
Master Thesis

Title

Classification Model for Code Clones Based on Machine Learning

Supervisor

Prof. Shinji KUSUMOTO

by

Jiachen YANG

February 5, 2013

Department of Computer Science

Graduate School of Information Science and Technology

Osaka University

Master Thesis

Classification Model for Code Clones Based on Machine Learning

Jiachen YANG

Abstract

Code clones have gained great attentions in recent research. Several code clone detection

methods have been proposed to detect identical or similar code fragments from source code of

software. These code clones are introduced into software systems by various operations during

development, namely copy-and-paste or machine generated source code. Despite of its commonly

occurrence in software development, code clones are generally considered harmful as they make

software maintenance more difficult and indicate poor quality of source code. If we modified

a code fragment, it will be necessary to check all corresponded code clones whether they need

modifications simultaneously.

By applying code clone detectors to the source codes, users such as programmers can obtain a

list of all code clones of a given code fragments, which is useful during modifications to the source

code. However, results from code clone detectors may contain plentiful useless code clones, and

judging whether each code clone is useful varies from user to user based on different purposes of

them. So it is difficult to just adjust the parameters of code clone detectors and expect to get the

desired code clones. It is also a painful task to analyze through the entire list that the code clone

detector generated.

In this research we proposed a classification model by applying machine learning algorithm on

the judgments of each individual user on code clones. And we experimented the proposed model

by an on-line survey to test its usability and accuracy with 33 participants contributed.

The result showed several important observations on the characteristics about the interesting-

ness of code clones for the users. And our classification model showed more than 70% accuracy in

average and more than 90% accuracy for particular user and source code project. And during this

research, several important observations were obtained about the interesting-ness of code clones.

Keywords

filtering

classification

machine learning

code clone detector

judgment of user

token-based

Contents

1 Introduction 1

2 Motivating Example 3

3 FICA System 5

3.1 Overall Workflow . 5

3.2 Requirements on Existing CDT . 6

3.3 Marking Clones Manually . 7

3.4 Machine Learning . 7

3.5 Cycle of Supervised Learning . 7

4 Machine Learning Model 8

4.1 Input Format of FICA . 9

4.2 Calculating Similarity between clone sets . 9

4.3 User Profile and Marks on clone sets . 13

5 Implementation Details 15

6 Experiments 17

6.1 Experimentation Setup . 17

6.2 Code Clone Similarity with Classification by Users 17

6.3 Similarity among Users’ Selection . 20

6.4 Ranking clone sets . 23

6.5 Accuracy of Prediction by FICA . 26

6.6 Recall and Precision of FICA . 30

6.7 Reason of Converging Results . 35

7 Related Research 40

8 Conclusions 42

Acknowledgements 43

i

References 44

ii

List of Figures

1 execute cmd.c in bash-4.2 . 3

2 subst.c in bash-4.2 . 3

3 Overall Workflow of FICA with CDT . 5

4 Classification Process in FICA . 8

5 Structure of input to FICA . 10

6 Example of Input Format for FICA . 11

7 Force-Directed Graph of clone sets of bash 4.2 13

8 Upload Achieve of Source Code to FICA . 15

9 FICA Showing clone sets . 16

10 Code Clone Similarity with Classification by Users 19

11 Similarity among Users’ Selection . 22

12 APFF of 2 Users on Git Project . 24

12 APFF of 2 Users on Git Project (cont.) . 25

13 Accuracy of Machine Learning by FICA . 27

13 Accuracy of Machine Learning by FICA(cont.) 28

14 Merged Result of All Projects . 30

15 Recall and Precision of FICA in each Project . 31

15 Recall and Precision of FICA in each Project (cont.) 32

15 Recall and Precision of FICA in each Project (cont.) 33

15 Recall and Precision of FICA in each Project (cont.) 34

16 Example of source code in xz . 35

16 Example of source code in xz (cont.) . 36

16 Example of source code in xz (cont.) . 36

17 Example of source code in e2fsprogs . 37

17 Example of source code in e2fsprogs (cont.) . 38

17 Example of source code in e2fsprogs (cont.) . 38

17 Example of source code in e2fsprogs (cont.) . 39

iii

List of Tables

1 Survey of clones in bash-4.2 . 18

2 Open Source Projects Used in Experiments . 18

3 Parameters for Force-Directed Graph . 21

4 User Experience of Code Clone Categories . 21

5 “Slowered” point of Growing in Predicting Accuracy 29

iv

1 Introduction

Great efforts have been made to detect identical or similar code fragments from source code of

software, with these code fragments called as “code clones” or simply “clones” [1–3]. These code

clones are introduced into software systems by various operations during development, namely

copy-and-paste or machine generated source code. Because code cloning is easy and inexpensive,

it can make software development faster and can enable “experimental”development. However,

despite of its commonly occurrence in software development, code clones are generally considered

harmful as they make software maintenance more difficult and indicate poor quality of source

code. If we modified a code fragment, it will be necessary to check all corresponded code clones

whether they need modifications simultaneously. Therefore, various techniques and tools have

been proposed to detect code clones automatically by many researchers [4–19].

By applying code clone detectors to the source codes, users such as programmers can obtain a

list of all code clones of a given code fragments, which is useful during modifications to the source

code. However, results from code clone detectors may contain plentiful useless code clones, and

judging whether each code clone is useful varies from user to user based on different purposes of

them. So it is difficult to just adjust the parameters of code clone detectors and expect to get the

desired code clones. It is also a painful task to analyze through the entire list that the code clone

detector generated.

Clone Detection Tools(referred as CDT) usually generate a long list of clones from source

code, among which a small portion of clones are helpful to users in improving software quality by

applying refactoring or locating similar bugs, however the rest are not so “interesting”.

Several methods have been proposed to filter out those “uninteresting” clones such as metric-

based method described in [20]. A general standard of judging whether a clone is “interesting”

or not, can be summarized by these methods, while not only professional knowledges from users,

such as what all these metrics mean, is needed, but also it is hard to fit to individual use case of

users such as filtering only the code clones that can be applied extracting-method refactoring on.

Tairas and Gray proposed a classification method in [21]. These existing classification methods

are clustering by identifier names rather than textural similarity of the identical clone fragments.

According to the survey we conducted, users of CDTs tend to classify clones differently based

on their individual use cases, purposes or experience about code clones. With this observation,

1

we thus propose the idea of studying judgments of each user on clones, which results a new clone

classification method, entitled as FICA, Filter for Individual user on code Clone Analysis.

The code clones are classified by FICA, according to the comparison of their token type se-

quences through the calculation of their textual similarity, along with opinions on these code clones

from users as well, who are typically programmers. In a production environment, adapting the

method described in this research will decrease the time that a user may spend on analyzing the

code clones.

From the experiment result, we obtained several observations:

• Un-interesting code clones are likely to fall into several categories.

• Interesting code clones are unique comparing to un-interesting ones.

• Users with more experience on code clones are more likely to agree with each other com-

pared to users with less experience.

• The minimum required size of the training set roughly grows linearly with the number of

categories that clone sets fall into, which is less than a magnitude of the total number of

detected clone sets.

In the following sections, we will firstly introduce a motivating example that leads to this

research, and the imaginary process of how this method is supposed to help the user to classify

the code clones. Then a discussion will be led on the proposed method and algorithms that FICA

used in detail. After that, we will show the result of applying FICA to an on-line survey that

were conducted by us to evaluate our method. Finally we will discuss about the related works in

classification of code clones.

2

2717 w c s t r = 0 ;

2718 s l e n = mbstowcs (wcs t r , s , 0) ;

2719 i f (s l e n == −1)

2720 s l e n = 0 ;

2721 w c s t r = (w c h a r t ∗) xma l loc (s i z e o f (w c h a r t) . . .

2722 mbstowcs (wcs t r , s , s l e n + 1) ;

2723 wclen = wcswidth (wcs t r , s l e n) ;

2724 f r e e (w c s t r) ;

2725 re turn ((i n t) wclen) ;

Figure 1: execute cmd.c in bash-4.2

1100 i f (w c h a r l i s t == 0)

1101 {

1102 s i z e t l e n ;

1103 l e n = mbstowcs (w c h a r l i s t , c h a r l i s t , 0) ;

1104 i f (l e n == −1)

1105 l e n = 0 ;

1106 w c h a r l i s t = (w c h a r t ∗) xma l loc (s i z e o f (w c h a r t) . . .

1107 mbstowcs (w c h a r l i s t , c h a r l i s t , l e n + 1) ;

1108 }

Figure 2: subst.c in bash-4.2

2 Motivating Example

We conducted a survey on several students1, providing them 105 clone sets from result of CDT

on source code in C language detected from bash-4.2, asking them whether they are willing to

perform refactoring. Table 1 shows a part of the result. In this table, a code clone set is marked as

O if a student is willing to apply refactoring on it or as X if not so. We can see from this table that

their attitudes toward these clones vary from person to person.

As an example, source of clone with ID 5 is showed in Figure 1 and 2. These blocks of code

convert a multi-byte-string to a wide-char-string in C code. Because their functions are identical, S

and U thought they could be merge together. Meanwhile Y and M considered the fact that Figure 2

is a code fragment in a larger function which is more than 100 LOC therefore may be difficult to

1All of students are from Graduate School of Information Science and Technology, Osaka University

3

be refactored.

Besides, from Table 1 we can see that Y was more strict than other three students. In the

comment to this survey he mentioned that only clones that contains an entire body of C function

are candidates for refactoring. This unique standard was also reflected in all 5 “interesting” clones

he has chosen.

4

Figure 3: Overall Workflow of FICA with CDT

3 FICA System

In this section, we introduce the general working process of FICA system, which ranks detected

clones based on studying historical behavior of a particular user, as a complement to existing

CDTs that filtering unexpected clones. FICA is designed as a on-line supervised machine learning

system, which means that the user should firstly classify a small portion of the input manually,

and then FICA gradually adjusts its prediction while more input is given by the user. By adapting

this process into a traditional code clone analyzing environment, the desired code clones should

be presented to the user more quickly.

3.1 Overall Workflow

The overall workflow of FICA is described in Figure 3.

1. User submits source code to a CDT.

5

2. CDT detects a set of clones in the source code.

3. User marks some of these clones as “interesting” or not according to her/his own judgment,

and then submits these marked clones to FICA as a profile.

4. FICA records marked clones into its own database.

5. Meanwhile FICA studies characteristics of all these marked clones by using machine learn-

ing algorithms.

6. FICA ranks other clones remaining unmarked based on the result of machine learning, pre-

dicting the possibility of whether they are “interesting” or not to user.

7. User can further adjust the marks on code clones and re-submit them to FICA to obtain a

better prediction. FICA will also record these patterns that it have learned into a database

associated with the particular user profile so that further predictions can be made based on

history decisions.

3.2 Requirements on Existing CDT

FICA utilizes a CDT to generate a list of code clones from source code. Those resulted output

from CDT should at least contain following necessary information for each code clone:

1. Positions of the code clone fragment in original source code.

2. A sequence of tokens of the code clone fragment.

Every existing token-based clone detector should already meet this requirement or only require

some minor modifications on their output format. Syntax-based clone detectors that compare AST

or PDG graphs of the source code could be adjusted to generate a sequential text representation

of identical code fragment as the needed input of FICA, which is not necessarily equal to lexical

token sequence generated by lexical analyzer (also known as lexer). Text-based clone detectors

usually only output positional information of code clones, thus code clone fragments need to be

parsed through a lexical analyzer to obtain required lexical token sequence.

6

3.3 Marking Clones Manually

To be used by FICA as an initial training set, only a small set of clones which is found by CDT,

is required to be marked manually by the user of Fica at first. Considered types of marks on clones

can be boolean, numerical or tags:

• Boolean clones are marked as “interesting” or not.

• Tagged clones are marked as one of several tags or categories by users based on their use

cases such as refactoring procedural, issue tracking id, etc.

As the most simple case, users need to tell FICA that they are interested in certain clones or

not. Tags typed marks can be considered as possible extension of boolean typed ones that involve

multiple choices.

3.4 Machine Learning

Receiving the clones from CDT and the marks from the user, FICA studies the characteristic

of the marked clones by calculating similarity of lexical token sequence of these clones. This step

employs machine learning algorithms which are widely used in natural language processing or

text mining. The algorithm to be used will be similar with the one GMail used in detecting spam

emails or the one CJK Input Methods used in suggesting available input candidates . By comparing

the similarity of marked clones and unmarked ones, FICA can thus predict the possibility whether

an unmarked clone is interesting or not. Detailed machine learning model and algorithm will be

described in Section 4.

3.5 Cycle of Supervised Learning

FICA returns the predicted marks of all remaining clones by ranking or calculating the possi-

bility whether the user may have “interest” in them or not. The user is allowed to correct some of

these predictions and re-submit them to FICA to obtain a better prediction, which forms a cycle

of supervised learning. And eventually FICA will be trained to filter all clones according to the

interest of the user. Furthermore, these patterns that FICA have learned will be recorded into a

database as well, which is associated with the particular user. As a result, further predictions on

clones can be made based on history decisions of the same user.

7

1. clone sets as Input

2. Calculating similarity

4. Rebalancing

5. Ranking based on possibility

6. Re-ordered input

3. Marks by user

Figure 4: Classification Process in FICA

4 Machine Learning Model

The classification process in FICA is described in Figure 4, which can be viewed as a super-

vised machine learning process with these steps:

1. Retrieving a list of clone sets by a predefined order from a CDT.

2. Calculating the textual similarity among those clone sets by their cosine similarity in tfidf

vector space.

3. Given the interesting or un-interesting marks from the user as training sets of machine learn-

ing.

4. Re-balancing the input set in order to get identical data points in each set of the training sets.

5. Calculating the possibility for each clone set of their different classification to the marked

groups.

6. Finally the clone sets will be ranked and re-ordered as these possibilities, and presented to

the user.

User can adjust the marks that FICA has predicted and submit the marks again to FICA as in

step 3, which then forms a supervised machine learning circle.

8

4.1 Input Format of FICA

As a support tool for CDTs, FICA needs to parse and extract code clone information from the

output of CDTs. The structure of all the information that needed by FICA is represented as UML

diagram in Figure 5.

A project consists of the original source code and detected code clones which are repre-

sented as clone sets. The source code are tokenized by CDT. As FICA needs both tokenized

source code for calculating the similarity and original source code for representing to the user,

these two forms are pass together to FICA. A clone set is a set of identical code fragments. By

saying identical, we mean the tokenized code fragments are literally equal to each other in a

clone set. A clone in a clone set is the code clone fragment which has a file indicating

the source file in the project, and the begin and end token in the file. The list of token types in the

clone set should be equal to the types of tokens in every clone in the clone set. A token has a type

and a position in the original source code. An example of how the input of FICA really looks like

is in Figure 6.

4.2 Calculating Similarity between clone sets

Firstly FICA calculates the “term frequency – inverse document frequency” (TF-IDF) weight

[22] of clone sets. In FICA we define a term t as a N-Gram of token sequence, document d as

a clone set, and all documents D as a set of clone sets which can be the clone sets from

a single project as well as several projects.

Firstly, we divide all token sequences in clone sets as N-Gram terms. Given a clone set with

token types as following:

STRUCT ID TIMES ID LPAREN CONST ID ID TIMES ID RPAREN . . .

If we assume that N for N-gram equals 3, then we can divide this clone set into N-Grams as:

STRUCT ID TIMES

ID TIMES ID

TIMES ID LPAREN

ID LPAREN CONST

LPAREN CONST ID

CONST ID ID

ID ID TIMES

. . .

9

Figure 5: Structure of input to FICA

10

P r o j e c t : g i t−v1 . 7 . 9

f i l e s :

b l o c . c

c o n s t char ∗ b l o b t y p e = ” b lob ” ;

s t r u c t b lob ∗ l o o k u p b l o b (c o n s t . . .

. . .

t r e e . c

c o n s t char ∗ t r e e t y p e = ” t r e e ” ;

s t a t i c i n t r e a d o n e e n t r y o p t (. . .

. . .

b u i l t i n / f e t c h−pack . c

b u i l t i n / r e c e i v e−pack . c

b u i l t i n / r e p l a c e . c

b u i l t i n / t a g . c

. . .

c l o n e s e t s :

1 : t o k e n t y p e s : STRUCT ID TIMES ID LPAREN CONST . . .

c l o n e s :

b lob . c (6 : 1) − (2 3 , 2)

t r e e . c (181 ,1) − (198 ,2)

2 : t o k e n t y p e s : ID RPAREN SEMI RETURN INT CONST . . .

c l o n e s :

b u i l t i n / r e p l a c e . c (39 ,48) − (57 ,10)

b u i l t i n / t a g . c (154 ,45) − (172 ,10)

. . .

Figure 6: Example of Input Format for FICA

Then we calculate all these term frequency of N-Grams with in this document of clone

set using Equation 1.

tf(t, d) =
|t : t ∈ d|

|d|
(1)

Equation 1 says that term frequency of term t in document d is the normalized fre-

quency where term t appears in document d. The result of tf of above clone set is as

follows:

RETURN ID SEMI :0 .00943396226415

ID RPAREN LBRACE :0 .0283018867925

SEMI RETURN ID :0 .00943396226415

11

ID SEMI IF :0 .00943396226415

ID LPAREN CONST :0 .00943396226415

TIMES ID RPAREN :0 .00943396226415

IF LPAREN LNOT :0 .0188679245283

RPAREN LBRACE ID :0 .00943396226415

LPAREN RPAREN RPAREN :0 .00943396226415

SEMI RBRACE RETURN :0 .00943396226415

RETURN ID LPAREN :0 .00943396226415

ID ID RPAREN :0 .00943396226415

TIMES ID COMMA :0 .0188679245283

. . .

Then the inverse document frequency idf and tfidf is calculated using Equation 2

and 3.

idfD(t) = log
|D|

1 + |d ∈ D : t ∈ d|
(2)

tfidfD(t, d) = tf(t, d)× idfD(t) (3)
−−−−→
tfidfDd = [tfidf(t, d,D) : ∀t ∈ d] (4)

Equation 2 says that inverse document frequency idf of term t in all documents

D is logarithm of dividing the total number of documents by the number of documents con-

taining term t. In the Equation 2, we plus one to the denominator so as to avoid zero-division.

By combining tf and idf as Equation 3 we can then calculate a vector space
−−−−−−−→
tfidf(d,D) as in

Equation 4 for each clone set in the overall documents.

By using tfidf , we define the normalized similarity NSD(a, b) of two clone sets, a and b, with

regarding a set of documents D as in Equation 5 and 6.

SD(a, b) =
−−−−→
tfidfDa ·

−−−−→
tfidfDb (5)

NSD(a, b) =

0, SD(a, b) = 0

SD(a,b)∣∣∣−−−−→tfidfDa
∣∣∣·∣∣∣−−−−→tfidfDb

∣∣∣ , otherwise
(6)

After calculating the similarity among all clone sets within a project, we can then plot them

based on force-directed algorithm as in Figure 7a to illustrate the clone sets grouped by their

similarity. The details of force-directed graph will be discussed in next section.

12

(a) clone sets Grouped by Similarity (b) Colored Force-Directed Graph

Figure 7: Force-Directed Graph of clone sets of bash 4.2

4.3 User Profile and Marks on clone sets

A profile represents a history of user’s judgments on classification of clones stored in FICA.

A user is allowed to keep multiple profiles in different use cases of FICA. The implementation of

FICA does not differ a user from profiles, so for simplicity, the following of this paper assumes

that a single user has a profile. FICA needs a initial training set to provide further predictions.

A mark is made on a clone set by the user, which will recorded in the user profile, that says

this clone set has some property. There are three kinds of marks that user can make on these clone

sets. Boolean marks are two group of clone set that user thought as interesting or not interesting,

which are exclusive to each other. Tagged marks are made individually on each clone set, which

are not necessary exclusive.

A training set is a set of clone sets that have been marked by user. We only talk about boolean

marks here, but the same algorithm is also applicable on tagged marks.

For the boolean marks, the training set M is divided into two sets of clone sets, i.e. Mi and Mu,

each of them donates the interesting set and un-interesting set, where Mi∩Mu =,Mi∪Mu = M .

For each clone set t that not been marked, FICA calculate the possibility whether this clone set

13

t also marked as those in clone set group Mx by using the Equation 7.

PMx(t) =

 1, |Mx| = 0∑
∀m∈Mx

NSMx (t,m)

|Mx| , otherwise
(7)

Equation 7 says the possibility whether clone set t should also has mark Mx are calculated by

the average normalized similarity of t and every clone set in clone set group Mx.

For predicting boolean marks, FICA can compare the calculated possibility of both interesting

mark and un-interesting mark, choose the higher one as the prediction. For tagged marks, FICA

needs to set a threshold for making judgment.

After prediction, all clone sets are marked either by prediction of FICA or by user’s input. An

example of all boolean marked clone sets in above force-directed graph is shown in Figure 7b.

The result of FICA’s prediction is presented to user, so that user can check its correctness, approve

some of FICA’s prediction and correct other predictions. After correcting part of the result, user

can re-submit the marks to FICA to get a better prediction.

14

Archive file

Project Name

Token Length

Groupping

Upload a c source file archive

No file selectedChoose File

Supported archive filetypes:
WinZip archive(*.zip),

Tarball archive(*.tar),

gzipped tarball(*.tar.gz, *.tgz),

bz2 tarball(*.tar.bz2, *.tbz2).
Extension filename is used to determine filetype.

48

Only detecting clones in different files.

Also detecting clones in the same file.

Figure 8: Upload Achieve of Source Code to FICA

5 Implementation Details

FICA was implemented as a proof-of-concept system. We implemented the described algo-

rithms for computations of similarity of code clones, as well as a customized token-based CDT

which outputs exactly what FICA requires. Also we wrapped the CDT part and FICA together by

using a web-based user interface, which will be referred as the FICA system from now on.

The FICA system manages profiles of users as normal login sessions like in mostly all websites.

One of the users uploads an archive of source code to the FICA system. Then FICA will unzip the

source code into a database and then pass to the CDT part of FICA system as in Figure 8.

The CDT part of the FICA system implements the algorithm of generalized suffix tree [23] and

algorithm of detection of clones among multiple files in a generalized suffix tree. Code clones and

15

Figure 9: FICA Showing clone sets

types of token sequences are recorded in a database.

And then the FICA system shows a comparison view of detected clone sets to the user, as in

Figure 9. User can mark boolean tags on these clone sets, and the FICA system will store these

marks immediately into database associated with the user profile. While the user is marking those

clone sets, the FICA system is calculating the similarity among those clone sets and training its

prediction model by including the user input into its training set, in server side at background.

As a result, the feedback of user inputs can be gained nearly real-time in the FICA system in this

approach.

16

6 Experiments

6.1 Experimentation Setup

In order to test the validity and user experience of the proposed method, the following ex-

periment is conducted. We uploaded the source code of 4 open source projects as experimenting

targets, as shown in Table 2. For all the projects in Table 2, we only included .c files and ignored

all other files as unnecessary. Because all these 4 projects are developed in C language. As the pa-

rameters passed to CDT part of FICA system, we only detected clone sets that contains more than

48 tokens, and only reported those clone sets from different files. These two parameters are cho-

sen by our experience. Namely, the length limitation less than 48 for C projects are more likely to

result un-interesting small clones, as well as for clones from the same source code file. Although

too many clone sets will be an obstacle to conduct this experiment, however, those un-interesting

small clones should be practical in FICA as well. The CCFinder [4], one of the well-known CDTs,

uses a length of 30 tokens as default parameter, which is widely accepted in both industrial and

academic studies, while its definition of a token is compacted.

There are all together 33 people participated in this experiment with different experiences

about code clone detecting techniques. They were required to mark those clone sets found by the

CDT built in FICA system as interesting or not. They were told the steps of the experiments but

not the internal methods to be used in FICA system, which means that they were not aware that

FICA system will compare these clone sets by textual similarity of lexical token types.

6.2 Code Clone Similarity with Classification by Users

We adapted Force-Directed Graph [24](referred as FDG) to show the similarity among code

clones in 4 projects, as in Figure 10. For each project in FDG, a clone set is represented as a circle

drawn with red and blue. Blue circles means interesting code clones and red means un-interesting

code clones. There are circles with half red and half blue, which means people have different

opinions on these clone sets, with larger portion of color represents more people, and the color in

the middle of a circle is always the majority of selection.

For each pair of clone sets, there is a link between the circle if the similarity between the clone

sets is greater than a threshold, which is adjustable from the web interface in real-time.Values of

similarity are assigned as force strength on the links between circles of clone sets. We used the

17

Table 1: Survey of clones in bash-4.2

Clone ID
Participant

Y S M U

1 X O O O

2 X X O O

3 O X X O

4 X O X O

5 X O X O

.

Count of O 5 24 23 25

Count of X 100 81 82 80

Table 2: Open Source Projects Used in Experiments

Project & Version CSs a LOC Tokens Files P b

git v1.7.9-rc1 78 153,388 829,930 315 33

xz 5.0.3 36 25,873 113,894 113 27

bash 4.2 105 133,547 494,248 248 25

e2fsprogs 1.41.14 62 99,129 442,978 274 25

Total 281 411,937 1,881,050 950 33

aThe number of clone sets found in projects.
bThe number of subjects who have finished the experiment of this project.

18

(a) Code Clone Similarity of git (b) Code Clone Similarity of xz

(c) Code Clone Similarity of bash (d) Code Clone Similarity of e2fsprogs

Figure 10: Code Clone Similarity with Classification by Users

19

d3.js javascript library [25] to generate this force-directed graph. Some other technical details

about this graph are in Table 3.

The Figure 10 shows that groups of un-interesting clones are more similar, thus their distance

are closer to each other in the figure, than groups of interesting ones. This phenomenon indicates

that the possibility of un-interesting clone sets calculated by Equation 7 is more accurate than the

possibility of interesting clone sets, because un-interesting clones are grouped into categories more

tightly. The internal reason that caused this observation is the fact that almost all un-interesting

clone sets are fall into categories with certain obvious characteristics of their token types, such

as a group of switch-case statements, or a group of assignments. Meanwhile the interesting

clones are harder to classify into similar categories. To retell in general, interesting code clones

are interesting because they are rare and unique.

Thus we conclude our observation 1 and 2:

Observation 1 (Categories of Un-interesting Clones). Un-interesting code clones are likely to fall

into several categories by comparing the literal similarity of their token types.

Observation 2 (Uniqueness of Interesting Clones). Interesting code clones are unique comparing

to un-interesting ones by means of comparing literal similarity.

6.3 Similarity among Users’ Selection

We also draw a FDG of users to illustrate the similarity among their selection, as in Figure 11.

Different color in this graph represent the user’s experience with code clone detection technology,

which is manually selected by these participants during the on-line survey, with options given as

in Table 4.

As we can see from Figure 11, selections from participants with more knowledge with code

clone techniques(those who selected author or study) are more similar to each other, while selec-

tions by participants with less experience with code clone tends to vary differently. This leads to

observation 3.

Observation 3 (Experts Share Common Opinions). Users with more experience on code clones

are more likely to agree with each other compared to users with less experience.

20

Table 3: Parameters for Force-Directed Graph

Parameter Value

force.size 800

force.charge 100

link.linkDistance 1/link.value

link.linkStrength link.value/16 + 0.2

link.stroke-width 10 ·
√
link.value

node.r 13 ·major/(minor/1.5 +major) 8

node.stroke-width 8 ·minor/(minor/1.5 +major) 9

major = max {|interesting|, |un-interesting|} (8)

minor = min {|interesting|, |un-interesting|} (9)

Table 4: User Experience of Code Clone Categories

Category Means

Author “I Implemented a Clone Detection Tool”

Study “Code clone is one of my research topics”

Use “Using code clone detectors in works”

Lecture “Heard a lecture of code clone”

Never “Never heard of code clone”

21

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O P

Q

R

S

T

U

V

W

X

Y

Z

AA

AB

AC

AD

AE

AF

AG

Author Study Use Lecture Never

Figure 11: Similarity among Users’ Selection

22

6.4 Ranking clone sets

To measure the quality of supervised machine learning process of FICA, we adapt a measure

called Average Percentage true Positive Found(referred as APPF) that proposed by Lucia et al.

[26]. Their study is similar to our problem as they also reordered the clone list according to the

structure similarity.

We treat the true and false, positive and negative result as the following definition. For each

clone set in evaluation set, if the user marks it as interesting then it is considered as true result,

otherwise as false result, and if FICA predicted it as interesting, then it is considered as positive

result, otherwise as negative result.

The measure of APPF is visualized as a graph capturing the cumulative proportion of true

positives found as more clones are inspected by users. In the cumulative true positives curve, a

larger area under the curve indicates that more true positives are found by users early, which means

that the refinement process effectively re-sorts the clone list.

An example of APPF graph is in Figure 12a. In APPF graph both X-axis and Y-axis are the

number of clone sets, where the value of X-axis is the number of clone sets that presented to the

user while the value of Y-axis is the number of clone sets that the user found interesting. There

are two cumulative curves on the graph. The result curve in blue is the result after re-ordering by

our tool, while the compare curve in red is the original order presented by CDTs.

In Figure 12a, there are 78 clone sets found by CDT, only 3 out of them are thought as in-

teresting by the user. As we can see from the compare curve, these 3 interesting clone sets are

distributed in the very beginning, the middle, and near the tail of clone set list. In the result curve,

our method successfully rearranged the order of clone list, so that all 3 interesting clone sets ap-

peared at the relatively front part of the clone set list. In a real working environment, this will

significantly increase the efficiency of the user.

As the user can also change the sorting order to filter out the un-interesting clone sets, we also

defined Average Percentage False negative Found(referred as APFF) similar to the definition of

APPF, which is shown in Figure 12b. As we can see in APFF graph, in the beginning the algorithm

generate more false-negatives, and then after around 64% of the clone list, the result fails to be

no better than the compared result. This behavior of the algorithm is expected as by re-ordering

the list of clones, there is a small possibility to move an desired clone to the end of the list if it is

23

(a) APPF

Figure 12: APFF of 2 Users on Git Project

24

(b) APFF

Figure 12: APFF of 2 Users on Git Project (cont.)

25

similar to those are previously marked as not desired by the user.

6.5 Accuracy of Prediction by FICA

We trained the FICA system by using the marked data of 8 users on all clone sets for each

project. The accuracy of machine learning was shown in Figure 13.

The horizontal axis of the figure is the percentage of the training set and the vertical axis is the

radio of how many predictions by FICA are equal to the selection of the user. There were three

steps to perform a prediction:

1. The FICA system randomly selected a part of all clone sets from a project as the training set

and the remaining are used as the comparison set.

2. For a division of training and comparison set, FICA trained its machine learning model with

the training set and calculate a prediction for each clone set in the comparison set.

3. FICA compared the predicted result with the mark of user had made, and calculated the

accuracy.

We repeated these 3 steps for 256 times for each size of the training set, and the plotted value

of accuracy in the Figure 13 is the average of result of 256 times prediction.

We can see from Figure 13 that the prediction results are changing with users and target

projects. For all those 4 projects and nearly all users, we can see that the accuracy of the pre-

diction model is growing with the portion of training set. As the training set growing, in the

beginning the accuracy of the prediction grows fast until it reached a point, in between 10 % to 30

%, where the growing speed of accuracy is slowed down.

Among all 4 projects, the bash project shows the most desirable result that most of the accu-

racy of prediction is over 80% when the training set is larger than 16%, which is around 17 of all

105 clone sets. The result of git project and e2fsprogs project is largely depend on the user,

where the result of user H always achieves more than 90%, meanwhile the result of user A and C

are converging to around 60% and even decreasing when the training set is growing. The reason

why the result is not converging to 100% as well as the dropping of accuracy is further discussed

in the next subsection.

26

(a) FICA Prediction on git

(b) FICA Prediction on xz

Figure 13: Accuracy of Machine Learning by FICA

27

(c) FICA Prediction on bash

(d) FICA Prediction on e2fsprogs

Figure 13: Accuracy of Machine Learning by FICA(cont.)

28

An interesting observation of this “slowered” point is that, it does not change linearly with the

number of clone sets grows among projects, as shown in Table 5. The percentage of the “slowered”

point is changed along with the scale of the project, but the number of clone sets is not changed

greatly in all projects. To further support this conclusion, we merged all clone sets from 4 projects

into a single project and repeated the above experiment again, the result is shown in Figure 14

and the “slowered” point is also measured in last line of Table 5. As we can conclude from this

phenomenon, the number of clone sets that are necessary for machine learning does not grows

linearly with the scale of the project or the amount of the detected clone sets.

By combing the Observation 1, we got our Observation 4.

Observation 4 (Minimum Size of Training Set). The minimum required size of the training set

roughly grows linearly with the number of categories that clone sets fall into, which is less than a

magnitude of the total number of detected clone sets.

To illustrate that the training data of selections by users can be applied across different projects,

we merged all clone sets from 4 projects into a single project and repeated the above experiment

again, the result is shown in Figure 14. The result is actually better than the result of a single

project except for bash project.

We can also observe from Figure 13 and 14 that the different behavior of users are clearly

separated into different levels. Predictions for some particular user, namely user R and user V,

are always low, which means there is less literal similarity among the clone sets he marked as

interesting. And prediction for User H is always high for all projects. This result shows the

Table 5: “Slowered” point of Growing in Predicting Accuracy

Project Total Slowered (%) Slowered clone sets

git 78 21% 16

xz 36 43% 15

bash 105 16% 17

e2fsprogs 62 28% 17

All projects 281 8% 22

29

Figure 14: Merged Result of All Projects

consistency of user behaviors.

6.6 Recall and Precision of FICA

We also measured the recall and precision for separated true positives and false negatives of

FICA, as a complementary to our definition of accuracy. Firstly we referred true positive as tp, true

negative as tn, false positive as fp, false negative as fn. We then defined the recall and precision

for tp and fn as in Equations 10 to 13.

recalltp =
tp

tp+ tn
(10)

precisiontp =
tp

tp+ fp
(11)

recallfn =
fn

fn+ fp
(12)

precisionfn =
fn

fn+ tn
(13)

We took 20% of all the clone sets as the training set, the remaining as the evaluation set, and

repeated the experiment for 100 times. The result is shown as boxplot in Figure 15. From the

30

(a) Recall and Precision in git

Figure 15: Recall and Precision of FICA in each Project

31

(b) Recall and Precision in xz

Figure 15: Recall and Precision of FICA in each Project (cont.)

32

(c) Recall and Precision in bash

Figure 15: Recall and Precision of FICA in each Project (cont.)

33

(d) Recall and Precision in e2fsprogs

Figure 15: Recall and Precision of FICA in each Project (cont.)

34

130 }

131 re turn LZMA PROG ERROR ;

132 }

133 s t a t i c vo id

134 b l o c k e n c o d e r e n d (l z m a c o d e r ∗ coder , . . .)

135 {

136 l z m a n e x t e n d (& coder−>next , a l l o c a t o r) ;

137 l z m a f r e e (coder , a l l o c a t o r) ;

138 re turn ;

139 }

140 s t a t i c l z m a r e t

141 b l o c k e n c o d e r u p d a t e (l z m a c o d e r ∗ coder , . . . ,

142 c o n s t l z m a f i l t e r ∗ f i l t e r s ,

143 c o n s t l z m a f i l t e r ∗ r e v e r s e d f i l t e r s)

144 {

145 i f (coder−>s e q u e n c e != SEQ CODE)

(a) src/liblzma/common/block encoder.c

Figure 16: Example of source code in xz

boxplot we can see a similar result with Figure 13, as git and bash project show good results

while the results for xz and e2fsprogs are not so comparable. These recall and precision

charts showed a trend similar to the accuracy graph in Figure 13, as when there are clustered clone

categories in the project, the result will be more appreciate.

6.7 Reason of Converging Results

For all projects in Figure 13 and 14, the accuracy of predictions made by FICA is converging

into around 70% to 90% and is hard to achieve 100%. In this sections we will discuss some code

fragments to show the reason.

The first example comes from the xz project as in Figure 16. There are 2 code clone pairs in

these 3 code fragments. The code from Figure 16a in lines 130 to 142 and the code from Figure 16b

are the code fragments of the first clone pair, referred as clone α. The code from Figure 16a in

lines 136 to 145 and the code from Figure 16c are the code fragments of the second clone pair,

referred as clone β. As we can see from the source code, clone α consists of two complete function

body, meanwhile clone β consists only two half parts of functions. Thus, from the point of view

35

61 }

62 re turn LZMA OK;

63 }

64 s t a t i c vo id

65 a l o n e e n c o d e r e n d (l z m a c o d e r ∗ coder , . . .)

66 {

67 l z m a n e x t e n d (& coder−>next , a l l o c a t o r) ;

68 l z m a f r e e (coder , a l l o c a t o r) ;

69 re turn ;

70 }

71 s t a t i c l z m a r e t

72 a l o n e e n c o d e r i n i t (l z m a n e x t c o d e r ∗next , . . . ,

73 c o n s t l z m a o p t i o n s l z m a ∗ o p t i o n s)

(b) src/liblzma/common/alone encoder.c

Figure 16: Example of source code in xz (cont.)

474 e l s e

475 l z m a f r e e (coder−>l z . coder , a l l o c a t o r) ;

476 l z m a f r e e (coder , a l l o c a t o r) ;

477 re turn ;

478 }

479 s t a t i c l z m a r e t

480 l z e n c o d e r u p d a t e (l z m a c o d e r ∗ coder , . . . ,

481 c o n s t l z m a f i l t e r ∗ f i l t e r s n u l l ,

482 c o n s t l z m a f i l t e r ∗ r e v e r s e d f i l t e r s)

483 {

484 i f (coder−>l z . o p t i o n s u p d a t e == NULL)

(c) src/liblzma/lz/lz encoder.c

Figure 16: Example of source code in xz (cont.)

36

48 re turn 0 ;

49 }

50 s t a t i c i n t p a r s e b l o c k (c o n s t char ∗ r e q u e s t ,

51 c o n s t char ∗desc , c o n s t char ∗ s t r , b l k t ∗ b l k)

52 {

53 char ∗ tmp ;

54 ∗ b l k = s t r t o u l (s t r , &tmp , 0) ;

55 i f (∗ tmp) {

56 c o m e r r (r e q u e s t , 0 , ”Bad %s − %s ” , desc , s t r) ;

57 re turn 1 ;

58 }

59 re turn 0 ;

60 }

61 s t a t i c i n t c h e c k b r e l (char ∗ r e q u e s t)

(a) tests/progs/test rel.c

Figure 17: Example of source code in e2fsprogs

on the ease of refactoring, clone α is much easier than clone β. One the other hand, the calculated

similarity between clone α and β is greater than 43% by Equation 5, which is very high among

all other similarity between clone sets, because they share a large part of identical code fragments.

As the result, 7 out of 8 users thought that clone pair α was interesting and 6 out of 8 users thought

that clone pair β was un-interesting, while FICA always thought they belongs to the same group.

Another example comes from the e2progs project as in Figure 17. It is clearly that there are

2 code clone pairs in Figure 17. The code from Figure 17a and Figure 17b forms the first code

clone pair, referred as clone γ, and the code from Figure 17c and Figure 17d forms the second,

referred as clone δ. People can tell these two clone pairs are different because clone γ are two

function bodies and people can simply merge them into one function. But clone δ are two lists of

function declarations. But the calculated similarity between clone γ and δ is greater than 6.4%,

which is large enough to affect the overall result. The reason why FICA thought they are similar is

that they share many common N-grams, such as STATIC ID ID LPAREN CONST or CONST

ID TIMES ID COMMA, which results the high value of similarity.

Based on the above discussion, we learned from the examples that there are some limitations

in comparing code clones by their literal similarity. We will continue to learn how much this limits

the result and whether we can improve the accuracy by combining other methods such as hybrid

37

44 re turn 1 ;

45 }

46 s t a t i c i n t p a r s e i n o d e (c o n s t char ∗ r e q u e s t ,

47 c o n s t char ∗desc , c o n s t char ∗ s t r , e x t 2 i n o t ∗ i n o)

48 {

49 char ∗ tmp ;

50 ∗ i n o = s t r t o u l (s t r , &tmp , 0) ;

51 i f (∗ tmp) {

52 co m e r r (r e q u e s t , 0 , ”Bad %s − %s ” , desc , s t r) ;

53 re turn 1 ;

54 }

55 re turn 0 ;

56 }

57 void d o c r e a t e i c o u n t (i n t argc , char ∗∗ a rgv)

(b) tests/progs/test icount.c

Figure 17: Example of source code in e2fsprogs (cont.)

68 s t a t i c e r r c o d e t t e s t w r i t e b l k 6 4 (i o c h a n n e l channe l ,

69 unsigned long long block , i n t count , c o n s t vo id ∗ d a t a) ;

70 s t a t i c e r r c o d e t t e s t f l u s h (i o c h a n n e l c h a n n e l) ;

71 s t a t i c e r r c o d e t t e s t w r i t e b y t e (i o c h a n n e l channe l ,

72 unsigned long o f f s e t , i n t count , c o n s t vo id ∗ buf) ;

73 s t a t i c e r r c o d e t t e s t s e t o p t i o n (i o c h a n n e l channe l ,

74 c o n s t char ∗ o p t i o n , c o n s t char ∗ a r g) ;

75 s t a t i c e r r c o d e t t e s t g e t s t a t s (i o c h a n n e l channe l , . . .) ;

76 s t a t i c s t r u c t s t r u c t i o m a n a g e r s t r u c t t e s t m a n a g e r = {

(c) lib/ext2fs/test io.c

Figure 17: Example of source code in e2fsprogs (cont.)

38

102 s t a t i c e r r c o d e t u n i x w r i t e b l k (i o c h a n n e l channe l ,

103 unsigned long block , i n t count , c o n s t vo id ∗ d a t a) ;

104 s t a t i c e r r c o d e t u n i x f l u s h (i o c h a n n e l c h a n n e l) ;

105 s t a t i c e r r c o d e t u n i x w r i t e b y t e (i o c h a n n e l channe l ,

106 unsigned long o f f s e t , i n t s i z e , c o n s t vo id ∗ d a t a) ;

107 s t a t i c e r r c o d e t u n i x s e t o p t i o n (i o c h a n n e l channe l ,

108 c o n s t char ∗ o p t i o n , c o n s t char ∗ a r g) ;

109 s t a t i c e r r c o d e t u n i x g e t s t a t s (i o c h a n n e l channe l , . . .)

110 ;

111 s t a t i c vo id r e u s e c a c h e (i o c h a n n e l channe l , . . .

(d) lib/ext2fs/unix io.c

Figure 17: Example of source code in e2fsprogs (cont.)

token-metric based approach.

39

7 Related Research

There were some works on combining machine learning or text mining techniques with code

detection to classify or clustering code clones. Marcus and Maletic 2001 proposed a method in [27]

to identify high-level concept clones, such as different implementations of the algorithm of linked

lists, directly from identifiers and comments from source code as a new method of clone detection,

rather as a complementary of existing code clone detecting methods. A similar approach by Kuhn

et al. 2007 [28] found semantic topics instead of clones from comments and identifies from source

code. Another method by Tairas and Gray 2009 proposed in [21] shares some common ideas

with the method by above two methods that they both compares code clones by using information

retrieved from identifiers, which cares more about semantic information or behavior of the source

code rather than syntactic or structure information of the source codes. As a contrast, the method

described in this paper compares the tokenized source code of code clones, which focused on

the syntactic similarity between code clones. The works by Lucia, et al 2012 [26] shared many

general ideas with our works, but they were comparing the structure of code clones, thus enforce

more strict requirements on the fragment of found clones, and their experiments are undertaken

by only the authors, thus relied more subjective judgments.

Besides comparing text similarity, there were other methods have been proposed to filter un-

needed code clones from detecting result. Higo et al. proposed a metric-based approach in [20] to

identify code clones with higher refactoring opportunities. Their method calculate 6 different met-

rics for each code clone, and then represented the plotted graph of these metrics as a user-friendly

interface to allow user filter out those unneeded code clones. This user-defined metric-based fil-

tering method has been further automated by Koschke in [29]. Koschke is targeting a different

object which is identification of license violations, but has also used metric-based approach, and

then applying machine learning algorithms on those metrics to form a decision tree. The result

of the decision tree limits the types of metrics to only 2, which are PS(Parameter Similarity) and

NR(Not Repeat). These metrics-based methods all have a limited identifying target and thus re-

sults a higher accuracy compared to the method proposed in this paper.

Other works on classification or taxonomy of code clones were focused on proposing fixed

schemes of common clone categories. Balazinska et al. [30] propose a classification scheme for

clone methods with 18 different categories. The categories detail what kind of syntax elements

40

have been changed and also how much of the method has been duplicated. Bellon [31] defined

three different clone types for the sake of a comparison between different detection tools: exact

clones, parameterized clones, and clones that have had more extensive edits. They were aiming at

testing the detection and categorization capabilities of different tools.

Several visualization methods have also been proposed to aid the understanding of code clones.

A popular approach that implemented in most of CDTs is the scatter plot [32, 33]. Scatter plot is

useful to select and view clones in a project scale, but hard to illustrate the relations between

clones. Johnson proposed a method in [34] that use Hasse Diagrams to illustrate clusters of files

that contains code clones. Johnson also proposed to navigate the web of files that contains clone

classes by using hyperlinked web pages in [35]. The force-directed graph used in FICA system

described in this paper is highly interactive with all the benefits of a modern web system, thus

should be useful in aiding analysis of code clones.

Jiang and Hassan [36] have proposed a framework for understanding clone information in

large software systems by using a data mining technique framework that mines clone information

from the clone candidates produced by CCFinder. First, a lightweight textual similarity is applied

to filter out false positive clones. Second, various levels of system abstraction were used for

further scaling down the filtered clone candidates. Finally, an interactive visualization is provided

to present, explore and query the clone candidates as with the directory structure of a software

system. Their method shares some common features with what FICA achieved by us. Compared

to their method, FICA is more depend on the marks of code clones by users, thus more sensitive

but requires more operations by users.

41

8 Conclusions

We have shown the fact that users of CDT may have different opinions on whether a code

clone is “useful” or “interesting” to them. This observation suggested that filter of code clones

should as well take user judgments into consideration to generate more useful list of code clones.

With this observation, we proposed a classification model based on applying machine learning

algorithm on code clones. We build the described system FICA, as a web-based system for proof

of concept research purpose. The system consists of a generalized suffix tree [23] based CDT

and a web-based user interface that allows the user marks detected code clones and shows ranked

result.

We conducted an experiment on FICA system with 33 participants contributed to the result.

The result showed several important observations on the characteristics about the interesting-ness

of code clones for the users. And our classification model showed more than 70% accuracy in

average and more than 90% accuracy for particular user and source code project.

Furthermore, we obtained several observations from the experiments about the interesting-ness

of code clones.

• Un-interesting code clones are likely to fall into several categories.

• Interesting code clones are unique comparing to un-interesting ones.

• Users with more experience on code clones are more likely to agree with each other com-

pared to users with less experience.

• The minimum required size of the training set roughly grows linearly with the number of

categories that clone sets fall into, which is less than a magnitude of the total number of

detected clone sets.

42

Acknowledgements

I recieved great help and contributions from many people during writing this thesis, including

but not limited to my supervisor, professors and upperclassmen. This work could not have been

possible without their kindly efforts.

First, I would like to express my sincere gratitude to my supervisor, Professor Shinji Kusumoto,

at the Osaka University, for his considerate support, encouragement, and adequate guidance for

this work.

Also, I would like to thank to Associate Professor, Kozo Okano, at the Osaka University for

his guidance, valuable suggestions and discussions for this work.

I am also deeply grateful to Associate Professor, Hiroshi Igaki, at the Osaka University for his

helpful comments and valuable suggestions.

I would like to express my heartfelt appreciation to Assistant Professor, Yoshiki Higo, at the

Osaka University for his zealous coaching, continuous support, and encouragement throughout

this work.

My sincere thanks go to all the subjects who spare the time to the survey and experiment, for

their effort, comments, and close cooperation for this work.

I would like to thank all of my upperclassmen and friends in the Department of Computer

Science of Osaka University, especially the members in Kusumoto Laboratory, including Keisuke

Hotta, Yui Sasaki, Yoshihiro Nagase, Kentaro Hanada and Kazuki Yoshioka, for their helpful

advices, suggestions and assistance.

Finally, I would like to give extra credits to my fiancée, for her encourage, support and com-

ments about this thesis.

43

References

[1] C.K. Roy, J.R. Cordy, and R. Koschke. Comparison and evaluation of code clone detection

techniques and tools: A qualitative approach. Science of Computer Programming, Vol. 74,

No. 7, pp. 470–495, 2009.

[2] Y. Higo, S. Kusumoto, and K. Inoue. A survey of code clone detection and its related tech-

niques. IEICE Transactions on Information and Systems, Vol. 91-D, No. 6, pp. 1465–1481,

June 2008. (in Japanese).

[3] T. Kamiya, Y. Higo, and N. Yoshida. Evolving and hot topics on code clone detection tech-

niques. Journal of Computer Software, Vol. 28, No. 3, pp. 28–42, Aug. 2011. (in Japanese).

[4] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code clone

detection system for large scale source code. IEEE Transactions on Software Engineering,

Vol. 28, No. 7, pp. 654–670, 2002.

[5] I. Baxter, A. Yahin, M. Anna L. Moura, and L. Bier. Clone detection using abstract syntax

trees. In Proc. of the 14th International Conference on Software Maintenance, pp. 368–377,

Mar. 1998.

[6] J.H. Johnson. Substring matching for clone detection tools. In Proc. of the 10th International

Conference on Software Maintenance, pp. 120–126, Sep. 1994.

[7] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting

duplicated code. In Proc. of the 15th International Conference on Software Maintenance,

pp. 109–118, Aug. 1999.

[8] Z. Li, S. Myagmar, S. Lu, and Y.Zhou. Cp-miner : Finding copy-paste and related bugs in

large-scale software code. IEEE Transcations on Software Engineering, Vol. 32, No. 3, pp.

176–192, Mar. 2006.

[9] R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix trees. In

Proc. of the 13th Working Conference on Reverse Engineering, pp. 253–262, Oct. 2006.

44

[10] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard : Scalable and accurate tree-based

detection of code clones. In Proc. of the 29th International Conference on Software Engi-

neering, May 2007.

[11] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code. In Proc.

of the 8th International Symposium on Static Analysis, pp. 40–56, 2001.

[12] J. Krinke. Identifying similar code with program dependence graphs. In Proc. the 8th Work-

ing conference on Reverse Engineering, pp. 301–309, Oct. 2001.

[13] Y. Higo and S. Kusumoto. Code clone detection on specialized pdgs with heuristics. In Proc.

of the 15th European Conference on Software Maintenance and Reengineering, pp. 75–84,

Mar. 2011.

[14] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function

clones in a software system using metrics. In Proc. of the 12th International Conference on

Software Maintenance, pp. 244–253, Nov. 1996.

[15] J. Ossher, H. Sajnani, and C. Lopes. File cloning in open source java projects: The good, the

bad, and the ugly. In Proc. of the 27th International Conference on Software Maintenance,

pp. 283–292, Sep. 2011.

[16] Y. Sasaki, T. Yamaoto, Y. Hayase, and K. Inoue. File clone detection for a large scale

software system. IEICE Transactions on Information and Systems, Vol. J94-D, No. 8, pp.

1423–1433, Aug. 2011. (in Japanese).

[17] N. Göde and R. Kosheke. Incremental clone detection. In Proc. of the 13th European Con-

ference on Software Maintenance and Reengineering, pp. 219–228, Mar. 2009.

[18] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone detection:

Incremental, distributed, scalable. In Proc. of the 26th International Conference on Software

Maintenance, pp. 1–9, Sep. 2010.

[19] Y. Higo, Y. Ueda, M. Nishino, and S. Kusumoto. Incremental code clone detection: A pdg-

based approach. In Proc. of the 18th Working Conference on Reverse Engineering, pp. 3–12,

Oct. 2011.

45

[20] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based approach to identifying refactoring

opportunities for merging code clones in a java software system. Journal of Software Main-

tenance and Evolution: Research and Practice, Vol. 20, No. 6, pp. 435–461, 2008.

[21] Robert Tairas and Jeff Gray. An information retrieval process to aid in the analysis of code

clones. Empirical Software Engineering, Vol. 14, pp. 33–56, 2009. 10.1007/s10664-008-

9089-1.

[22] K.S. Jones. A statistical interpretation of term specificity and its application in retrieval.

Journal of documentation, Vol. 28, No. 1, pp. 11–21, 1972.

[23] E. Ukkonen. On-line construction of suffix trees. Algorithmica, Vol. 14, No. 3, pp. 249–260,

1995.

[24] S.G. Kobourov. Spring embedders and force directed graph drawing algorithms. arXiv

preprint arXiv:1201.3011, 2012.

[25] Michael Bostock. D3.js, Data-Driven Documents. http://d3js.org/, 2012. [Online;

accessed 1-May-2012].

[26] Lucia, D. Lo, L. Jiang, A. Budi, et al. Active refinement of clone anomaly reports. In 34th

International Conference on Software Engineering, pp. 397–407. IEEE, 2012.

[27] A. Marcus and J.I. Maletic. Identification of high-level concept clones in source code. In

16th Annual International Conference on Automated Software Engineering, pp. 107–114.

IEEE, 2001.

[28] A. Kuhn, S. Ducasse, and T. Gı́rba. Semantic clustering: Identifying topics in source code.

Information and Software Technology, Vol. 49, No. 3, pp. 230–243, 2007.

[29] R. Koschke. Large-scale inter-system clone detection using suffix trees. In 2012 16th Euro-

pean Conference on Software Maintenance and Reengineering, pp. 309–318. IEEE, 2012.

[30] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Measuring clone

based reengineering opportunities. In Sixth International Software Metrics Symposium, pp.

292–303. IEEE, 1999.

46

http://d3js.org/

[31] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation

of clone detection tools. IEEE Transactions on Software Engineering, Vol. 33, No. 9, pp.

577–591, 2007.

[32] K.W. Church and J.I. Helfman. Dotplot: A program for exploring self-similarity in millions

of lines of text and code. Journal of Computational and Graphical Statistics, pp. 153–174,

1993.

[33] Y. Higo. Code clone analysis methods for efficient software maintenance. PhD thesis, Osaka

University, 2006.

[34] J.H. Johnson. Visualizing textual redundancy in legacy source. In Proceedings of the 1994

conference of the Centre for Advanced Studies on Collaborative research, p. 32. IBM Press,

1994.

[35] J. Howard Johnson. Navigating the textual redundancy web in legacy source. In Proceed-

ings of the 1996 conference of the Centre for Advanced Studies on Collaborative research,

CASCON ’96, pp. 16–. IBM Press, 1996.

[36] Z.M. Jiang and A.E. Hassan. A framework for studying clones in large software systems. In

Seventh IEEE International Working Conference on Source Code Analysis and Manipulation,

pp. 203–212. IEEE, 2007.

47

	Introduction
	Motivating Example
	Fica System
	Overall Workflow
	Requirements on Existing CDT
	Marking Clones Manually
	Machine Learning
	Cycle of Supervised Learning

	Machine Learning Model
	Input Format of Fica
	Calculating Similarity between clone sets
	User Profile and Marks on clone sets

	Implementation Details
	Experiments
	Experimentation Setup
	Code Clone Similarity with Classification by Users
	Similarity among Users' Selection
	Ranking clone sets
	Accuracy of Prediction by Fica
	Recall and Precision of Fica
	Reason of Converging Results

	Related Research
	Conclusions
	Acknowledgements
	References

