information Science and Technology, Osaka University
{higo,k-murao,kusumoto,inoue}@ist.osaka-u.ac.jp

ABSTRACT
This paper describe a method for identifying fault-prone modules.
The method utilizes metrics transitions rather than raw metrics val-
ues. Metrics transitions are measured from the source code of con-
secutive versions, which is archived in software repositories. Met-
rics transitions should be an good indicator of software quality be-
cause they reflect how the software system has evolved. This paper
exhibits a case study, which is a comparison between metrics transi-
tions and CK metrics suite. In the case study, the metrics transitions
could precisely identify fault-prone modules.

1. INTRODUCTION
Information about how a software system has evolved is use-

ful for various activity on the system in the future. However, it
is burdensome and costly to collect and analyze the information
manually. Developers tend to get overwhelmed to process assigned
works, they don’t afford to do extra works for the future.

A software repository is a container that includes all products
and histories of a software system. There are many software tools
to handle software repositories. By mining software repositories,
we can easily get any products of the software system at any given
point in the past. Recently, mining software repositories has re-
ceived much attention, and it is widely accepted that it provide
beneficial information for developers or maintainers.

This paper describes a method to identify characteristic features
of a software system by mining the software repository. The method
measures how metrics of the modules included in the system have
changed through the development and maintenance. For example,
if the metrics of certain modules are up-and-down repeatedly, the
modules may need more maintenance costs then other modules be-
cause the modules were changed substantially: we think that sim-
ple bug fixes or function additions don’t yield up-and-down met-
rics transitions. The method lets us analyze a software system form
various viewpoints, and we can easily identify its tendencies and
attributes.

We believe that the method can be applied in the various contexts
of software development and maintenance for getting useful infor-
mation. In this paper, especially, we describes the method from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEFECTS’08, July 20, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-051-7/08/07 ...$5.00.

the viewpoint of identifying fault-prone modules. Identification of
fault-prone modules is an active research topic, and various kinds
of techniques have been proposed for that [6, 9]. The identification
lets us know which modules we should pay more attention than
others, which leads to effective development and maintenance.

Section 2 describes some terms, and Section 3 explains statis-
tics tools utilized in the proposal technique. Section 4 describes the
procedure of metrics transitions from the viewpoint of identifying
fault-prone modules. Section 5 gives a description of the results
that we applied the method to an open source software system. Fi-
nally, we conclude our paper with future works in Section 7.

2. TERMS
Here, we define some terms in the context of the proposal tech-

nique.

Snapshot: A snapshot is a set of source files needed to construct
the system just after a check-in is done by a developer. Hence,
the number of snapshots is equal to the number of check-
ins. In the method, snapshots are retrieved from repositories
of version control systems (e.g., CVS [1], Subversion [3]).
Also, the developer name and the date of the check-ins are
retrieved as well as actual source code.

Fluctuation: A fluctuation is an indicator representing how a soft-
ware system has evolved. In the proposal technique, fluctua-
tions are calculated based on how the metrics of the software
system have transited through all of the snapshots.

Characteristic Feature: A characteristic feature is a certain ten-
dency or attribute of a software system. There are various
kinds of characteristic features in single software system, and
we believe that elucidating its characteristic features leads us
to develop or maintain the system in more efficient way. For
example, we think that it is possible to evaluate the modules,
the design, and the developers of the software system by us-
ing the elucidated characteristic features. Especially, in this
paper, we describe the proposal technique from the viewpoint
of identifying fault-prone modules.

3. TOOLS FOR FLUCTUATION MEASURE-
MENT

We introduce several statistics tools for measuring fluctuations
of software metrics. In this introduction, we assume the following
situation:

MO = {mo1, mo2, · · · , moα}: the set of the modules included
in the target software system where α is the number of them.

ME = {me1, me2, · · · , meβ}: the set of the measured metrics
where β is the number of them.

CT = {ct1, ct2, · · · , ctγ}: the set of times when check-ins of any
of the source files were done in the past where γ is the num-
ber of the total check-ins. ct1 is the first check-in on the
repository, and ctγ is the last check-in.

v(i, j, k): the value of metric mej on module moi in time ctk.
If module moi doesn’t exist in time ctk, we assume that
v(i, j, k) = null.

3.1 Entropy
Entropy is an indicator to represent the degree of uncertainty

[7]. Given that fluctuation is uncertainty of metrics, we can use En-
tropy as an indicator of metrics fluctuations. Entropy is measured
on every module and every metric, and it is defined as:

H(i, j) = −
γ′

X

l=1

pllog2pl

where:

• γ′ is the number of different values {v′
1, v

′
2, · · · , v′

γ′} of met-
ric mej on module moi (1 ≤ γ′ ≤ γ),

• pl is the probability that metric mej is v′
l.

If all values of metric mej on module moi (v(i, j, 1), v(i, j, 2),
· · · , v(i, j, γ)) are different from each other, Entropy H(i, j) be-
comes the maximum value −log2

1
γ

. Meanwhile, if all metric val-
ues are the same, H(i, j) becomes the minimum value −log21 =
0.

3.2 Normalized Entropy
The maximum value of Entropy depends on the number of check-

ins, so that it is difficult to compare Entropies between different
software systems. To solve this problem, we define Normalized
Entropy, H ′.

Normalized Entropy is measured on every module and every
metric because it is derived from Entropy. If we use the same as-
sumption of Entropy, Normalized Entropy is defined as:

H ′(i, j) =
H(i, j)

−log2
1
γ

3.3 Quartile Deviation
In the field of statistics, Quartile Deviation is utilized for rep-

resenting how data spread. Given that fluctuation is spread of met-
rics, we can utilize Quartile Deviation1 as an indicator of metrics
fluctuations.

We assume that, q1(i, j)/q3(i, j) is first/third quartile of the sorted
set of values of metric mej on module moi, Quartile Deviation,
Qmoi,mej , is defined as:

Q(i, j) =
q3(i, j) − q1(i, j)

2

3.4 Quartile Dispersion Coefficient
Quartile Deviation is greatly affected by the difference of scales

between metrics because it is an absolute value. Thus, it is difficult
to compare Quartile Deviation between different metrics. To solve
this problem, we uses Quartile Dispersion Coefficient, Q′.
1Spread of metrics is not normally-distributed. Quartile Deviation
can be utilized to evaluate nonnormal distribution.

Quartile Dispersion Coefficient is measured on every module
and every metric as well as Quartile Deviation because it is derived
from Quartile Deviation. If we use the same assumption of Quar-
tile Deviation and m(i, j) is the median value, Quartile Dispersion
Coefficient is defined as2:

Q′(i, j) =
Q(i, j)

m(i, j)

3.5 Hamming Distance
In this research, Hamming Distance is measured on consecutive

two snapshots, it is defined as:

HD(i, k) =

β
X

j=1

diff(v(i, j, k − 1), v(i, j, k))

where:

diff =



1 (v(i, j, k − 1) 6= v(i, j, k))
0 (v(i, j, k − 1) = v(i, j, k))

HD(i, k) represents the number of metrics changed between
consecutive two check-ins, ctk−1 and ctk, on module moi.

3.6 Euclidean Distance
Hamming Distance counts only whether each metric value changed

or not while Euclidean Distance counts how much the values changed.
In this research, Euclidean Distance is a distance in β-dimensional
Euclidean space, and it is defined as:

ED(i, k) =

q−−−−→
V(i, k)T

−−−−→
V(i, k)

where:

•
−−−→
v(i, k) = [v(i, 1, k),v(i, 2, k),· · · ,v(i, β, k)], which is a vec-
tor representation of the metrics values on module moi at
time ctk,

•
−−−−→
V(i, k) = [

−−−→
v(i, k) −

−−−−−−→
v(i, k − 1)].

3.7 Mahalanobis Distance
Fluctuations measured by Euclidean Distance are valid under as-

sumption that there is no correlation and no scale difference be-
tween metrics. However, in practice, there are often some cor-
relations and scale differences between them. Thus, the proposal
technique utilizes Mahalanobis Distance, which is valid under ex-
istences of correlations and scale differences.

If we use the same assumption of Euclidean Distance, and Σ
is the covariance matrix of the whole of the system, Mahalanobis
Distance is defined as:

MD(i, k) =

q−−−−→
V(i, k)T Σ−1

−−−−→
V(i, k)

4. MEASUREMENT PROCEDURE
Figure 1 illustrates an overview of the proposal technique. The

method can be applied to only the software systems maintained
with a revision control system. The process of the method is the
follows:

STEP1 :Retrieves all of the snapshots
In this step, all versions of the snapshots are retrieved from the
software repository to measure metrics. A snapshot is a set of all
2The definition is based on the assumption that all metrics values
are greater than 0. If some values are negative, the median value
may be 0, or very close to 0. In such case, we have to consider
another definition.

repository

ct1 ct2 ctg
γ

・・・

・・・

all of the snapshots

STEP1

STEP2

STEP3

STEP4

v(1,1,1) v(1,β,1)

v(α,1,1) v(α,β,1)

・・・

・
・
・

・・・

・
・
・

・

・

・

ct1
v(1,1,γ) v(1,β,γ)

v(α,1,γ) v(α,β,γ)

・・・

・
・
・

・・・

・
・
・

・

・

・

Ct
γ

・・・

・・・

values of all kinds of metrics on all of the snapshots

fluctuations of the metrics

graphs representing characteristic features
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

MoF(H)

MoF(H')

MoF(Q')

MoF(DH)

MoF(DE)

MoF(DM)

RFC

CBO

LCOM

NOC

DIT

LOC

H(i,j): Entropy
H’(i,j): Normalized Entropy
Q(i,j): Quartile Deviation
Q’(i,j): Quartile Dispersion Coefficient
HD(i,k): Hamming Distance
ED(i,k): Euclidean Distance
MD(i,k): Mahalanobis Distance

repositoryrepository

ct1 ct2 ctg
γ

・・・

・・・

all of the snapshots

ct1 ct2 ctg
γ

・・・

・・・

all of the snapshots

STEP1

STEP2

STEP3

STEP4

v(1,1,1) v(1,β,1)

v(α,1,1) v(α,β,1)

・・・

・
・
・

・・・

・
・
・

・

・

・

ct1
v(1,1,γ) v(1,β,γ)

v(α,1,γ) v(α,β,γ)

・・・

・
・
・

・・・

・
・
・

・

・

・

Ct
γ

・・・

・・・

values of all kinds of metrics on all of the snapshots

v(1,1,1) v(1,β,1)

v(α,1,1) v(α,β,1)

・・・

・
・
・

・・・

・
・
・

・

・

・

ct1
v(1,1,γ) v(1,β,γ)

v(α,1,γ) v(α,β,γ)

・・・

・
・
・

・・・

・
・
・

・

・

・

Ct
γ

・・・

・・・

values of all kinds of metrics on all of the snapshots

fluctuations of the metrics

graphs representing characteristic features
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

MoF(H)

MoF(H')

MoF(Q')

MoF(DH)

MoF(DE)

MoF(DM)

RFC

CBO

LCOM

NOC

DIT

LOC

H(i,j): Entropy
H’(i,j): Normalized Entropy
Q(i,j): Quartile Deviation
Q’(i,j): Quartile Dispersion Coefficient
HD(i,k): Hamming Distance
ED(i,k): Euclidean Distance
MD(i,k): Mahalanobis Distance

H(i,j): Entropy
H’(i,j): Normalized Entropy
Q(i,j): Quartile Deviation
Q’(i,j): Quartile Dispersion Coefficient
HD(i,k): Hamming Distance
ED(i,k): Euclidean Distance
MD(i,k): Mahalanobis Distance

Figure 1: Overview of the method

source files just after at least one source files was updated by a
check-in. For example, if there is a software repository including
change history represented in Figure 2. The method retrieves sets
of the source files at four times ct1, ct2, ct3, and ct4.

STEP2: Measures metrics of all of the snapshots
In this step, the method measures metrics of all versions of the
retrieved snapshots. It is necessary to select appropriate software
metrics fitted for the purpose: if the unit of module is class/method,
we should utilize class/method metrics; if we focus on the cou-
pling/cohesion of the software system, coupling/cohesion metrics
should be utilized. In the case study of this paper, we utilizes CK
metrics suite [5] mainly.

STEP3: Computes fluctuation of the metrics
The method computes fluctuation of the metrics measured in the
previous step. As of now, seven kinds of the fluctuations described
in Section 3 are computed.

F1,ver.1

F2,ver.1

F3,ver.1

F4,ver.1

F1,ver.2

F2,ver.2

F3,ver.2

F4,ver.2

F1,ver.3

F4,ver.3

F1

F2

F3

F4

Source files

Commit timesct1 ct2 ct3 ct4

F1,ver.1

F2,ver.1

F3,ver.1

F4,ver.1

F1,ver.2

F2,ver.2

F3,ver.2

F4,ver.2

F1,ver.3

F4,ver.3

F1

F2

F3

F4

Source files

Commit timesct1 ct2 ct3 ct4

Figure 2: Example of change history

STEP4: Analyzes characteristic features
The fluctuations calculated in the previous step have 2-dimensions:
for example, Hamming Distance has module and time dimensions.
By cutting a dimension of the two, we can compute the fluctuation
of the other dimension. Thus, we can compute various fluctua-
tions of modules, metrics, and times. Especially, in this paper, we
describe about fluctuations of modules for identifying fault-prone
modules.

Module Fluctuation is an indicator how modules have evolved
through its lifecycle3. The fluctuation of module moi utilizing En-
tropy (H) is defined as:

MoF (H(i, j)) =

β
X

j=1

H(i, j)

Module fluctuations utilizing other statistics tools introduced in
Section 3 can be defined as well as the module fluctuation utiliz-
ing Entropy:

• MoF (H(i, j)′) =

β
X

j=1

H ′(i, j),

• MoF (Q(i, j)) =

β
X

j=1

Q(i, j),

• MoF (Q(i, j)′) =

β
X

j=1

Q′(i, j),

• MoF (HD(i, k)) =

γ
X

k=1

HD(i, k),

• MoF (ED(i, k)) =

γ
X

k=1

ED(i, k),

• MoF (MD(i, k)) =

γ
X

k=1

MD(i, k).

3We also defined Metric Fluctuation and Change Fluctuation.
However we don’t describes about them in this paper because they
are out of scope of this workshop.

After calculating fluctuations, Graph representations are utilized
for visualizing them. These fluctuations indicate various character-
istic features of the software system, and they are useful to get rich
knowledge of the system.

5. CASE STUDY

5.1 Objective
The objective is to confirm that the method provides useful infor-

mation for software development and maintenance. Especially, in
this case study, we applied the method for confirming that classes
having fluctuations tend to be more fault-prone than other classes.

5.2 Target
In this case study, the target is an open source software system,

FreeMind. FreeMind is a mind-mapping software written in Java
language [2]. Table 1 represents the overview of FreeMind. At the
first snapshot (ct1), the LOC is 3,882, and the number of source
files is 67. At the last snapshot (ct225), the LOC is 39,350, and the
number of source files is 221.

5.3 Utilized Metrics
In this case study, we utilized six metrics. Five of them are RFC,

CBO, LCOM, NOC, DIT, which are members of CK metrics suite
[5]. The last metric is LOC, which is the simplest and most widely
utilized metric.

It was experimentally evaluated that CK metrics suite is a good
indicator to predict fault-prone classes [4, 8]. Hence, it is beneficial
that the fluctuations of CK metrics suite are compared with its raw
values.

5.4 Configuration
We performed this case study in the following procedure.

1. Devides the development history into anterior half and pos-
terior half.

2. Calculates fluctuations from the anterior half history. In this
case study, we didn’t utilize quartile deviation because there
are scale differences between each of CK metrics and LOC.

3. Measures the six metrics from the last snapshot of the ante-
rior half history.

4. Identifies bug fixes in the posterior half and counts the num-
ber of them. In this case study, we identifies the bug fixes
based on commit log messages. In the FreeMind project,
prefix “Bug fix:” is attached to the commit log message if
the commit is a bug fix. We regarded commits whose log

Table 1: Overview of FreeMind
Software FreeMind
Language Java

of Developers 12
of snapshots (γ) 225

first commit time (ct1) 2000/08/01 19:56:09
last commit time (ctγ) 2008/01/13 20:55:35
of source files of ct1 67
of source files of ctγ 221

LOC of ct1 3,882
LOC of ctγ 39,350

message includes both “bug” and “fix” as bug fixes. Also, in
this study, we regarded bugs in a source file as bugs in the
public class defined in the source file.

5. Sorts FreeMind’s classes in the order of fluctuations and raw
metrics values. Also, bug coverages are calculated based on
the orders.

5.5 Results
The case study was performed on a single PC workstation4. It

took about 18 minutes to calculate the fluctuations from the snap-
shots of the posterior half 5.

Figure 3 illustrates the result of bug coverage comparison be-
tween the class (module) fluctuations and raw metrics values. X
axis is ranking coverage (%), and Y axis is bug coverage (%).
Ranking coverage means sorted files in descending order of their
class fluctuations, and bug coverage means bugs ratio included in
the files of top xx%, which is specified by the ranking coverage. We
can see that the ranking based on the class fluctuations could iden-
tify fault-prone class more precisely than the ranking based on the
raw metrics values. At the top 20% of all classes, ranking based on
class fluctuations includes 95% to 100% bugs meanwhile ranking
based on the raw metrics values includes 22% to 89% bugs.

5.6 Discussion
The result of this case study shows that class fluctuations can

be a good indicator to predict fault-prone classes as well or bet-
ter than raw software metrics. To confirm that this is true in other
software systems, we applied the proposal technique to other two
open source software systems, JHotDraw and HelpSetMaker. In
the case of JHotDraw (HelpSetMaker), ranking based on class
fluctuations includes 44% (60%) to 59% (75%) bugs meanwhile
ranking based on the raw metrics values includes 10% (28%) to
48% (63%) bugs at the top 20% of all classes. In the applications
of the both systems, the class fluctuations had better bug coverages
than raw metrics values as well as FreeMind. However, calculat-
ing module fluctuations requires much more time than measuring
metrics from a single version of the source code. In this case study,
it took requires 18 minutes to calculate class fluctuations from sets
of snapshots of FreeMind, which was stored in the local storage in
advance.

6. RELATED WORKS
Williams et al. reported that checking return values of methods

is an effective way to predict fault occurrences in the future based
on their experiments [9]. Also, they applied the technique to the
source code of the latest version with and without the information
stored in the CVS repository of the software system, and compared
the results. The results showed that the checking with the CVS
information can predict fault occurrences more precisely than the
checking without the CVS information.

Ostrand et al. predicts the location and number of faults occurred
in the next release based on information stored in CVS repository
and bug database [6]. They constructed a negative binomial regres-
sion model from the information, and experimentally evaluated that
the model can predict more precisely than the prediction based on
LOC. Also, they reported that it is possible to suggest which source
files should be paid attention in the test phase.

4CPU: Core2Duo 1.86GHz, Memory: 2GB
5Source files of all snapshots were extracted in the local storage of
the workstation in advance.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

MoF(H)

MoF(H')

MoF(Q')

MoF(DH)

MoF(DE)

MoF(DM)

RFC

CBO

LCOM

NOC

DIT

LOC

Bug coverage (%)

Ranking coverage (%)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

MoF(H)

MoF(H')

MoF(Q')

MoF(DH)

MoF(DE)

MoF(DM)

RFC

CBO

LCOM

NOC

DIT

LOC

Bug coverage (%)

Ranking coverage (%)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

MoF(H)

MoF(H')

MoF(Q')

MoF(DH)

MoF(DE)

MoF(DM)

RFC

CBO

LCOM

NOC

DIT

LOC

Bug coverage (%)

Ranking coverage (%)

Figure 3: Bug Coverage Comparison between Class (Module) Fluctuations and Raw Metric Values

7. CONCLUSION
In this paper, we proposed a method for analyzing characteristic

features of a software system based on metrics transitions. Also,
this paper describes the result of identification of fault-prone mod-
ules. This research is work-in-progress, and we have many things
to do, the followings are the some of them: (1)we have to define
details of the method, some heuristics may be introduced to the
method; (2)we have to investigate attributes of the fluctuations; We
think that the fluctuations are very much correlated with the number
of changed or number of lines changes of the source code over revi-
sions; (3)we are going to enhance the tool to handle other program-
ming languages, and apply the method to various software systems;
(4)we are going to apply the method to analyze other feathers in
the different contexts; (5)it may be interesting to combine multiple
fluctuations using machine learning or linear regression algorithms
to predicut faults.

Acknowledgment
This work is being conducted as a part of Stage Project, the Devel-
opment of Next Generation IT Infrastructure, supported by Min-
istry of Education, Culture, Sports, Science and Technology.

8. REFERENCES
[1] CVS. http://ximbiot.com/cvs/wiki/.
[2] FreeMind. http://freemind.sourceforge.net/

wiki/index.php/Main_Page.
[3] Subversion. http://subversion.tigris.org/.
[4] V. R. Basili, L. C. Briand, and W. L. Melo. A Validation of

Object-Oriented Design Metrics as Quality Indicators. IEEE
Transactions on Software Engineering, 22(10):751–761, Oct
1996.

[5] S. Chidamber and C. Kemerer. A Metric Suite for
Object-Oriented Design. IEEE Transactions on Software
Engineering, 25(5):476–493, Jun 1994.

[6] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the
location and number of faults in large software systems. IEEE
Transactions on Software Engineering, 31(4):340–355, Apr
2005.

[7] C. E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27:379–423, 623–656, 1948.

[8] R. Subramanyam and M. S. Krishnan. Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity:
Implications for Software Defects. IEEE Transactions on
Software Engineering, 29(4):297–310, Apr 2003.

[9] C. C. Williams and J. K. Hollingworth. Automatic Mining of
Source Code Repositories to Improve Bug Finding
Techniques. IEEE Transactions on Software Engineering,
31(6):466–480, Jun 2005.

