
Reordering Program Statements for Improving Readability

Yui Sasaki, Yoshiki Higo, Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University,
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
Email: {s-yui,higo,kusumoto}@ist.osaka-u.ac.jp

Abstract—In order to understand source code, humans
sometimes execute the program in their mind. When they
illustrate the program execution in their mind, it is necessary
to memorize what values all the variables are along with the
execution. If there are many variables in the program, it is
hard to their memorization. However, it is possible to ease
to memorize them by shortening the distance between the
definition of a variable and its reference if they are separated
in the source code. This paper proposes a technique reordering
statements in a module by considering how far the definition
of a variable is from its references. We applied the proposed
technique to a Java OSS and collected human evaluations
for the reordered methods. As a result, we could confirm
that the reordered methods had better readability than their
originals. Moreover, we obtained some knowledge of human
consideration about the order of statements.

Keywords-source code readability, source code analysis, soft-
ware tool, arranging program statements

I. INTRODUCTION

In order to maintain a software system, we must under-

stand its source code. However, software understanding itself

is costly [1], [2]. For example, it is hard to understand the

role and the value of a variable whose definition is separated

from its reference [3]. In order to relieve the negative impacts

caused by separated variable definitions and their references,

it would be useful to move the statements of defining and

referencing a variable close to each other in source code.

This paper proposes a new technique reordering state-

ments in a module by considering how far the definition

of a variable is from its references. Also, we applied the

proposed technique to a Java OSS and investigated the

usefulness of the proposed technique. As a result, we could

confirm that the proposed technique identified reordering

opportunities for about 200 methods and the some of the

reordered modules had better readability than their originals.

The main contributions of this paper are:

• it proposes a technique to shorten the distance between

definition and reference of a variable;

• it confirms that reordering statements can improve read-

ability of Java methods by conducting an experiment

with 44 subjects;

• it provides some knowledge of human consideration

about the order of statements through the experiment.

We consider that reordering statements for improving

source code is a kind of refactoring. There are many tools

for automated refactoring, however, recent studies revealed

these tools had rarely been used: one of the factors is that it is

difficult for developers to predict the outcome of refactoring

tools [4]. Therefore, we consider that reordering operation

should be performed not automatically for all the modules

but interactively for only a module specified by the users.

The proposed technique is a first step for providing an

interactive refactoring environment.

II. RELATED WORK

Buse and Weimer investigated code readability with sev-

eral software metrics [5]. Their investigation result reported

that the number of identifiers in each line affected read-

ability. Also, Dunsmore and Roper reported that mental

simulation, in which humans read source code and ex-

ecute the program in their mind, is useful for program

comprehension [6]. Nakamura et al. developed a model by

representing human short-term memory as FIFO queue, and

measured the cost of mental simulation [3]. They reported

that appearances of variables not in the queue have negative

impacts on understanding the source code.

Recent studies presented techniques for automatically

formatting source code in order to improve readability.

Wang et al. presented an automatic formatting tool that

identified meaningful blocks and inserted blank lines [7].

Also, prettyprinting is one of the most famous techniques to

reformat coding style such as indentation and blank lines.

These studies improved readability of source code without

changing its program behavior. However, it is difficult to

reorder program statements automatically because there are

various relationships between statements such as control

dependence, data dependence, and control flow. Those re-

lationships affect the program behavior. It has not been

conducted such a study, and also not been evaluated the

readability due to the difference of the order of statements.

III. MOTIVATING EXAMPLE

We consider variables sgSet and nonPcSet in the source

code of Figure 1. Figure 1(a) shows an example that variable

definitions and their references are separated. sgSet is ref-

erenced only within the if-block beginning at the 48th line,

however it is defined outside of the block. It is naturally

desirable that scope of variables is small as much as possible,

which is a principle of the variable locality. Also, though

2013 17th European Conference on Software Maintenance and Reengineering

1534-5351/13 $26.00 © 2013 IEEE

DOI 10.1109/CSMR.2013.50

361

…
if (…) {
 HashSet sgSet = new HashSet();
 sgSet.add("caption");
 …
 setSegments(sgSet);
} …
HashSet nonPcSet = new HashSet();
nonPcSet.add(…);

46:
47:
48:

368
369:

sgSet nonPcSet HashSet sgSet = new HashSet();
…
HashSet nonPcSet = new HashSet();
…
if (…) {
 sgSet.add("caption");
 …
 setSegments(sgSet);
} …
nonPcSet.add(…);

36:

41:

48:
49:

369:

(a) before (b) after

Figure 1. Motivating Example

select a module

visualize the result

view the result

A
B
C
D
E
F

INPUT
a module

OUTPUT
the module with the

reordered statements

…

input ordering constraints

ordering constraints

A
C
D
F
E
B

automatic reordering interactive operation

Figure 2. Overview of an Interactive Reordering Environment

scope of nonPcSet is not able to narrow down anymore

because its definition and reference are at the same block,

it is possible to move its definition close to its reference

like Figure 1(b). In this paper, we propose a technique

reordering program statements for improving readability of

the source code. Specifically, we present following two

reordering strategies.

• moving statements into inner blocks in order to narrow

down variable scope (strategy 1)

• moving statements close to each other within the
same block in order to shorten the distance between

a variable definition and its reference (strategy 2)

IV. PROPOSED METHOD

The purpose of our study is supporting refactoring in-

teractively. Figure 2 shows an overview of an interactive

refactoring environment that we are going to develop. At

first, a user selects a module where she wants to improve

readability. Then, the tool automatically reorders the state-

ments with primary ordering constraints (as described later)

and visualizes only one result to her. If she satisfies the

result, she adopts it. However, if, not, she inputs her special

intention for ordering statements as new ordering constraints.

Such an interactive analysis for the module lasts until she

satisfies the reordering result.

In the remainder of this section, we describe the automatic

reordering technique for program statements.

A. Preliminaries

We identify Def-Use chain (DUchain) in a module by

using data flow analysis technique. A DUchain is identified

from every pair of definition and reference. If a variable is

referenced twice, two chains are identified. Then, we use a

final AstToken token = event.getToken();
if (isStateChangeTriggerEvent(event)) {
 super.entered(event);
 if (this.isDefinitionToken(token)) {
 …
 } else { … }
}

if (isStateChangeTriggerEvent(event)) {
 final AstToken token = event.getToken();
 super.entered(event);
 if (this.isDefinitionToken(token)) {
 …
 } else { … }
}

if (isStateChangeTriggerEvent(event)) {
 super.entered(event);
 final AstToken token = event.getToken();
 if (this.isDefinitionToken(token)) {
 …
 } else { … }
}

final AstToken token = event.getToken();

(g gg ()) {
final AstToken token = event.getToken();

final AstToken token = event.getToken();

moving
into inner block

moving within
the same block

Figure 3. An Example of Applying the Strategies

distance between the statement defining a variable (s1) and

the statement referencing the variable (s2) of a DUchain as

a numeral metric1. Herein, distance means the number of

statements between s1 and s2. Let distance(c) be the distance

of DUchain c, and DUchain(B) be the set of DUchains

existing in block B. Then, the total distance of the DUchains

in B is defined as the following formula.

DataDistance(B) = ∑
c∈DUchain(B)

distance(c)

B. Overview of the proposed technique

The proposed technique uses AST generated from input

source code of a module. Specifically, it applies the two

reordering strategies to every program block in the input

module with a post-order traversal for the AST. Figure

3 represents an example of applying the two reordering

strategies to the if-block beginning at the 2nd line.

• At first, if there are statements whose variable scope

can be narrowed down, they are moved into the inner

the if-block.

• Then, the proposed technique moves statements close

to each other within the if-block in order to shorten

DataDistance value of the if-block.

C. Implement of strategies

1) Strategy 1: Statement s is moved into inner block B
if all the following conditions are satisfied:

• s locates outside of B;

• s is a variable declaration statement;

• s is included in all execution paths to B;

• all the variables defined in s are referenced only in B;

• all the variables defined in s are not re-defined in all

execution paths to B.

The goal of the strategy is only to narrow scope of

variables down. Consequently, we move such a statement

1If a variable points to an object whose state is changed by a method
call, we regard that the variable is defined and referenced.

362

{
 this.init();
 if (…) {
 return;
 }
 int x = getX();
 int y = getY();
 if (…) {
 x = getZ();
 }
 o.set(x,y);
}

x

x y

S�
S�

S�
S�
S�

S�

return

(a) source code

 Constraints
Def-Use Def-Def Escape

S� {} {} {S�}

S� {} {} {S�, S�, S�, S�}

S� {S�} {S�} {}

S� {S�} {} {}

S� {S�} {} {}

S� {} {} {}

s

(b) constraints of each statement

Figure 4. Example of Order Constraints

to the beginning of the inner block without considering its

appropriate place in the inner block.

2) Strategy 2: The proposed technique creates all the

sequences of statements that satisfy the constraints that

does not change the behavior of the program (primary
constraints) in the first step of the strategy 2.

The primary constraints are the followings. Herein, we

describe the constraints with Figure 4 as an example. SA
.. SF in Figure 4(a) are statements in the focused block.

Figure 4(b) represents that each statement has a set of

statements which must appear after the statement based on

each constraint.

Def-Use Constraints: two statements in a DUchain have

to keep their present order: i.e., SF references y defined at

SD. If their order is reversed, SF cannot reference y.

Def-Def Constraints: if a statement references a variable

defined at multiple statements, the present order of those

statements must be kept: i.e., SF references x defined at SC
and SE ; if the order of SC and SE is reversed, SF cannot

reference x defined at SE because SC re-defines x.

Escape Constraints: if a statement includes jump-

instruction such as return, break, or continue-statement, the

present order between each of the other statements and it

must be kept: i.e., SB (which is if-block) includes return-

statement, and so SC, SD, SE and SF are not always executed

depending on a conditional expression of B, but SA is always

executed; if the orders between these statements and SB are

reversed, the execution conditions are changed.

Then, we describe how the strategy 2 is performed with

the above three constraints as follows:

1) creating all the sequences satisfying all the constraints;

2) extracting the sequences whose DataDistance are min-

imum in all the sequences.

If there are multiple minimum sequences, we apply:

3) choosing only one sequence whose order is the most

similar to its original.

In step 3, we use Spearman’s rank correlation coefficient.

That is, the correlation between each of all the sequences

obtained in step 2 and the original one is measured, and then

the sequence whose correlation coefficient is the highest,

which means the sequence is the most similar to the original

one, is selected as a result of the strategy 2.

0

10

20

30

40

50

of

 su
bj

ec
ts

methods

original

no difference

proposed

proposed > original

234

184

462

Figure 5. Result of All the Target Methods

V. CONTROLLED EXPERIMENT

We implemented a software tool based on the proposed

technique. Currently, the tool can handle Java language. We

applied the tool a Java system, TV Browser, in this exper-

iment. The system includes approximately 3,700 methods

that include two or more statements.

By applying the tool to all the methods, we obtained

reordering candidates from 215 methods. In order to evaluate

the usefulness of the proposed technique, we selected 20

methods as the evaluation target methods from all the

reordered methods because it was unrealistic that humans

judged all the 215 methods manually.

Then, we made a questionnaire on the web. In the

questionnaire, every subject selected one of the following

options for every target method.

• A is easier to read than B;

• B is easier to read than A;

• There is no difference between A and B in readability.

We had manually confirmed that every target method

had kept their behavior before the questionnaire because

currently the proposed technique does not completely guar-

antee behavior preservation. In the questionnaire, we did not

inform the subjects about what strategies of reordering were

and which the original was. Additionally we removed all

blank lines and comments for all the target methods and

standardized their formats such as indents and line breaks.

We gathered subjects by social networks, and 44 subjects

were joined. Eight subjects had programming experiences

with less than 1,000 lines of Java code, 23 subjects from

1,000 to 10,000 lines, and 13 subjects more than 10,000

lines. Also, at least 28 subjects had used Java in their

academic research and at least 12 subjects in their work.

A. Result

Figure 5 shows the breakdown of the answers from the 44

subjects for each target method. All the answers of all the

subjects are aggregated based on the values. We found that

16 out of the 20 methods had more subjects who answered

reordered method was easier to read than their originals.

Herein, we performed statistical testing for the result by

Wilcoxon signed-rank test, and then we confirmed that there

is a significant difference between the number of subjects

who selected reordered method and who selected original

one. This result shows that the proposed technique enables

to improve the readability of source code.

363

mTimeBlockSizeSp = new JSpinner(…);
mTimeBlockShowWestChB = new JCheckBox(…);
mContent = new JPanel(…);
mContent.add(…);
mContent.add(mTimeBlockSizeSp, …);
mContent.add(mTimeBlockShowWestChB, …);
return mContent;

1
1
1
1

4
4

mContent = new JPanel(…);
mContent.add(…);
mTimeBlockSizeSp = new JSpinner(…);
mContent.add(mTimeBlockSizeSp, …);
mTimeBlockShowWestChB = new JCheckBox(…);
mContent.add(mTimeBlockShowWestChB, …);
return mContent;

1

1

1

1

2

2

(a) before (b) after

mTimeBlockSizeSp

mTimeBlockShowWestChB

mContent

DUchain

Figure 6. A Method Where Most of the Subject Judged as Difficult

B. Discussion

In the experience, original methods were judged to be

easier to read than their reordered ones in 4 out of the

20 methods. We investigated details of these 4 methods

carefully, and obtained following characteristics.

• There are consecutive invocations of the same method

for the same object.

• There are consecutive declarations of variables whose

names are similar to one another.

They have a common point that a similar sequence of

statements is considered to be one of the factors improving

the readability. For example, Figure 6 shows a method

where most of the subjects judged that the original was

easier to read than the reordered. The arrows in the figure

represent DUchains, and their labels represent their dis-

tances. In Figure 6(a), there are consecutive invocations

of the same method for an object named mContent. The

proposed technique moved two variable definitions at the

beginning of the method close to their references. Many of

the subjects judged Figure 6(a) that included consecutive

mContent.add(. . .) to be easier to read than Figure 6(b) in

which definitions and references of the two variables were

placed consecutively.

Hence, it seems that not only the distance between vari-

able definitions and their references but also similarity of

consecutive statements is an important factor of appropri-

ateness of statement reordering.

VI. FUTURE WORK

First of all, we are going to collect the other factors

on ordering statements affecting the readability of source

code with more experiments, and brush up the proposed

reordering technique with them. Besides, we are going to

develop an interactive environment for supporting reordering

statements. In the environment, we are also going to put a

function that users can specify their special intentions for

ordering statements as new ordering constraints, such that

consecutive statements in the original source code are kept

the original order during the reordering.

VII. CONCLUSION

This paper presented a technique reordering statements to

improve readability of source code. We applied the proposed

technique to a Java system, and then we could identify

opportunities reordering statements from 215 methods. Be-

sides, we conducted an experiment with 44 subjects.The

experimental results revealed that reordered methods had

better readability than their originals in most cases. In

addition, we obtained a knowledge that not only the distance

between variable definitions and their references but also

similarity of consecutive statements are important factor in

considering the order of statements.
In the future, we are going to:

• collect the more factors on ordering statements;

• improve our technique based on them;

• develop an interactive reordering environment.

ACKNOWLEDGMENT

This study has been supported by Grants-in-Aid for

Scientific Research (A) (21240002), Grant-in-Aid for Ex-

ploratory Research (23650014, 24650011), and Grand-in-

Aid for Young Scientists (A) (24680002) from the Japan

Society for the Promotion of Science.

REFERENCES

[1] A. Goldberg, “Programmer as reader,” IEEE Software, vol. 4,
no. 5, pp. 62–70, Sep. 1987.

[2] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An
exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks,” IEEE
Trans. Softw. Eng., vol. 32, no. 12, pp. 971–987, Dec. 2006.

[3] M. Nakamura, A. Monden, T. Itoh, K. Matsumoto, Y. Kanzaki,
and H. Satoh, “Queue-based cost evaluation of mental sim-
ulation process in program comprehension,” in Proc. of 9th
IEEE International Software Metrics Symposium, Sep. 2003,
pp. 351–360.

[4] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey,
and R. E. Johnson, “Use, disuse, and misuse of automated
refactorings,” in Proc. of the 2012 International Conference
on Software Engineering, Jun. 2012, pp. 233–243.

[5] R. P. L. Buse and W. R. Weimer, “Learning a metric for code
readability,” IEEE Trans. Softw. Eng, vol. 36, no. 4, pp. 546–
558, Jul. 2010.

[6] A. Dunsmore and M. Roper, “A comparative evaluation of
program comprehension measures,” The Journal of Systems
and Software, vol. 52, no. 3, pp. 121–129, Jun. 2000.

[7] X. Wang, L. Pollock, and K. Vijay-Shanker, “Automatic seg-
mentation of method code into meaningful blocks to improve
readability,” in Proc. of the 18th Working Conference on
Reverse Engineering, Oct. 2011, pp. 35–44.

364

