
Improving Process of Source Code Modification
Focusing on Repeated Code

Ayaka Imazato1, Yui Sasaki1, Yoshiki Higo1, and Shinji Kusumoto1

Graduate School of Information Science and Technology, Osaka University,
1-5, Yamadaoka, Suita, Osaka, Japan,

{i-ayaka, s-yui, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract. There are various kinds of repeated code such as consecutive if-else
statements or case entries in program source code. Such repeated code some-
times require simultaneous modifications on all of its elements. Applying the
same modifications to many places on source code is a burdensome work and
introduces new bugs if some places to be modified are overlooked. For these
reasons, it is necessary to support modifications on repeated code. Appropriate
supports for repeated code can improve process of source code modification. In
this paper, as a first step for supporting modifications on repeated code, we inves-
tigate how repeated code are modified during software evolution. As a result, we
revealed that, 73-89% of repeated code were modified at least once in their life
and 31-58% of modifications on repeated code were simultaneous ones for all of
their elements.

1 Introduction

Recent studies have revealed that a significant fraction (between 7% and 23%) of pro-
gram source code has become code clones [2, 14]. A code clone is a code fragment in
source code that is similar to or identical to other code fragments [15]. Code clones
are introduced into source code because of various reasons such as copy-and-paste pro-
gramming [10]. An advantage of copy-and-paste programming is that: we can imple-
ment necessary functions quite rapidly. However, if the copied code includes a latent
bug, copy-and-paste programming unintentionally scatters the bug into its pasted places
[1, 9, 11]. Moreover, code clones often require simultaneous modifications. If we over-
look some code clones to be modified simultaneously, new bugs are introduced to the
overlooked code fragments [7, 12]

Authors are thinking that the same problems have been occurring in repeated code.
Repeated code means a list of the same instructions such as consecutive case entries or
if-else statements. If an element of repeated code requires a modification, we may need
to modify the other elements of the repeated code in the same way simultaneously;
besides, if the number of repetition is large, manual modifications on every element
of the repeated code is a burdensome and error-prone operation. Some research efforts
investigated program source code and found that there are many repetitions in it [6, 13,
16]. Figure 1 shows actual repeated code in Java source code found in the investigation
of literature [6]. As shown in this figure, various instructions in source code can become
repeated code.

2

case	
 Project.MSG_ERR:	

	
 	
 	
 	
 msg.insert(0,	
 errColor);	

	
 	
 	
 	
 msg.append(END_COLOR);	

	
 	
 	
 	
 break;	

case	
 Project.MSG_WARN:	

	
 	
 	
 	
 msg.insert(0,	
 warnColor);	

	
 	
 	
 	
 msg.append(END_COLOR);	

	
 	
 	
 	
 break;	

case	
 Project.MSG_INFO:	

	
 	
 	
 	
 msg.insert(0,	
 infoColor);	

	
 	
 	
 	
 msg.append(END_COLOR);	

	
 	
 	
 	
 break;	

case	
 Project.MSG_VERBOSE:	

	
 	
 	
 	
 msg.insert(0,	
 verboseColor);	

	
 	
 	
 	
 msg.append(END_COLOR);	

	
 	
 	
 	
 break;	

(a) case entries

public	
 static	
 boolean	
 isAbstract(int	
 access_flags)	
 {	

	
 	
 	
 	
 return	
 (access_flags	
 &	
 ACC_ABSTRACT)	
 !=	
 0;	

}	

	

public	
 static	
 boolean	
 isPublic(int	
 access_flags)	
 {	

	
 	
 	
 	
 return	
 (access_flags	
 &	
 ACC_PUBLIC)	
 !=	
 0;	

}	

	

public	
 static	
 boolean	
 isStatic(int	
 access_flags)	
 {	

	
 	
 	
 	
 return	
 (access_flags	
 &	
 ACC_STATIC)	
 !=	
 0;	

}	

	

public	
 static	
 boolean	
 isNative(int	
 access_flags)	
 {	

	
 	
 	
 	
 return	
 (access_flags	
 &	
 ACC_NATIVE)	
 !=	
 0;	

}	

(b) method declarations

if	
 (null	
 !=	
 storepass)	
 {	

	
 	
 	
 	
 cmd.createArg().setValue("-­‐storepass");	

	
 	
 	
 	
 cmd.createArg().setValue(storepass);	

}	

	

if	
 (null	
 !=	
 storetype)	
 {	

	
 	
 	
 	
 cmd.createArg().setValue("-­‐storetype");	

	
 	
 	
 	
 cmd.createArg().setValue(storetype);	

}	

	

if	
 (null	
 !=	
 keypass)	
 {	

	
 	
 	
 	
 cmd.createArg().setValue("-­‐keypass");	

	
 	
 	
 	
 cmd.createArg().setValue(keypass);	

}	

(c) if blocks

out.println();	

out.println("-­‐");	

out.println("	
 ANT_HOME/lib	
 jar	
 listing");	

out.println("-­‐");	

doReportLibraries(out);	

	

out.println();	

out.println("-­‐");	

out.println("	
 Tasks	
 availability");	

out.println("-­‐");	

doReportTasksAvailability(out);	

(d) method invocations

e	
 =	
 ccList.elements();	

while	
 (e.hasMoreElements())	
 {	

	
 	
 	
 	
 mailMessage.cc(e.nextElement().toString());	

}	

	

e	
 =	
 bccList.elements();	

while	
 (e.hasMoreElements())	
 {	

	
 	
 	
 	
 mailMessage.bcc(e.nextElement().toString());	

}	

(e) while blocks

src	
 =	
 attributes.getSrcdir();	

destDir	
 =	
 attributes.getDestdir();	

encoding	
 =	
 attributes.getEncoding();	

debug	
 =	
 attributes.getDebug();	

optimize	
 =	
 attributes.getOptimize();	

deprecation	
 =	
 attributes.getDeprecation();	

depend	
 =	
 attributes.getDepend();	

verbose	
 =	
 attributes.getVerbose();	

(f) assign statements

private	
 MenuBar	
 iAntMakeMenuBar	
 =	
 null;	

private	
 Menu	
 iFileMenu	
 =	
 null;	

private	
 MenuItem	
 iSaveMenuItem	
 =	
 null;	

private	
 MenuItem	
 iMenuSeparator	
 =	
 null;	

private	
 MenuItem	
 iShowLogMenuItem	
 =	
 null;	

private	
 Menu	
 iHelpMenu	
 =	
 null;	

private	
 MenuItem	
 iAboutMenuItem	
 =	
 null;	

(g) variable declarations

}	
 catch	
 (final	
 ClassNotFoundException	
 cnfe)	
 {	

	
 	
 	
 	
 throw	
 new	
 BuildException(cnfe);	

}	
 catch	
 (final	
 InstantiationException	
 ie)	
 {	

	
 	
 	
 	
 throw	
 new	
 BuildException(ie);	

}	
 catch	
 (final	
 IllegalAccessException	
 iae)	
 {	

	
 	
 	
 	
 throw	
 new	
 BuildException(iae);	

}	
 	

(h) catch blocks

Fig. 1. Repeated code in Java source code (, which were identified in the investigation of literature
[6])

It is generally said that switch statements, where repeated code often occur, are
not recommended instruction in object-oriented design [5]. There are some research
efforts that have proposed ways to transforms switch statements and consecutive if-else
statement into multiple classes using polymorphism [4].

Consequently, paying special attention to repeated code can improve source code
modification process. For example, firstly identifying repeated code in source code in
an automatic way; then, if an element of repeated code is modified, the same modifica-

3

	
 	
 	
 	
 	
 …	

947	
 	
 	
 	
 excludes	
 =	
 new	
 String[
 0	
];	

948	
 	
 }	

949 	
 	

950	
 	
 filesIncluded	
 =	
 new	
 Vector();	

951	
 	
 filesNotIncluded	
 =	
 new	
 Vector();	

952	
 	
 filesExcluded	
 =	
 new	
 Vector();	

953	
 	
 dirsIncluded	
 =	
 new	
 Vector();	

954	
 	
 dirsNotIncluded	
 =	
 new	
 Vector();	

955	
 	
 dirsExcluded	
 =	
 new	
 Vector();	

956 	
 	

957	
 	
 if(
 isIncluded(
 ""	
)	
)	

958	
 	
 {	

	
 	
 	
 	
 	
 …	

(a) Before modification (revision
270,290)

	
 	
 	
 	
 	
 …	

947	
 	
 	
 	
 excludes	
 =	
 new	
 String[
 0	
];	

948	
 	
 }	

949 	
 	

950	
 	
 filesIncluded	
 =	
 new	
 ArrayList();	

951	
 	
 filesNotIncluded	
 =	
 new	
 ArrayList();	

952	
 	
 filesExcluded	
 =	
 new	
 ArrayList();	

953	
 	
 dirsIncluded	
 =	
 new	
 ArrayList();	

954	
 	
 dirsNotIncluded	
 =	
 new	
 ArrayList();	

955	
 	
 dirsExcluded	
 =	
 new	
 ArrayList();	

956 	
 	

957	
 	
 if(
 isIncluded(
 ""	
)	
)	

958	
 	
 {	

	
 	
 	
 	
 	
 …	

(b) After modification (revision
270,291)

Fig. 2. Actual modification on repeated code in file DirectoryScanner.java of Software Ant. Con-
secutive object generations were changed to ArrayList fromVector.

tions are (semi-)automatically applied to the other elements of the repeated code. those
kinds of supports would be helpful for programmer. In this research, as a first step of
modification support for repeated code, we investigate how repeated code are modified
and evolved. Finding and analyzing their modification/evolution patterns will make it
possible to propose useful ways of modification supports for repeated code.

As a result of the investigations we conducted on open source software, we obtained
the following knowledge, which are main contributions of this paper:

– elements forming repeated code were too small to be detected by existing code
clone detection tools;

– 73-89% of repeated code were modified at least once;
– 31-58% modifications on repeated code were applied to all the elements of repeated

code simultaneously;
– any instruction type of repeated code was modified. Especially, try block, while

block and variable declarations were more likely to be modified than the others;
and,

– the lesser repetitions repeated code had, the higher the ratio of simultaneous modi-
fications on all the elements of them was.

The remainder of this paper is organized as follows: Section 2 shows actual mod-
ifications on repeated code, which motivated us to conduct this research; Section 3
explains how we investigated modifications applied to repeated code; Section 4 shows
the investigation result on three open source software systems; then, Section 6 describes
some threats to validities on the investigation; finally, Section 7 concludes this paper.

2 Motivation

Figures 2 and 3 show actual modifications on repeated code in Ant. In Figure 2, six
assignment statements creating Vector objects were changed to ones creating ArrayList

4

	
 	
 	
 	
 	
 …	

135	
 	
 private	
 File[]	
 getAnt1Files()	
 {	

136	
 	
 	
 	
 List	
 files	
 =	
 new	
 ArrayList();	

137	
 	
 	
 	
 addJavaFiles(files,	
 TASKDEFS_ROOT);	

138	
 	
 	
 	
 addJavaFiles(files,	
 new	
 File(TASKDEFS_ROOT,	
 "compilers"));	

139	
 	
 	
 	
 addJavaFiles(files,	
 new	
 File(TASKDEFS_ROOT,	
 "condition"));	

140	
 	
 	
 	
 addJavaFiles(files,	
 DEPEND_ROOT);	

141	
 	
 	
 	
 addJavaFiles(files,	
 new	
 File(DEPEND_ROOT,	
 "constantpool"));	

142	
 	
 	
 	
 addJavaFiles(files,	
 TYPES_ROOT);	

143	
 	
 	
 	
 addJavaFiles(files,	
 FILTERS_ROOT);	

144	
 	
 	
 	
 addJavaFiles(files,	
 UTIL_ROOT);	

145	
 	
 	
 	
 addJavaFiles(files,	
 new	
 File(UTIL_ROOT,	
 "depend"));	

146	
 	
 	
 	
 addJavaFiles(files,	
 ZIP_ROOT);	

147	
 	
 	
 	
 addJavaFiles(files,	
 new	
 File(UTIL_ROOT,	
 "facade"));	

148	
 	
 	
 	
 addJavaFiles(files,	
 INPUT_ROOT);	

149 	
 	

150 	
 	
 	
 	
 files.add(new	
 File(PACKAGE_ROOT,	
 "BuildException.java"));	

	
 	
 	
 	
 	
 	
 	
 …	
 	

(a) Before modification (revision 272,635)

	
 	
 	
 	
 	
 …	

135	
 	
 private	
 File[]	
 getAnt1Files()	
 {	

136	
 	
 	
 	
 List	
 files	
 =	
 new	
 ArrayList();	

137	
 	
 	
 	
 addJavaFiles(files,	
 TASKDEFS_ROOT,	
 false);	

138	
 	
 	
 	
 addJavaFiles(files,	
 new	
 File(TASKDEFS_ROOT,	
 "compilers"),	
 true);	

139	
 	
 	
 	
 addJavaFiles(files,	
 new	
 File(TASKDEFS_ROOT,	
 "condition"),	
 true);	

140	
 	
 	
 	
 addJavaFiles(files,	
 DEPEND_ROOT,	
 true);	

141	
 	
 	
 	
 addJavaFiles(files,	
 TYPES_ROOT,	
 true);	

142	
 	
 	
 	
 addJavaFiles(files,	
 FILTERS_ROOT,	
 false);	

143	
 	
 	
 	
 addJavaFiles(files,	
 UTIL_ROOT,	
 false);	

144	
 	
 	
 	
 addJavaFiles(files,	
 new	
 File(UTIL_ROOT,	
 "depend"),	
 false);	

145	
 	
 	
 	
 addJavaFiles(files,	
 new	
 File(UTIL_ROOT,	
 "facade"),	
 true);	

146	
 	
 	
 	
 addJavaFiles(files,	
 ZIP_ROOT,	
 true);	

147	
 	
 	
 	
 addJavaFiles(files,	
 INPUT_ROOT,	
 true);	

148 	
 	

149 	
 	
 	
 	
 files.add(new	
 File(PACKAGE_ROOT,	
 "BuildException.java"));	

	
 	
 	
 	
 	
 	
 	
 …	

(b) After modification (revision 272,636)

Fig. 3. Actual modification on repeated code in file Builder.java of Software Ant. The number of
parameters of consecutively invoked methods were increased.

objects simultaneously. In Figure 3, a parameter was added to every method invocation
in repeated code.

As shown in these examples, all the elements forming a repeated code are modified
on the same way simultaneously. The authors are thinking that there are two problems
in such modifications:

– applying modifications to multiple (even many) places is a time-consuming and
burdensome task;

– they introduce new bugs if some places to be modified are overlooked.

Consequently, modification supports on repeated code are necessary. For example,
the following support may be useful: if we modify an element in a repeated code, (semi-
)automatic modifications are performed on the other elements in the repeated code. In
this paper, as a first step of modification support on repeated code, we investigate how
repeated code are modified during software evolution.

5

3 Investigating Modifications on Repeated Code

Herein, we introduce a method for investigating how modifications were applied to
repeated code during software evolution. The input and the output of the method are as
follows.

INPUT repository of the target software.
OUTPUT data related to repeated code, for example the followings are distilled:

– instruction types included in repeated code;
– number of repetitions in repeated code;
– number of modifications applied to repeated code.

The investigation method consists of the following steps:

STEP1 identifying revisions where source files were modified;
STEP2 distilling data related to repeated code modified between every consecutive two

revisions, each of which was identified in STEP1;
STEP3 making evolutional data from the results of STEP2.

In the reminder of this section, Subsections 3.1, 3.2, and 3.3 explain each step of the
investigation method, respectively. Then, Subsection 3.4 describes software tool that we
have developed based on the investigation method.

3.1 STEP1: identifying revisions where source files are modified

In STEP1, the method identifies revisions where one or more source files were modi-
fied. Source code repositories contain not only source files but also other files such as
manual or copyright files, so that there are revisions that no source files were modi-
fied in software repositories. The purpose of STEP1 is eliminating revisions where no
source files were modified because we focus on only modifications on source files.

Herein, we assume that:

– R is a target repository;
– there are n revisions where at least one source file was modified in R;
– index i represents the order of revisions included in R, that is, ri means that its

revision is the i-th oldest in R.

By using the above assumptions, repository R can be defined as:

R = {r1,r2, · · · ,rn−1,rn} (1)

3.2 STEP2: distilling data related to repeated code modified between every
consecutive two revisions

Differences between two consecutive revisions ri and ri+1 (1 ≤ i∧ i < n) are analyzed
for finding whether repeated code were modified or not.

If repeated code were modified, the following information is distilled:

6

…	
 	

	
 	
 public	
 static	
 int	
 getColumnIndex(…)	
 {	
 	
 	

	
 	
 	
 	
 if	
 (…)	
 	

	
 	
 	
 	
 	
 	
 return	
 NDX_TI_ID_TITOLO;	
 	

	
 	
 	
 	
 else	
 if	
 (…)	
 	

	
 	
 	
 	
 	
 	
 return	
 NDX_TI_ID_COMPAGNIA;	
 	

	
 	
 	
 	
 else	
 if	
 (…)	
 	

	
 	
 	
 	
 	
 	
 return	
 NDX_TI_ID_NODO;	
 	

	
 	
 	
 	
 else	
 if	
 (…)	
 	

	
 	
 	
 	
 	
 	
 return	
 NDX_TI_ID_CAUSALE;	
 	

	
 	
 	
 	
 …	
 	

	
 	
 	
 	
 else	
 if	
 (…)	
 	

	
 	
 	
 	
 	
 	
 return	
 NDX_FI_DESC_FILIALE;	
 	

	
 	
 	
 	
 return	
 -­‐1;	

	
 	
 }	

…	

(a) source code

Root	

Class	

Method	
 Method	

if	
 return	

then	
 then	
 then	

return	
 return	
 return	

. . .	

subtrees having the same structure	

(b) abstract syntax tree

Fig. 4. An Example of constructing AST and finding repeated structures in it

	
 1:	
 A	

	
 2:	
 B	

	
 3:	
 line	
 will	
 be	
 changed	
 1	

	
 4:	
 line	
 will	
 be	
 changed	
 2	

	
 5:	
 C	

	
 6:	
 D	

	
 7:	
 line	
 will	
 be	
 deleted	
 1	

	
 8:	
 line	
 will	
 be	
 deleted	
 2	

	
 9:	
 E	

10:	
 F	

11:	
 G	

12:	
 H	

(a) before modification

	
 1:	
 A	

	
 2:	
 B	

	
 3:	
 line	
 changed	
 1	

	
 4:	
 line	
 changed	
 2	

	
 5:	
 C	

	
 6:	
 D	

	
 7:	
 E	

	
 8:	
 F	

	
 9:	
 G	

10:	
 line	
 added	
 1	

11:	
 line	
 added	
 2	

12:	
 H	

(b) after modification

3,4c3,4	

<	
 	
 line	
 will	
 be	
 changed	
 1	

<	
 	
 line	
 will	
 be	
 changed	
 2	

-­‐-­‐-­‐	

>	
 	
 line	
 changed	
 1	

>	
 	
 line	
 changed	
 2	

7,8d6	

<	
 	
 line	
 will	
 be	
 deleted	
 1	

<	
 	
 line	
 will	
 be	
 deleted	
 2	

11a10,11	

>	
 	
 line	
 added	
 1	

>	
 	
 line	
 added	
 2	

(c) diff output

Fig. 5. A simple example of comparing two revisions of a source file with diff (changed region
is represented with identifier ‘c’ like 3,4c3,4, deleted region is represented with identifier ‘d’ like
7,8d6, and added region is represented with identifier ‘a’ like 11a10,11. The numbers before and
after the identifiers show the corresponding lines)

– instruction types forming the modified repeated code;
– numbers of repetitions of the modified repeated code;
– token numbers of elements of the modified repeated code;
– whether the modified repeated code sustained repeated structure or not.

We find whether repeated code were modified or not with the following steps.

STEP2A: Identifying repeated code in revisions ri and ri+1 by using AST generated
from the revisions. AST sibling nodes are sorted in the order of the appearance on
the source code. If there are consecutive similar structures in the sibling nodes, their
code are regarded as repeated structure.

– In the case that the sibling nodes are leaves, conditions for satisfying the sim-
ilarity are (1) they are the same type nodes in AST and (2) they are textually
similar to each other. For the 2nd condition, we use Levenshtein distance.

7

– In the case that the sibling nodes are branches, the whole subtrees under the
branches have the similar structures. That is, structure similarity is checked
recursively.

Repeated structures in AST are regarded as repeated code in source code.
Figure 4 shows an example of constructing AST and identifying repeated structures
from it. In this case, subtrees under the if node in Figure 4(b) are the same struc-
ture, so consecutive if-else statements in the source code are regarded as repeated
code. After identifying repeated code, their location information (line number) is
distilled.
AST used herein is not a usual one. We applied some heuristics to AST for easily
identifying repeated structures. If readers have an interested in the detail of the
specialized AST and repeated code identification, see literature [16].

STEP2B: In order to identify where were modified in the source files between revi-
sions ri and ri+1, we use UNIX diff command. Figure 5 shows an example of
diff output. As shown in Figure 5, it is easy to identify line number modified be-
tween two revisions. All we have to do is just parsing the output of diff so that the
start line and end line of all the modifications are identified.

STEP2C: By comparing the result of STEP2A and STEP2B, we find whether repeated
code in revision ri were modified or not. If modified, the above information is
distilled.

3.3 STEP3: making evolutional data by using the results of STEP2

In this step, we track repeated code through all the target revisions by using diff informa-
tion between every consecutive two revisions (the result of STEP2). Tracking repeated
code allows us to obtain the following data:

– when a given repeated code appeared and disappeared;
– the number of modifications applied to a given repeated code.

We used the method proposed in literature [3] for tracking repeated code.
Finally, evolutional data related to repeated code is output textually. In this step, any

visualization of the data is not performed. If necessary, user can create some graphs or
perform statistical tests for understanding data by themselves.

3.4 Implementation

We have developed a software tool based on the investigation method. In the tool, we
are using

– JDT (Java Development Tool) for Java source code analysis, and
– SVNKit for handling Subversion repositories.

That is, currently the tool is just a prototype, and it can be applied to only Java software
managed with Subversion. Output of STEP3 is in CSV format, which is intended for
analyzing data with Excel or R.

8

5127	

12887	

4054	

6123	

12536	

3681	

2238	

4863	

772	

0%	
 20%	
 40%	
 60%	
 80%	
 100%	

Ant	

ArgoUML	

jEdit	

1-­‐10	
 11-­‐20	
 21-­‐30	
 31-­‐40	
 41-­‐50	
 50-­‐	

Fig. 6. Distribution of Element Size (number of tokens) on the End Revision

4 Investivation on Open Source Software

In order to reveal how repeated code is modified during software evolution, we inves-
tigated three open source software systems. We chose Ant, ArgoUML, and jEdit as our
targets because they are well-known and widely-used systems. Table 1 shows the detail
information of the systems.

In this investigation, we reveal the followings:

RQ1 how large are elements of repeated code?
RQ2 how often are repeated code modified during software evolution?
RQ3 what is the rate of simultaneous modifications on repeated code?

In the reminder of this section, we describe the experimental results and answer the
RQs.

4.1 Answer to RQ1 (How large are elements of repeated code?)

Figure 6 shows distributions of element sizes (the number tokens) on the end revision.
We can see that small size dominates a large part: 1-10 are between 35-44%; 11-20
are between 37-41%; 21-30 are between 8-15%. Totally, 1-30 elements dominate 89-
92% for all the elements. Code clone detection tools take a threshold of minimal size
of code clones to be detected. In many cases, “30 tokens” is used for the threshold [8].
Of course, we can use smaller thresholds in code clone detection. However, if we use

Table 1. Overview of Target Software

Software Start revision (date) End revision (date) # of target revisions LOC of end revision
Ant 267,549 (2000-1-13) 1,233,420 (2012-1-20) 12,621 255,061

ArgoUML 2 (1998-1-27) 19,893 (2012-7-10) 17,731 369,583
jEdit 3,791 (2001-9-2) 21,981 (2012-8-7) 5,292 183,006

9

0 1000 2000 3000 4000

0
5

10
15

20
25

period

tim
e

(a) Ant

0 1000 2000 3000 4000 5000

0
5

10
15

20
25

30

period

tim
e

(b) ArgoUML

0 1000 2000 3000 4000

0
2

4
6

8
10

12

period

tim
e

(c) jEdit

Fig. 7. Relationships between survival period and the number of modifications. Y-axis is the num-
ber of modifications, and X-axis is survival period.

10

663	

2793	

4698	

1003	

1703	

4553	

397	

280	

872	

0%	
 20%	
 40%	
 60%	
 80%	
 100%	

jEdit	

Ant	

ArgoUML	

all	
 par=al	
 addi=on	

Fig. 8. Ratio of the three types of modifications on each target system

smaller thresholds, tools would detect a large amount of code clones , which include
many false positives. Extracting necessary code clones from a large result is not an easy
task. That is, code clone detection techniques are not suited for identifying repeated
code.

Consequently, in order to identify repeated code, it is necessary to use a technique
that are tailored to detect repeated code. In this paper, we proposed a method using
similarities of AST subtrees for identifying repeated code. The method is scalable, so
that we could finish repository analysis of the target software within 30 hours, 65 hours,
and 18 hours from 12,621, 17,731, and 5,292 revisions of source code, respectively.

4.2 Answer to RQ2 (How often are repeated code modified during software
evolution?)

Figure 7 shows relationships between survival period and the number of modifications:
Y-axis is the number of modifications and X-axis is survival period. A dot locating on 1
or above of Y-axis means its repeated code was modified at least once. We can see the
following from this figure:

– 84%, 89%, and 73% repeated code were modified at least once,
– there was no correlation between survival period and the number of modifications.

The numbers of modifications on repeated code were 4,776, 10,123, and 2,063,
respectively. By dividing them with the number of target revisions, we obtained 0.438,
0.395, and 0.356. That is, repeated code were modified every two or three revisions.

4.3 Answer to RQ3 (What is the rate of simultaneous modifications on repeated
code?)

We analyzed modifications on repeated code and classified them as follows:

all all the elements in a repeated code were modified simultenously;

11

25	

235	

45	

1483	

0	

55	
 44	
 9	

814	

261	

10	

64	

3	

709	

2	

6	

3	

823	

107	

8	

2	
 94	

1	

2	
 162	
 14	

0%	

20%	

40%	

60%	

80%	

100%	

assert	

statement	

case	
 entry	
 catch	
 block	
 for	
 block	
 if	
 block	
 return	

statement	

throw	

statement	

try	
 block	
 while	
 block	
 enhanced	

for	
 block	

empty	

statement	

expression	

statement	

variable	

declaraCon	

all	
 parCal	
 addiCon	

(a) Ant

78	
 134	

10	

1563	

8	

38	

16	

5	

2473	

826	

13	

16	
 26	

13	

1109	

11	

8	

10	

1	

3098	

432	

1	
 4	
 13	
 1	
 175	

5	

1	

632	
 53	

0%	

20%	

40%	

60%	

80%	

100%	

assert	

statement	

case	
 entry	
 catch	
 block	
 for	
 block	
 if	
 block	
 return	

statement	

throw	

statement	

try	
 block	
 while	
 block	
 enhanced	

for	
 block	

empty	

statement	

expression	

statement	

variable	

declaraCon	

all	
 parCal	
 addiCon	

(b) ArgoUML

76	
 11	

3	

258	

7	

3	

1	
 1	

3	

1	

256	

69	

51	
 10	

1	

280	

20	

3	

591	

58	

24	

2	
 28	

5	

1	
 314	

24	

0%	

20%	

40%	

60%	

80%	

100%	

assert	

statement	

case	
 entry	
 catch	
 block	
 for	
 block	
 if	
 block	
 return	

statement	

throw	

statement	

try	
 block	
 while	
 block	
 enhanced	

for	
 block	

empty	

statement	

expression	

statement	

variable	

declaraCon	

all	
 parCal	
 addiCon	

(c) jEdit

Fig. 9. Ratio of the three types of modifications by focusing on instruction types in repeated code

partial only a part of elements was modified;

addition existing elements of a repeated code were not modified but new elements
were added to the repeated code.

12

2018	

480	

129	

65	
 57	

13	
 9	

3	

17	
 2	

0	

953	

337	

153	

55	
 38	

31	
 20	

36	
 67	

4	
 9	

114	
 44	
 29	
 12	
 14	

12	
 7	
 8	

27	

7	

6	

0%	

20%	

40%	

60%	

80%	

100%	

2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 -­‐	
 20	
 -­‐	
 30	
 -­‐	

number	
 of	
 repe+ons	

all	
 par2al	
 addi2on	

(a) Ant

3145	

827	
 328	
 137	
 84	
 72	

23	

8	
 48	
 11	
 15	

1916	

1066	

535	

253	
 167	
 142	

73	

44	
 161	

46	
 150	

284	
 132	
 81	
 64	
 47	
 38	
 19	
 14	
 75	

34	
 84	

0%	

20%	

40%	

60%	

80%	

100%	

2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 -­‐	
 20	
 -­‐	
 30	
 -­‐	

number	
 of	
 repe+ons	

all	
 par2al	
 addi2on	

(b) ArgoUML

512	

75	
 40	
 12	
 10	
 4	

1	

3	

6	

0	
 0	

533	

188	
 105	

35	
 35	

13	
 22	
 5	
 42	

13	
 12	

165	

79	
 35	

20	
 16	

14	

14	

8	

30	
 9	
 7	

0%	

20%	

40%	

60%	

80%	

100%	

2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 -­‐	
 20	
 -­‐	
 30	
 -­‐	

number	
 of	
 repe++ons	

all	
 par2al	
 addi2on	

(c) jEdit

Fig. 10. Ratio of the three types of modifications by focusing on the number of repetitions of
repeated code

Figure 8 shows ratio of the three types of modifications. There were many all mod-
ifications on all the target systems. The numbers were 663, 2,793, and 4,698, respec-
tively. They dominated 31%, 58%, and 46% for the modifications on repeated code.

13

Furthermore, we investigated the ratio of the three types of modifications by focus-
ing on the followings characteristics of repeated code:

– instruction types in repeated code;
– the number of repetitions of repeated code.

Figure 9 shows the former result. Areas with no bars mean there was no modifi-
cation on the instruction types. We can see that some types have a higher ratio of all
modifications. For example, try block, while block, and variable declarations are near to
or more than 50%.

Figure 10 shows the latter result. The followings are common phenomena in all the
target systems.

– The lesser number of repetitions is, the higher ratio of all modifications is.
– The higher number of repetitions is, the higher ratio of addition modifications is.

Repeated code including many repetition are more likely to get new repetitions than
repeated code with a few repetitions.

5 Useful Support on Repeated Code

In this research, we found that 73-89% of repeated code was modified at least once in
their life. Thus, modification supports on repeated code is necessary to reduce cost of
source code modification.

We found that if a repeated code has lesser repetitions, all of its elements are more
likely to be modified simultaneously. Thus, we are thinking that interactive modification
completions are useful for repeated code. For example, if an element of a repeated
code is modified, a plugin in IDE recommends the same modification for each of the
other elements of the repeated code interactively. All programmers have to do is to
answer “yes” or “no” for every recommendation. If he/she answers “yes”, the element
is modified automatically as recommended. If “no”, it is not modified. If the number
of repetitions are large, a bunch of interactive replacements is also a burdensome task.
However, for small number of repetitions, such interactive modification supports will
be great helpful.

Also, we found that repeated code had gained more elements as they evolved. Con-
sequently, following support will be useful: if programmers pull the trigger, a plugin
of IDE generated a template of repeated element based on the structure of existing ele-
ments of repeated code and it was automatically inserted to the bottom of the repeated
code. All they have to do is to fulfilling holes of the template. In most cases, only vari-
able names or method invocations are inserted to holes.

6 Threats to Validity

6.1 Number of target systems

In this investigation, the number of target systems was only three. In order to generalize
the investigation result, we have to conduct experiments on more software systems.

14

Currently, we can investigate only Java software managed with Subversion due to the
implementation limitations. In the future, we are going to extend the tool for other
programming languages such as C/C++ and other version control systems such as git
for investigating various software systems.

6.2 Not regarding modification types

In this investigation, we did not take care of modification types. For example, in the
case of variable declaration statement, there may be a modification that inserts a single
white space between its operand and its operator. Such modification does not have a
direct impact on program behavior. Consequently, if we extracted and used only the
modifications that are bug fixes or function additions, the investigation result would be
different from the investigation result of this paper.

6.3 Disappearing repeated code

In this investigation, we regarded that a repeated code had disappeared if it satisfied
either of the conditions:

– the repeated code is completely removed from the source code;
– the number of its repetition became one.

In the latter case, an element of repeated code remains in the source code after mod-
ifications. Hence, the latter case should not be regarded as disappearance of repeated
code. If we conducted the investigation with the setting, the investigation result would
be changed.

7 Conclusion

In this paper, we investigated how repeated code had been modified during software
evolution as a first step for improving modification process on repeated code.

We selected three famous open source software systems, Ant, ArgoUML, and jEdit
as experimental targets. As a result, we obtained the following knowledge.

– Element size of repeated code was too small to be detected with code clone detec-
tion tools.

– 73-89% of repeated code were modified at least once.
– 31-58% of modifications were simultaneous modifications for all the elements of

them.
– Any instruction type of repeated code was modified. Especially, try block, while

block and variable declarations were more likely to be modified than the others.
– The lesser repetitions repeated code had, the higher the ratio of simultaneous mod-

ifications on all the elements of them was.

Acknowledgment

This work was supported by MEXT/JSPS KAKENHI 24680002 and 24650011.

15

References
1. Aversano, L., Cerulo, L., Di Penta, M.: How clones are maintained: An empirical study. In:

Proceedings of the 11th European Conference on Software Maintenance and Reengineering.
pp. 81–90. CSMR ’07, IEEE Computer Society, Washington, DC, USA (2007)

2. Baker, B.S.: On finding duplication and near-duplication in large software systems. In: Pro-
ceedings of the Second Working Conference on Reverse Engineering. pp. 86–. WCRE ’95,
IEEE Computer Society, Washington, DC, USA (1995)

3. Canfora, G., Cerulo, L., Penta, M.D.: Identifying changed source code lines from version
repositories. In: Proceedings of the Fourth International Workshop on Mining Software
Repositories. pp. 14–. MSR ’07, IEEE Computer Society, Washington, DC, USA (2007)

4. Ducasse, S., Demeyer, S., Nierstrasz, O.: Transform conditionals to polymorphism. In: Pro-
ceedings EUROPLOP’00 (5th European Conference on Pattern Languages of Programming
and Computing, 1999. pp. 219–252. UVK Universitätsverlag Konstanz GmbH, Konstanz,
Germany (jul 2000)

5. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (1999)

6. Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: Method and implementation for investigating
code clones in a software system. Inf. Softw. Technol. 49(9-10), 985–998 (Sep 2007)

7. Higo, Y., Kusumoto, S.: How often do unintended incosistencies happend? –deriving modifi-
cation patterns and detecting overlooked code fragments–. In: Proceedings of the 2012 28th
IEEE International Conference on Software Maintenance. pp. 222–231. ICSM ’12, IEEE
Computer Society, Washington, DC, USA (2012)

8. Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: A multilinguistic token-based code clone
detection system fo r large scale source code. IEEE Transactions on Software Engineering
28, 654–670 (2002)

9. Kapser, C.J., Godfrey, M.W.: ”cloning considered harmful” considered harmful: patterns of
cloning in software. Empirical Softw. Engg. 13(6), 645–692 (Dec 2008)

10. Kim, M., Bergman, L., Lau, T., Notkin, D.: An ethnographic study of copy and paste pro-
gramming practices in oopl. In: Proceedings of the 2004 International Symposium on Em-
pirical Software Engineering. pp. 83–92. ISESE ’04, IEEE Computer Society, Washington,
DC, USA (2004)

11. Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone genealogies.
In: Proceedings of the 10th European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software engineering. pp. 187–
196. ESEC/FSE-13, ACM, New York, NY, USA (2005)

12. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: Cp-miner: Finding copy-paste and related bugs in
large-scale software code. IEEE Trans. Softw. Eng. 32(3), 176–192 (Mar 2006)

13. Murakami, H., Hotta, K., Higo, Y., Igaki, H., Kusumoto, S.: Folding repeated instructions
for improving token-based code clone detection. In: Proceedings of the 2012 IEEE 12th
International Working Conference on Source Code Analysis and Manipulation. pp. 64–73.
SCAM ’12, IEEE Computer Society, Washington, DC, USA (2012)

14. Roy, C.K., Cordy, J.R.: An empirical study of function clones in open source software.
In: Proceedings of the 2008 15th Working Conference on Reverse Engineering. pp. 81–90.
WCRE ’08, IEEE Computer Society, Washington, DC, USA (2008)

15. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach. Sci. Comput. Program. 74(7), 470–495 (May
2009)

16. Sasaki, Y., Ishihara, T., Hotta, K., Hata, H., Higo, Y., Igaki, H., Kusumoto, S.: Preprocessing
of metrics measurement based on simplifying program structures. In: International Workshop
on Software Analysis, Testing and Applications. pp. 120–127 (12 2012)

